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Problem statement 
1 

 Motivation 

 Sample a sparse continuous-time signal 

 Not necessarily band-limited → parametric / FRI signal 

(+) appropriate filtering 

 

 

 Perfect reconstruction based on 

 Set of N discrete measurements  

 Taken every T seconds 



Sparse signals to be sampled 

 Signals with finite rate 

of innovation 

 Finite amount of 

degrees of freedom 

 Parametric 

representation 

 

 Prototype signal 
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Sampling kernels (i) 
3 

 Normally sampling kernels are given 

 Natural process: diffusion field observed by various 

spatially distributed sensors 

 Acquisition device: electric circuit, camera lens 

 Exponential reproducing kernels can model certain 

types of filters 



 Exponential reproducing kernels 

 Finite support: order P → P+1 

 Reproduce exponentials 

 

 Coefficients are discrete time exponentials 

 

 Based on E-Splines 

 

Sampling kernels (ii) 
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Sampling kernels (iii) 
5 

 Examples of E-Splines 



Sampling kernels (iv) 
6 

 Exponential reproducing kernels give us flexibility 

 They can be designed to accommodate certain types of 

given filters 

 Electric circuit, camera lens, etc 

 If we can choose the kernel, we can also optimise them 

 To handle noise effectively 

 To satisfy other requirements 

 In any case, we need to find an appropriate (t) 



Sample & Rec a train of Diracs (i) 
7 

 1. Obtain the input measurements 

 Traditional linear sampling 

 

 

 

 

 Input characterised by (tk, ak) k = 0, …, K-1 

 Set of N samples 



 2. Modify the samples  

Obtain new measurements  

 

 

 Linear transform 

 Power sum series equivalence → Harmonic retrieval 

 

 

 

Sample & Rec a train of Diracs (ii) 
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Sample & Rec a train of Diracs (iii) 
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 3. Retrieve the input parameters (tk, ak) 

 Prony’s method --- Annihilating filter method 

 

 

 

 Toeplitz matrix S is rank deficient → h null-space of S 

Obtain uk  (tk) from roots of h 

 

 

 Find ak using power sum series equation 
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The noisy scenario 
10 

 Sampling scheme 

 

 

 

 

 Consider only digital noise: AWGN(0, σ) 

 

 Degrades performance reconstruction algorithms 



A Subspace Approach (i) 
11 

 Measurements change 

 

 

 Toeplitz matrix S changes too 

 

 

 

Matrix is not rank deficient any more 

 



A Subspace Approach (ii) 
12 

 Assume the term B in                is due to AWGN 

 Even though 

We could find h to minimise  

 

 Why? Covariance matrix  

 The noise affects equally signal and noise subspaces 

 SVD is able to separate these subspaces 

 h is the vector corresponding to the noise subspace 

 Improve estimation using Cadzow 



A Subspace Approach (iii) 
13 

 The term B in                for exponential reproducing 

kernels is due to coloured noise 

 Now,                         where       is coloured 

We can’t directly find h to minimise  

 

 Approach: estimate the covariance matrix of the 

noise                  and use Cholesky 

 pre-whiten 

 SVD is now able to separate subspaces 
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A Subspace Approach (iv) 
14 

 Simulations (K = 2 Diracs , N = 31 samples) 

 t/ 

SNR(dB) 



Modifying E-Splines (i) 
15 

 Coloured noise term → AWGN 

 

 

 

 Goal: C to have orthonormal rows 

Orthogonal  

Orthonormal 

 Then, we have a DFT like transform 



Modifying E-Splines (ii) 
16 

 Orthonormality condition 

 For any exponential reproducing kernel we can show 

 

 This means that the coefficients cm,0 are related to the 

Laplace transform of the kernel (t) at m. 

 

 Then, using  

 We identify that cm,0 is the inverse of the Fourier 

transform of the kernel at m. Therefore 



Modifying E-Splines (iii) 
17 

 The new condition                                       can be 
satisfied by choosing 

 

 

 This means that we design (t) to be a polynomial that 
interpolates  

 The time domain expression is a linear combination of 
derivatives                                  of the E-Spline 

 

 These functions have the characteristics of being of 
maximum order P and minimum support (MOMS) 



Modifying E-Splines (iv) 
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 Kernel examples 



Modifying E-Splines (v) 
19 

 Simulations (K = 2 Diracs , N = 31 samples) 
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Conclusions 

 Motivation for FRI theory 

 Sample & perfectly reconstruct continuous-time sparse 

signals 

 Using appropriate kernels 

 Exponential reproducing kernels 

 Flexible tool to accommodate existing acquisition 

devices (rational FT, lens psf, …) 

 Can be modified to satisfy further conditions (MOMS) 
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Conclusions 

 Noisy FRI scenario 

 Prewhitening to account for coloured noise 

 Standard approach 

 Doesn’t perform as well as expected 

More powerful and general approach: Modify kernels 

 Performance is optimal 

 Idea behind is preserve properties of noise (AWGN) 

 Future work 

 How can we make default E-Splines behave optimally? 
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