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Problem statement 
1 

 Motivation 

 Sample a sparse continuous-time signal 

 Not necessarily band-limited → parametric / FRI signal 

(+) appropriate filtering 

 

 

 Perfect reconstruction based on 

 Set of N discrete measurements  

 Taken every T seconds 



Sparse signals to be sampled 

 Signals with finite rate 

of innovation 

 Finite amount of 

degrees of freedom 

 Parametric 

representation 

 

 Prototype signal 
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Sampling kernels (i) 
3 

 Normally sampling kernels are given 

 Natural process: diffusion field observed by various 

spatially distributed sensors 

 Acquisition device: electric circuit, camera lens 

 Exponential reproducing kernels can model certain 

types of filters 



 Exponential reproducing kernels 

 Finite support: order P → P+1 

 Reproduce exponentials 

 

 Coefficients are discrete time exponentials 

 

 Based on E-Splines 

 

Sampling kernels (ii) 
4 



Sampling kernels (iii) 
5 

 Examples of E-Splines 



Sampling kernels (iv) 
6 

 Exponential reproducing kernels give us flexibility 

 They can be designed to accommodate certain types of 

given filters 

 Electric circuit, camera lens, etc 

 If we can choose the kernel, we can also optimise them 

 To handle noise effectively 

 To satisfy other requirements 

 In any case, we need to find an appropriate (t) 



Sample & Rec a train of Diracs (i) 
7 

 1. Obtain the input measurements 

 Traditional linear sampling 

 

 

 

 

 Input characterised by (tk, ak) k = 0, …, K-1 

 Set of N samples 



 2. Modify the samples  

Obtain new measurements  

 

 

 Linear transform 

 Power sum series equivalence → Harmonic retrieval 

 

 

 

Sample & Rec a train of Diracs (ii) 
8 



Sample & Rec a train of Diracs (iii) 
9 

 3. Retrieve the input parameters (tk, ak) 

 Prony’s method --- Annihilating filter method 

 

 

 

 Toeplitz matrix S is rank deficient → h null-space of S 

Obtain uk  (tk) from roots of h 

 

 

 Find ak using power sum series equation 
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The noisy scenario 
10 

 Sampling scheme 

 

 

 

 

 Consider only digital noise: AWGN(0, σ) 

 

 Degrades performance reconstruction algorithms 



A Subspace Approach (i) 
11 

 Measurements change 

 

 

 Toeplitz matrix S changes too 

 

 

 

Matrix is not rank deficient any more 

 



A Subspace Approach (ii) 
12 

 Assume the term B in                is due to AWGN 

 Even though 

We could find h to minimise  

 

 Why? Covariance matrix  

 The noise affects equally signal and noise subspaces 

 SVD is able to separate these subspaces 

 h is the vector corresponding to the noise subspace 

 Improve estimation using Cadzow 



A Subspace Approach (iii) 
13 

 The term B in                for exponential reproducing 

kernels is due to coloured noise 

 Now,                         where       is coloured 

We can’t directly find h to minimise  

 

 Approach: estimate the covariance matrix of the 

noise                  and use Cholesky 

 pre-whiten 

 SVD is now able to separate subspaces 
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A Subspace Approach (iv) 
14 

 Simulations (K = 2 Diracs , N = 31 samples) 

 t/ 

SNR(dB) 



Modifying E-Splines (i) 
15 

 Coloured noise term → AWGN 

 

 

 

 Goal: C to have orthonormal rows 

Orthogonal  

Orthonormal 

 Then, we have a DFT like transform 



Modifying E-Splines (ii) 
16 

 Orthonormality condition 

 For any exponential reproducing kernel we can show 

 

 This means that the coefficients cm,0 are related to the 

Laplace transform of the kernel (t) at m. 

 

 Then, using  

 We identify that cm,0 is the inverse of the Fourier 

transform of the kernel at m. Therefore 



Modifying E-Splines (iii) 
17 

 The new condition                                       can be 
satisfied by choosing 

 

 

 This means that we design (t) to be a polynomial that 
interpolates  

 The time domain expression is a linear combination of 
derivatives                                  of the E-Spline 

 

 These functions have the characteristics of being of 
maximum order P and minimum support (MOMS) 



Modifying E-Splines (iv) 
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 Kernel examples 



Modifying E-Splines (v) 
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 Simulations (K = 2 Diracs , N = 31 samples) 
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Conclusions 

 Motivation for FRI theory 

 Sample & perfectly reconstruct continuous-time sparse 

signals 

 Using appropriate kernels 

 Exponential reproducing kernels 

 Flexible tool to accommodate existing acquisition 

devices (rational FT, lens psf, …) 

 Can be modified to satisfy further conditions (MOMS) 
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Conclusions 

 Noisy FRI scenario 

 Prewhitening to account for coloured noise 

 Standard approach 

 Doesn’t perform as well as expected 

More powerful and general approach: Modify kernels 

 Performance is optimal 

 Idea behind is preserve properties of noise (AWGN) 

 Future work 

 How can we make default E-Splines behave optimally? 

 

21 



Questions 

 Review of Finite Rate of Innovation 

Motivation for FRI 

 Parametric signals 

 Appropriate sampling kernels 

 Sample & reconstruct a train of Diracs 

 The noisy scenario 

 A subspace approach 

 Prewhitening 

Modified E-Spline kernels 


