EXPONENTIAL **REPRODUCING KERNELS** FOR SPARSE SAMPLING Jose Antonio Uriguen Pier Luigi Dragotti Thierry Blu 29th June 2011

Communications & Signal Processing Group Department of EEE Imperial College of London

Imperial College London

- Review of Finite Rate of Innovation
 - Motivation for FRI
 - Parametric signals
 - Appropriate sampling kernels
 - Sample & reconstruct a train of Diracs
- □ The noisy scenario
 - A subspace approach
 - Prewhitening
 - Modified E-Spline kernels

Problem statement

Motivation

- Sample a sparse continuous-time signal
- Not necessarily band-limited → parametric / FRI signal (+) appropriate filtering

$$x(t) \longrightarrow h(t) = \varphi\left(-\frac{t}{T}\right) \xrightarrow{y(t)} \xrightarrow{x} T \longrightarrow y_n$$

Perfect reconstruction based on

- Set of N discrete measurements
- **Taken every** T seconds $y_n = \langle x(t), h(t nT) \rangle$

Sparse signals to be sampled

- Signals with finite rate of innovation
 - Finite amount of degrees of freedom
 - Parametric representation

$$x(t) = \sum_{k \in \mathbb{Z}} \sum_{r=0}^{R-1} \gamma_{k,r} g_r(t - t_k).$$

0.6

0.8

0.4

(a) Train of Diracs

0.2

Sampling kernels (i)

- Normally sampling kernels are given
 - Natural process: diffusion field observed by various spatially distributed sensors
 - Acquisition device: electric circuit, camera lens
 - Exponential reproducing kernels can model certain types of filters

Sampling kernels (ii)

Exponential reproducing kernels

\square Finite support: order $P \rightarrow P+1$

Reproduce exponentials

$$\sum_{n \in \mathbb{Z}} c_{m,n} \varphi(t-n) = \mathrm{e}^{\alpha_m t}$$

Coefficients are discrete time exponentials

$$c_{m,n} = e^{\alpha_m n} c_{m,0}$$

Based on E-Splines $\varphi(t) = \gamma(t) * \beta_{\vec{\alpha}_P}(t)$

$$\hat{\beta}_{\vec{\alpha}_P}(\omega) = \prod_{m=0}^{P} \left(\frac{1 - e^{\alpha_m - j\omega}}{j\omega - \alpha_m} \right)$$

Sampling kernels (iii)

Examples of E-Splines

Sampling kernels (iv)

Exponential reproducing kernels give us flexibility

- They can be designed to accommodate certain types of given filters
 - Electric circuit, camera lens, etc

If we can choose the kernel, we can also optimise them

- To handle noise effectively
- To satisfy other requirements

 \Box In any case, we need to find an appropriate $\gamma(t)$

 $\varphi(t) = \gamma(t) \ast \beta_{\vec{\alpha}_P}(t)$

Sample & Rec a train of Diracs (i)

□ 1. Obtain the input measurements

Traditional linear sampling

Input characterised by (t_k, a_k) k = 0, ..., K-1
Set of N samples y_n = (x(t), h(t - nT))

Sample & Rec a train of Diracs (ii)

2. Modify the samples

Obtain new measurements

$$s_m = \sum_{n=0}^{N-1} c_{m,n} y_n \quad m = 0, \dots, P.$$

Linear transform $\mathbf{s} = \mathbf{C}\mathbf{y}$

■ Power sum series equivalence → Harmonic retrieval

$$s_{m} = \left\langle x(t), \sum_{n} c_{m,n} \varphi(t-n) \right\rangle = \int_{-\infty}^{\infty} x(t) e^{\alpha_{m} \frac{t}{T}} dt$$
$$= \sum_{k=0}^{K-1} \hat{a}_{k} u_{k}^{m}, \quad m = 0, 1, \dots, P$$
$$\begin{aligned} \hat{a}_{k} &= a_{k} e^{\alpha_{0} \frac{t_{k}}{T}} \\ u_{k} &= e^{\lambda \frac{t_{k}}{T}} \end{aligned}$$

Sample & Rec a train of Diracs (iii)

9

- \Box 3. Retrieve the input parameters (t_k , a_k)
 - Prony's method --- Annihilating filter method

$h_m \ast s_m = 0$	$\int s_L$	s_{L-1}		s_0
	s_{L+1}	s_L	• • •	s_1
$\mathbf{Sh} = 0$:	÷	·	÷
	$\setminus s_P$	s_{P-1}	• • •	s_{P-L} /

Toeplitz matrix S is rank deficient \rightarrow **h** null-space of S

Obtain u_k (t_k) from roots of h $\hat{h}(z) = \prod_{k=0}^{K-1} (1 - u_k z^{-1})$

Find a_k using power sum series equation

Imperial College London

- Review of Finite Rate of Innovation
 - Motivation for FRI
 - Parametric signals
 - Appropriate sampling kernels
 - Sample & reconstruct a train of Diracs
- □ The noisy scenario
 - A subspace approach
 - Prewhitening
 - Modified E-Spline kernels

The noisy scenario

Sampling scheme

 $\Box \text{ Consider only digital noise: AWGN(0, \sigma)}$ $\tilde{y}_n = \langle x(t), h(t - nT) \rangle + \epsilon_n = y_n + \epsilon_n$

Degrades performance reconstruction algorithms

A Subspace Approach (i)

11

$\square \text{ Measurements change } \mathbf{s} = \mathbf{Cy} + \mathbf{Ce}$ $\tilde{s}_m = \sum_{n=0}^{N-1} c_{m,n} \tilde{y}_n = s_m + \sum_{n=0}^{N-1} c_{m,n} \epsilon_n m = 0, \dots, P$							
Toeplitz matrix S changes too							
	$\binom{s_L + b_L}{s_{L+1} + b_{L+1}}$	$s_{L-1} + b_{L-1}$ $s_L + b_L$	 	$s_0 + b_0 \\ s_1 + b_1$			
$\tilde{\mathbf{S}} =$:	:	·	:			
	$\left(s_P + b_P \right)$	$s_{P-1} + b_{P-1}$		$s_{P-L} + b_{P-L}$	s/		

Matrix is not rank deficient any more

$$\tilde{\mathbf{S}} = \mathbf{S} + \mathbf{B}$$
 $\tilde{\mathbf{S}}\mathbf{h} \neq \mathbf{0}$

A Subspace Approach (ii)

- 12
- Assume the term **B** in $\tilde{S} = S + B$ is due to AWGN ■ Even though $\tilde{S}h \neq 0$
 - \square We could find **h** to minimise $\|\mathbf{Sh}\|^2$ s.t. $\|\mathbf{h}\| = 1$
- □ Why? Covariance matrix B*B = σ²I
 The noise affects equally signal and noise subspaces
- SVD is able to separate these subspaces
 - **h** is the vector corresponding to the noise subspace
 - Improve estimation using Cadzow

A Subspace Approach (iii)

- 13
- The term B in S = S + B for exponential reproducing kernels is due to coloured noise
 Now, s = Cy + Ce where Ce is coloured
 We can't directly find h to minimise ||Sh||² s.t. ||h|| = 1

Approach: estimate the covariance matrix of the noise R = λB*B and use Cholesky R = Q^TQ
 pre-whiten Š' = Š'Q⁻¹

SVD is now able to separate subspaces $(\mathbf{BQ}^{-1})^*(\mathbf{BQ}^{-1}) = \sigma^2 \lambda^{-1} \mathbf{I}$

A Subspace Approach (iv)

14

□ Simulations (K = 2 Diracs , N = 31 samples)

Modifying E-Splines (i)

15

□ Coloured noise term → AWGN $\mathbf{s} = \mathbf{C}\mathbf{y} + \mathbf{C}\mathbf{e}$ $\mathbf{C}_{(P+1)\times N} = \begin{pmatrix} c_{0,0} & c_{0,0}e^{\alpha_0} & \dots & c_{0,0}e^{\alpha_0(N-1)} \\ c_{1,0} & c_{1,0}e^{\alpha_1} & \dots & c_{1,0}e^{\alpha_1(N-1)} \\ \vdots & \vdots & \ddots & \vdots \\ c_{P,0} & c_{P,0}e^{\alpha_P} & \dots & c_{P,0}e^{\alpha_P(N-1)} \end{pmatrix}$

Goal: C to have orthonormal rows

- Orthogonal $\alpha_m = j\omega_m = jrac{2\pi m}{N}$
- Orthonormal $|c_{m,0}| = 1$
 - Then, we have a DFT like transform

$$\sum_{n} c_{k,n} c_{l,n}^* = c_{k,0} c_{l,0}^* \sum_{n} e^{\frac{j2\pi k}{N}} e^{-\frac{j2\pi l}{N}} = |c_{k,0}|^2 \delta_{k,l}$$

Modifying E-Splines (ii)

16

- \Box Orthonormality condition $|c_{m,0}| = 1$
 - For any exponential reproducing kernel we can show $c_{m,0} \int_{-\infty}^{\infty} e^{-\alpha_m t} \varphi(t) dt = 1$ • This means that the coefficients $c_{m,0}$ are related to the

Laplace transform of the kernel $\varphi(t)$ at α_m .

 \square Then, using $\alpha_m = j\omega_m = j\frac{2\pi m}{N}$

We identify that $c_{m,0}$ is the inverse of the Fourier transform of the kernel at ω_m . Therefore

$$|c_{m,0}| = 1 \quad \Leftrightarrow \quad |\hat{\varphi}(\omega_m)| = |\hat{\gamma}(\omega_m)\hat{\beta}_{\vec{\alpha}_P}(\omega_m)| = 1$$

Modifying E-Splines (iii)

17

□ The new condition $|\hat{\varphi}(\omega_m)| = |\hat{\gamma}(\omega_m)\hat{\beta}_{\vec{\alpha}_P}(\omega_m)| = 1$ can be satisfied by choosing

$$\hat{\varphi}(\omega) = \hat{\beta}_{\vec{\alpha}_P}(\omega) \sum_{i=0}^{P-1} d_i (j\omega)^i$$

- This means that we design $\gamma(t)$ to be a polynomial that interpolates $(\omega_m, |\hat{\beta}_{\vec{\alpha}_P}(\omega_m)|^{-1})$
- The time domain expression is a linear combination of derivatives $\varphi(t) = \sum_{i=0}^{P-1} d_i \beta_{\vec{\alpha}_P}^{(i)}(t)$ of the E-Spline
- These functions have the characteristics of being of maximum order P and minimum support (MOMS)

Modifying E-Splines (iv)

□ Kernel examples

Modifying E-Splines (v)

19

□ Simulations (K = 2 Diracs , N = 31 samples)

Conclusions

- Motivation for FRI theory
 - Sample & perfectly reconstruct continuous-time sparse signals
 - Using appropriate kernels
- Exponential reproducing kernels
 - Flexible tool to accommodate existing acquisition devices (rational FT, lens psf, ...)
 - Can be modified to satisfy further conditions (MOMS)

Conclusions

Noisy FRI scenario

Prewhitening to account for coloured noise

- Standard approach
- Doesn't perform as well as expected
- More powerful and general approach: Modify kernels
 - Performance is optimal
 - Idea behind is preserve properties of noise (AWGN)
- Future work
 - How can we make default E-Splines behave optimally?

Imperial College London

- Review of Finite Rate of Innovation
 - Motivation for FRI
 - Parametric signals
 - Appropriate sampling kernels
 - Sample & reconstruct a train of Diracs
- □ The noisy scenario
 - A subspace approach
 - Prewhitening
 - Modified E-Spline kernels