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Problem statement

Motivation
Sample a sparse continuous-time signal

Not necessarily band-limited — parametric / FRI signal
(+) appropriate filtering

x(t) 1 h(t) = ¢ ( %)

y(t) T
:K‘ > Un

Perfect reconstruction based on
Set of N discrete measurements

Taken every T seconds yn = (z(t). h(t — nd’))



Sparse signals to be sampled
_ 2
o Signals with finite rate 11 Prototype signal

of innovation

Finite amount of
degrees of freedom

Parametric

representqtion (e) Stream of Pulses
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(a) Train of Diracs



Sampling kernels (i)

Normally sampling kernels are given

Natural process: diffusion field observed by various
spatially distributed sensors

Acquisition device: electric circuit, camera lens

Exponential reproducing kernels can model certain
types of filters




Sampling kernels (ii

Exponential reproducing kernels
Finite support: order P — P+1

Reproduce exponentials

nez
Coefficients are discrete time exponentials
, BN ;)
Cman = €77 Cm,0

Based on E—Splines o(t) = ~(t) * Ban(t)
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Sampling kernels (ii

1 Examples of E-Splines
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Sampling kernels (iv)

Exponential reproducing kernels give us flexibility
They can be designed to accommodate certain types of
given filters

Electric circuit, camera lens, etc
If we can choose the kernel, we can also optimise them

To handle noise effectively

To satisfy other requirements

In any case, we need to find an appropriate ()
p(t) = (¥) * Bap(?)



Sample & Rec a train of Diracs (i)

7 1. Obtain the input measurements

Traditional linear sampling

e o = Em o = =

il M Oty = ()

T

T o - o e =

Input characterised by (t, a,) k =0, ..., K-1
Set of N samples v, = (z(t). h(t — nT))



Sample & Rec a train of Diracs (ii)

_ 8
1 2. Modify the samples

Obtain new measurements
N-1

Sim = Z CoamlYn m=0,... P
n=>0

® Linear transform s = Cy

Power sum series equivalence — Harmonic retrieval

v
Sm = <UL(I‘)Z Cmon (T — n)> = j w(z‘.)e“m%dt
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Sample & Rec a train of Diracs (ii

3. Refrieve the input parameters (t,, a,)

Prony’s method --- Annihilating filter method

SL SL—1 ' 50
o ¥ Sy = 0 _
m m (-"'L+1 ST s \

Sh=0 \ qp SP:_I Sp:_L}

Toeplitz matrix S is rank deficient — h null-space of S

Obtain u, (t,) from roots of h
K-1

h(z) = H (1 —upz b
k=0
Find g, using power sum series equation
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The noisy scenario

Sampling scheme

Analogue noise

x(t)

|
|
|
|
() L~ h(t) = (~T
:
|

Consider only digital noise: AWGN(O, o)
Un = (x(t). h(t —nT)) + €, = yn + €n

Degrades performance reconstruction algorithms



A Subspace Approach (i)

1 Measurements change s = Cy + Ce
N-1 N-1
Sm = Z CrnnYn = Sm + Z Cn€n m=0,..., P
n=0 ELZD )
bon
- Toeplitz matrix $ changes too
/ sp + br Sp—1+bp_1 - so + bo \
S sp+1 + bra1 s, + br s1 + b1
\ sp+ bp sp—1+bp_1 -+ sp_p+ E?P—L)

Matrix is not rank deficient any more

—

S=S+B Sh # 0



A Subspace Approach (ii)

Assume the term Bin S =S + B is due to AWGN
Even though Sh # 0
We could find h to minimise |Sh[?s.t. [h| =1

Why?2 Covariance matrix B*B = o1
The noise affects equally signal and noise subspaces
SVD is able to separate these subspaces

h is the vector corresponding to the noise subspace

Improve estimation using Cadzow



A Subspace Approach (iii)

The term B in S = S + B for exponential reproducing
kernels is due to coloured noise

Now, s = Cy +|Ce| where Ce is coloured
We can’t directly find h to minimise |Sh|? s.t. |h]| =1

Approach: estimate the covariance matrix of the
noise R = AB*B and use Cholesky R = Q1 Q

pre-whiten S’ =S'Q!
SVD is now able to separate subspaces

BQ H)*"BQ ') =0 NI



A Subspace Approach (iv)
N

o Simulations (K = 2 Diracs , N = 31 samples)
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Modifying E-Splines (i)

-1 Coloured noise term — AWGN s = Cy +
/CD 0o Cooe™ ... CU,DEQD(N_I}
Cl,[] Cl_’[]eal . Cl,[]eal(N_]‘}
C[P+1}XN = : : . :
\‘CP,O ijgeap e C,pjoeﬂfPfN—l}

1 Goal: C to have orthonormal rows

2’rm

Orthogonal @, = jwy,, = J

Orthonormal |c, 0| =1

m Then, we have a DFT like transform

" ® j2wk  j2wl
Zﬂk,ncl,ﬂ :Ck,ﬂﬂz,ﬂze Ne No=

mn T

Ce




Modifying E-Splines (ii

Orthonormality condition ¢ 0| = 1

For any exponential reproducing kernel we can show
7

Cm’DJ "Mt o(t)dt = 1

This means that the coefficients ¢ o are related to the
Laplace transform of the kernel ¢(t) at o .

- 2rm

Then, USing X, = me — 3 N

We identify that c_ , is the inverse of the Fourier
transform of the kernel at @_. Therefore

cmol =1 & [@(wm)] = [1(wm)Bap (wm)| = 1



Modifying E-Splines (iii)

The new condition |[p(wm)| = [Y(wm)Bap (wm)| = 1 can be

satisfied by choosinag
P—-1

(@) = Bap(w) Y, diljw)

1=0

>

This means that we design (1) to be a polynomial that
in’rerpolq’res (W “fj)&’p(wm)‘_l)

The time domain expprelssion is a linear combination of
derivatives -~ of the E-Spline
ot) = Y, diBg) (1) P
=0

These functions have the characteristics of being of
maximum order P and minimum support (MOMS)



Modifying E-Splines (iv)

11 Kernel examples
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Modifying E-Splines (v)

o Simulations (K = 2 Diracs , N = 31 samples)
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Conclusions

Motivation for FRI theory
Sample & perfectly reconstruct continuous-time sparse
signals
Using appropriate kernels

Exponential reproducing kernels

Flexible tool to accommodate existing acquisition
devices (rational FT, lens psf, ...)

Can be modified to satisfy further conditions (MOMS)



Conclusions

Noisy FRI scenario

Prewhitening to account for coloured noise
Standard approach

Doesn’t perform as well as expected

More powerful and general approach: Modify kernels
Performance is optimal

|dea behind is preserve properties of noise (AWGN)

Future work

How can we make default E-Splines behave optimally?
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