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Abstract—Consider a dense array of cameras uniformly dis-
tributed along a line. A solid block of 3D data can be constructed
by arranging the images into a stack. This volume, also known
as the Epipolar-Plane Image volume, contains highly structured
data that can be segmented for object removal, insertion and
compression. In this paper, we propose a segmentation scheme
that takes fully advantage of the known geometry in order to
model occlusions explicitly as a result of disparity. Moreover, we
include this knowledge into an energy minimization scheme based
on region competition with active contours. Instead of extracting
layers sequentially from front to back, each layer is made to
compete with the regions it is going to occlude and the ones
it is going to disocclude. This enables a virtually unsupervised
segmentation.

I. INTRODUCTION

The data acquired by multiple cameras from multiple
viewpoints can be parameterized in a single function called
the plenoptic function. It was first introduced by Adelson
and Bergen in [1] with the goal of describing what one
sees from an arbitrary viewpoint in space. It can therefore
be characterized with seven dimensions namely the viewing
location and direction, wavelength and time. A particular
case is obtained by fixing time and wavelength and reducing
the viewing position to a line. Under these constraints, the
plenoptic function reduces to a 3-dimensional function also
known as the Epipolar-Plane Image (EPI) volume [2]. Such a
volume is constructed by collating multiple images taken from
equidistant locations along a line as shown in Figure 1. Under
a projective camera model, a point in space is projected onto a
line in the EPI with a slope inversely proportional to its depth.
This setup provides a coherent function for analyzing all the
images simultaneously in 3D.
Epipolar-Plane Images were first analyzed in the seminal

work of Bolles et al. in [2] were it was shown that 3D
information of a scene can be recovered by finding lines
in the EPI. In [3], it is suggested that the segmentation of
the EPI into coherent regions can be beneficial for numerous
applications such as scene interpretation, object manipulation,
occlusion removal and compression [4]. In order to segment
the data, the authors introduce the notion of EPI tube. Similarly
to the volume carved out by an object in a video [5], an
EPI tube is obtained by gathering a collection of lines in
the EPI volume that have similar slope or belong to the
same layer. The segmentation is done by incorporating the
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Fig. 1. Epipolar-Plane Image (EPI) volume. The 3D data is generated by
arranging images taken from a uniformly distributed linear camera array into
a stack. We cut the volume in order to show one Epipolar-Plane Image.
According to the geometry, a point in space is mapped onto a line in the
EPI. Points that are closer to the camera plane have larger slopes than the
points that are further away.

knowledge of the geometry of the camera setup in order to
take into account occlusions explicitly as a result of disparity.
Indeed, occlusions and disparity are closely related since a
point with a larger disparity (i.e. closer to the camera plane)
will occlude a point that is further away. Following this
observation, most EPI analysis algorithms [2], [3], [6] extract
layers separately in each horizontal slice and in a sequential
manner by detecting lines. The frontmost areas are isolated and
removed from further consideration. Subsequent occlusions
are thus explained.
In this paper, we include the disparity-occlusion correlation

into an energy minimization with active contours. Instead of
removing layers from front to back sequentially, we include
the geometric properties in the segmentation of all the layers.
Each object is competing with the objects it is going to occlude
or disocclude. In this manner, the final result is not dependent
on the segmentation of prior layers. Furthermore, we do not
treat each EPI slice separately, but rather we perform the
segmentation on the whole volume, thus preserving continuity
along the vertical axis as well.
The paper is organized as follows: In Section II we give a

brief introduction to image segmentation using active contours
and the level set methodology. We then describe the EPI tube



extraction algorithm followed by the disparity estimation and
initialization. Section III shows results for synthetic as well as
real data. Finally, we conclude in Section IV.

II. PROPOSED METHOD
In this section, we recall the speed function used in order

to evolve an active contour towards the local minimum of an
energy functional. We then show how the methodology can
be applied to the segmentation of EPI volumes with region
competition.

A. Preliminary: Image segmentation with level sets
Since the original work by Kass et al. [7], active contours

have been used successfully in numerous image and video
segmentation algorithms. A few examples can be found in [5],
[8], [9], [10]. The idea is to evolve a curve with a speed
function that is defined in such a way that it minimizes a
certain energy functional. Usually the functional contains two
terms, one attracting the contour towards the boundary of the
object and one that regulates the smoothness of the curve.
Consider an image domain separated in two regions Ω and
Ω by the curve Γ. The energy functional to minimize can be
written in the form

E(Γ) =
∫∫

Ω(Γ)

f(x, y)dxdy +
∫∫

Ω(Γ)

g(x, y)dxdy +
∫

Γ

λds,

where f(x, y) and g(x, y) are the functions to minimize in Ω
and Ω respectively and s is the arc length of the curve. The
constant weight λ defines the influence of the curvature term.
In order to derive an evolution equation that attracts the curve
towards the local minimum of the functional, the boundary
Γ is made dependent of an evolution variable τ . It can be
shown either through the Green-Riemann theorem and Euler
Lagrange equations [9], [11] or through Eulerian derivatives
[10] that the steepest descent of the energy yields the partial
differential equation (PDE)

∂�Γ(τ)
∂τ

= [f(x, y) − g(x, y) + λκ] �N = F �N, (1)

where �N is the inward unit normal to the curve and κ is
its curvature. The initial condition Γ(0) is defined by the
user. The PDE in (1) can be solved efficiently using the
level set methodology [12]. The curve Γ is embedded as
the zero level set of a higher dimension surface φ such that
Γ(τ) = {(x, y)|φ(x, y, τ) = 0} and the evolution equation
becomes ∂φ

∂τ = F |∇φ|. Usually, φ is chosen to be the signed
distance to the curve therefore |∇φ| = 1. The main advantages
of using level sets are the capacity in handling topological
changes and numerical stability. We refer to [12] for a detailed
description.

B. Region competition for EPI tube segmentation
In classical EPI analysis, the viewpoints are uniformly

distributed along a line. We denote a point in the EPI volume
as I(x, y, t) where x and y are the image coordinates and t de-
notes the position of the camera along the line. Assuming the
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Fig. 2. Occlusion and disocclusion region competition. The front tube V1
is in competition with the rear tube V2. One side of V1 is competing with
the ‘to be occluded’ volume V2occ and the other side is competing with the
‘disoccluded’ volume V2dis

.

scene is made of approximately fronto-parallel regions, each
EPI tube is made of a collection of lines with the same slope
p. Indeed, the disparity of a point between two consecutive
cameras remains constant throughout the stack. Furthermore,
the intensity along the lines remains constant assuming the
scene is made of opaque Lambertian surfaces. Therefore, a
good measure for a point’s consistency with a particular layer
is the variance along a line of the corresponding slope.
Consider a scene made of N layers, each region Ωn

delimitated by its contour Γn and assume, for the moment,
that the slopes pn are known. Each region corresponds to an
EPI tube denoted Vn. According to the occlusion ordering, the
volumes are arranged from font (n = 1) to back (n = N ) and
orthogonalized by removing occluded regions such that

V⊥
n = Vn ∩

n−1∑
i=1

V⊥
i . (2)

The global energy we seek to minimize Etot(Γ1, . . . , ΓN ) =∑N
n=1 En(Γn) is the sum of the energies for each region.

Notice that a point in one image can have multiple depth values
and therefore individual curves are propagated for each region.
We define the individual energies as

En(Γn) =
∫∫

Ωn

σ2
ndxdy +

∫∫
Ωn

σ2
ndxdy +

∫
Γn

λds,

with

σ2
n(x, y) =

1
Ln

∫
t∈V⊥

n

[I(x + pnt, y, t) − µn]2dt, (3)

and
µn(x, y) =

1
Ln

∫
t∈V⊥

n

I(x + pnt, y, t)dt,

with Ln =
∫

t∈V⊥
n

√
p2

n + 1dt. A first approach for the
choice of σ2

n(x, y) is to consider it a constant threshold T .



Indeed, the speed function for the evolving contours reduces
to Fn = σ2

n − T + λκn. Ignoring the curvature term, a
line with a variance smaller than T will result in a negative
force, thus it will be included in Ωn. Inversely, a line with
a variance larger than T will induce a positive force thus
causing Ωn to reject it. In this case, each epipolar tube can
be extracted sequentially starting with the frontmost one. The
layer is consequently removed from further consideration and
the following tubes can be extracted thereafter. This method
suffers from two drawbacks. First, the segmentation accuracy
relies on the choice of the threshold. Second, as the layers are
extracted sequentially, errors propagate to the segmentation of
further layers. In order to resolve these issues, we propose
to perform the segmentation on all the layers simultaneously
using a region competition. Figure 2 illustrates the reasoning
behind the competition formulation. For clarity, we describe
the method for two layers. The extension to N layers follows
the same reasoning.
Consider a scene made of two fronto-parallel regions Ω1

and Ω2 that correspond to two EPI tubes V1 and V2. Since V1

is closer to the camera plane, it is not occluded and V⊥
1 = V1.

The V2 however will be occluded and V⊥
2 = V2 ∩V⊥

1 . Notice
that this is the fundamental difference with the sequential
threshold method as σ2

2 and therefore the evolution of V⊥
2

depends on the evolution of V⊥
1 . Hence, we use an iterative

approach by fixing Ω2 while propagating Ω1 and inversely
fixing Ω1 while propagating Ω2. From Figure 2, it is clear
that the evolution of the left side of Ω1 modifies σ2

2 in the so-
called ‘to be occluded’ region [5]. Similarly, the evolution of
the right side of Ω1 modifies σ2

2 in the ‘disoccluded’ region.
Therefore, V⊥

2 is divided into two sub-tubes V2occ and V2dis

as shown in Figure 2. In order to make Ω1 and Ω2 compete,
we define σ2

1occ
as

σ2
1occ

=
1

Ω2

∫
Ω2

σ2
2occ

(u, v)dudv,

where σ2
2occ

is as defined in (3) and V⊥
2 is given by (2).

The σ2
1dis

is obtained in the same way. Recall that the level
set function φ is chosen to be the signed distance to the
curve. Therefore the left hand side of the curve corresponds
to ∂φ1

∂x (x, y) < 0 and the right hand side corresponds to
∂φ1
∂x (x, y) > 0. This observation leads to the PDE

∂φ1

∂τ
= (σ2

1 − σ2
1 + λκ1)|∇φ1|,

with
σ2

1(x, y) =
{

σ2
1occ

∂φ1
∂x (x, y) < 0

σ2
1dis

∂φ1
∂x (x, y) > 0.

Since V2 is the rearmost tube, it does not occlude or disocclude
any other layers. The σ2

2 is therefore chosen to be unity when
the speed is normalized. In the case of N layers, each region
competes the average variances along the lines of all the layers
it is occluding or disoccluding.
Notice that our EPI tube segmentation algorithm shares

some concepts like ‘to be occluded’ and ‘disoccluded’ regions
with the segmentation of object tunnels and occlusion volumes

proposed in [5] for video segmentation. However, there are
several important differences due to the fact we are considering
multi-view images instead of moving ones. Indeed, while in [5]
the minimization is performed in 3D with active surfaces,
we use 2D active contours. In our case, two dimensions are
sufficient to segment tubes thanks to epipolar geometry [13].
Furthermore, we include a disparity-occlusion rule that takes
into account the disparities of layers.

C. Disparity estimation and initialization

In our current implementation, the disparities of each layer
are computed using a standard least squares minimization.
A set of blocks are tracked throughout the EPI volume. We
then keep only the blocks and respective disparities when the
trajectory corresponds to a line. In order to initialize a set of
layers, blocks where pn

pi
< β are merged. Their contours are

used as initial values for the curve evolution.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we show some preliminary results for the
analysis of both synthetic and real EPI volumes. For both
scenes, we use the same parameters λ = 0.2 and β = 0.05.
The disparities are estimated using 8 by 8 pixel blocks. No
interpolation was performed for these experiments as integer
disparities were used. Due to the lack of a ground truth, we
provide a qualitative assessment of the results.
The synthetic checker sequence consists of three perfectly

fronto-parallel and Lambertian layers. Images 1 and 32 of
the stack are depicted in Figures 3(a) and 3(b) respectively.
Figure 3(c) illustrates one slice of the EPI volume and the
extracted layers are shown in Figure 3(d). In this case, all
the assumptions are satisfied and the segmentation can be
very accurate. Using a constant threshold T for the region
propagation can also provide a similar results if T is well
chosen.
The 15 images of the tiger sequence were acquired by

translating a camera along a linear axis. The first and last
images are shown in Figures 3(e) and 3(f). We have not
performed any calibration, however the black background was
thresholded prior to analysis since it is completely textureless.
In spite of the poor contrast and non fronto-parallel regions, the
four layers depicted in Figure 3(h) were detected and extracted.
An interesting point to notice is that the crude initialization
process causes erroneous layers to be initialized. However,
these layers vanish thanks to the capacity of the level set
method in handling topological changes. The segmentation
using a constant threshold is also shown in Figure 3(g). Here
we show the best results obtained from a batch of experiments
with different values for T . In this case, using the region
competition drastically improves the result specially for the
mug and the pen layers. Notice also the that paws and the
nose of the tiger are at a different depth than the body and
arms. This distinction is lost when using the threshold method.
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Fig. 3. Experimental results. The synthetic checker image sequence (320x240). (a) Image 1 of 32. (b) Image 32 of 32. (c) Epipolar-plane image at slice
y = 70. (d) Three layers are detected and extracted. The holes in the background are occluded areas in all the images. The tiger image sequence (512x400)
was acquired by translating a camera along a linear axis. (e) Image 1 of 15. (f) Image 15 of 15. (g) Extracted layers using a constant threshold for each layer.
(h) Extracted layers with occlusion and disocclusion competition.

IV. CONCLUSION AND FUTURE WORK
We have proposed a segmentation algorithm for the

Epipolar-Plane Image volume that is based on 3D space con-
tinuity and explicitly takes into account occlusions given the
disparity of each plane. Using epipolar geometry, we reduce
the 3D problem of segmenting the EPI volume into a 2D curve
evolution. The speed that governs the curve evolution however
is computed using the whole stack of images. The main
contribution of the scheme presented lies in the competition
formulation that enables a global energy minimization instead
of extracting layers individually. Furthermore, there are only
two parameters in the segmentation process. The first one λ
regulates the smoothness of the boarders and the second one
β regulates the number of layers to be extracted.
We believe however that the segmentation scheme has

potential to be more accurate. Indeed, the fronto-parallel re-
gion assumption is quite limiting. Therefore, we are currently
investigating lifting the constraint by using affine or piecewise
smooth disparity models such that they can be better fitted to
the scenes. We are also looking into deriving a more precise
evolution equation following in spirit the derivation presented
in [10] for region dependent active contours. Finally, while we
have not yet spent time on the optimization of the process, we
note that there are efficient fast level set methods.
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