ON THE EXPONENTIAL REPRODUCING KERNELS FOR SAMPLING SIGNALS WITH FRI

Jose Antonio Uriguen

Pier Luigi Dragotti
Thierry Blu
$2^{\text {nd }}$ May 2011

Content

\square Background on FRI
\square Signals with FRI
\square The sampling \& reconstruction process
\square Sampling kernels
\square The noisy scenario
\square A subspace approach
\square Prewhitening
\square Modified E-Spline kernels

Signals with FRI (i)

\square Signals with finite rate of innovation
\square Finite amount of degrees of freedom
\square Parametric representation

- Known "shape" $g_{r}(t)$
- Unknown realisation (location t_{k}, amplitude $\gamma_{k, r} \ldots$)
\square Mathematically

$$
x(t)=\sum_{k \in \mathbb{Z}} \sum_{r=0}^{R-1} \gamma_{k, r} g_{r}\left(t-t_{k}\right)
$$

Signals with FRI (ii)

Examples of signals with FRI

(a) Train of Diracs

(d) Piecewise Sinusoidal

(b) Nonuniform Spline

(e) Stream of Pulses

(c) Piecewise Polynomial

(f) 2D set of Bilevel Polygons

Sampling a train of Diracs (i)

\square 1. Obtain the input measurements
\square Traditional linear scheme

\square Input characterised by $\left(t_{k}, a_{k}\right) k=0, \ldots, K-1$
\square Set of \mathbf{N} samples $y_{n}=\langle x(t), h(t-n T)\rangle$

Sampling a train of Diracs (ii)

\square 2. Modify the samples
\square Obtain new measurements

- Linear transform $\mathrm{s}=\mathbf{C y}$
- Set of values s_{m} for $m=0, \ldots, P$
\square Power series equivalence

$$
s_{m}=f\left\{y_{n}\right\}=\sum_{k=0}^{K-1} \hat{a}_{k} u_{k}^{m}
$$

- Related to the locations and amplitudes
- Classical spectral estimation problem: harmonic retrieval

Sampling a train of Diracs (iii)

\square 3. Retrieve the input parameters $\left(t_{k^{\prime}}, a_{k}\right)$
\square Prony's method --- Annihilating filter method

$$
\begin{aligned}
& h_{m} * s_{m}=0 \\
& \mathbf{S h}=\mathbf{0}
\end{aligned} \hat{h}(z)=\prod_{k=0}^{K-1}\left(1-u_{k} z^{-1}\right)
$$

- Toeplitz matrix \mathbf{S} is rank deficient
- Obtain t_{k} from \mathbf{h} (null-space of \mathbf{S})
\square Find \mathbf{a}_{k} using equation $s_{m}=f\left\{y_{n}\right\}=\sum_{k=0}^{K-1} \hat{a}_{k} u_{k}^{m}$

Sampling kernels (i)

Finite support

\square Exponential reproducing kernels (Dragotti et al)

$$
\begin{aligned}
& \sum_{n \in \mathbb{Z}} c_{m, n} \rho(t-n)=\mathrm{e}^{\alpha_{m} t} \\
& c_{m, n}=\mathrm{e}^{\alpha_{m} n} c_{m, 0} \\
& s_{m}=\sum_{n} c_{m, n} y_{n} \\
& \mathbf{s}=\mathbf{C y}
\end{aligned}
$$

E-Splines

$$
\hat{\beta}_{\vec{\alpha}_{P}}(\omega)=\prod_{m=0}^{P}\left(\frac{1-\mathrm{e}^{\alpha_{m}-j \omega}}{j \omega-\alpha_{m}}\right)
$$

$$
\varphi(t)=\gamma(t) * \beta_{\vec{\alpha}_{P}}(t)
$$

Sampling kernels (ii)

\square Kernel examples (E-Splines)

(a) $P=1$

(d) $P=11$

(b) $P=3$

(e) $P=13$

(c) $P=5$

(f) $P=15$
\square Background on FRI

- Signals with FRI
- The sampling \& reconstruction process
- Sampling kernels
\square The noisy scenario
\square A subspace approach
\square Prewhitening
\square Modified E-Spline kernels

The noisy scenario

\square Sampling scheme

\square Consider only digital noise: $\operatorname{AWGN}(0, \sigma)$

$$
\tilde{y}_{n}=\langle x(t), h(t-n T)\rangle+\epsilon_{n}
$$

\square Degrades performance reconstruction algorithms

A Subspace Approach (i)

\square Measurements change

$$
\hat{s}_{m}=f\left\{y_{n}+\epsilon_{n}\right\}=f\left\{y_{n}\right\}+f\left\{\epsilon_{n}\right\} \quad \mathbf{s}=\mathbf{C y}+\mathbf{C e}
$$

\square Toeplitz matrix \mathbf{S} changes too

$$
\begin{gathered}
\mathbf{S h}=\mathbf{0} \\
\left(\begin{array}{cccc}
s_{L} & s_{L-1} & \cdots & s_{0} \\
s_{L+1} & s_{L} & \cdots & s_{1} \\
\vdots & \vdots & \ddots & \vdots \\
s_{P} & s_{P-1} & \cdots & s_{P-L}
\end{array}\right) \\
\\
\\
\hat{\mathbf{S}}=\mathbf{S}+\mathbf{B}
\end{gathered}
$$

A Subspace Approach (ii)

\square Assume the term \mathbf{B} is due to AWGN

$$
\begin{array}{ll}
\mathbf{s}=\mathbf{C y}+\mathbf{C e} & \hat{\mathbf{S}}=\mathbf{S}+\mathbf{B} . \\
\mathbf{S} \mathbf{h}=\mathbf{0} & \|\hat{\mathbf{S}} \mathbf{h}\|^{2} \text { s.t. }\|\mathbf{h}\|^{2}=1
\end{array}
$$

\square Covariance matrix $\quad \mathbf{B}^{*} \mathbf{B}=\sigma^{2} \mathbf{I}$
\square SVD is able to separate signal and noise subspaces
$\square h$ vector corresponding to the noise subspace in SVD

- Total Least Squares, Cadzow

A Subspace Approach (iii)

$\square \mathbf{B}$ for exp rep kernels is due to coloured noise

$$
\begin{array}{cc}
\mathbf{s}=\mathbf{C y}+\mathbf{C e} & \hat{\mathbf{S}}=\mathbf{S}+\mathbf{B} . \\
\mathbf{S h}=\mathbf{0} & \|\hat{\mathbf{S}} \mathbf{h}\|^{2} \text { s.t. }\|\boldsymbol{h}\|^{2}=1
\end{array}
$$

\square Covariance matrix $\quad \mathbf{R}=\lambda \mathbf{B}^{*} \mathbf{B} \quad \mathbf{R}=\mathbf{Q}^{T} \mathbf{Q}$
\square pre-whiten $\quad \hat{\mathbf{S}}^{\prime}=\hat{\mathbf{S}} \mathbf{Q}^{-1} \quad\left(\mathbf{B Q}^{-1}\right)^{*}\left(\mathbf{B Q}^{-1}\right)=\sigma^{2} \lambda^{-1} \mathbf{I}$
\square SVD is now able to separate subspaces
\square Modified TLS or Cadzow

A Subspace Approach (iv)

\square Simulations

Modifying E-Splines (i)

\square Coloured noise term

$$
\begin{gathered}
\mathbf{s}=\mathbf{C y}+\mathbf{C e} \\
c_{m, n}=\mathrm{e}^{\alpha_{m} n} c_{m, 0} \quad \varphi(t)=\gamma(t) * \beta_{\vec{\alpha}_{P}}(t)
\end{gathered}
$$

\square Goal: C to have orthonormal columns
\square Orthogonal $\quad \alpha_{m}=j \omega_{m}=j \frac{2 \pi m}{N}$
\square Orthonormal $\left|c_{m, 0}\right|=1$

- Then, we have a DFT like transform $\quad s_{m}=\sum_{n} c_{m, n} y_{n}$

Modifying E-Splines (ii)

\square Orthonormality

- Then $\quad\left|c_{m, 0}\right|=1 \quad$ is equivalent to

$$
\left|\hat{\tilde{\varphi}}\left(\frac{2 \pi m}{N}\right)\right|=1, \quad m=0,1, \ldots, P .
$$

- Now, the dual is related to the kernel as

$$
\hat{\tilde{\varphi}}(\omega)=\frac{\hat{\varphi}(\omega)}{\sum_{k \in \mathbb{Z}}|\hat{\varphi}(\omega+2 \pi k)|^{2}}
$$

- Considering the transforms

$$
\begin{gathered}
\hat{\beta}_{\vec{\alpha}_{P}}(\omega)=\prod_{m=0}^{P} \mathrm{e}^{-j \frac{\omega-\omega_{m}}{2}} \operatorname{sinc}\left(\frac{\omega-\omega_{m}}{2}\right) \\
\hat{\varphi}(\omega)=\hat{\gamma}(\omega) \hat{\beta}_{\vec{\alpha}_{P}}(\omega)
\end{gathered}
$$

Modifying E-Splines (iii)

Then $\quad\left|c_{m, 0}\right|=1 \quad$ or

$$
\left|\hat{\tilde{\varphi}}\left(\frac{2 \pi m}{N}\right)\right|=1, \quad m=0,1, \ldots, P .
$$

- Implies that

$$
\begin{aligned}
& \hat{\tilde{\varphi}}\left(\omega_{m}\right)=\frac{\hat{\varphi}\left(\omega_{m}\right)}{\left|\hat{\varphi}\left(\omega_{m}\right)\right|^{2}} \quad \alpha_{m}=j \omega_{m}=j \frac{2 \pi m}{N} \\
& \left|\hat{\varphi}\left(\omega_{m}\right)\right|=\left|\hat{\gamma}\left(\omega_{m}\right) \hat{\beta}_{\vec{\alpha}_{P}}\left(\omega_{m}\right)\right|=1
\end{aligned}
$$

Modifying E-Splines (iv)

$$
\begin{aligned}
\left|\hat{\varphi}\left(\omega_{m}\right)\right| & =\left|\hat{\gamma}\left(\omega_{m}\right) \hat{\beta}_{\vec{\alpha}_{P}}\left(\omega_{m}\right)\right|=1 \quad \varphi(t)=\gamma(t) * \beta_{\vec{\alpha}_{P}}(t) \\
& \Leftrightarrow\left|\hat{\gamma}\left(\omega_{m}\right)\right|=\left|\hat{\beta}_{\vec{\alpha}_{P}}\left(\omega_{m}\right)\right|^{-1}
\end{aligned}
$$

\square Polynomial $\sum_{i} d_{i}(j \omega)^{i}$ interpolate $\left(\omega_{m},\left|\hat{\beta}_{\vec{\alpha}_{P}}\left(\omega_{m}\right)\right|^{-1}\right)$
\square Only find coefficients
\square Maximal-order minimal-support kernel

$$
\hat{\varphi}(\omega)=\hat{\beta}_{\vec{\alpha}_{P}}(\omega) \sum_{i=0}^{P-1} d_{i}(j \omega)^{i} \quad \varphi(t)=\sum_{i=0}^{P-1} d_{i} \beta_{\vec{\alpha}_{P}}^{(i)}(t)
$$

Modifying E-Splines (v)

\square Kernel examples

(a) $P=1$

(d) $P=11$

(b) $P=3$

(e) $P=13$

(c) $P=5$

Modifying E-Splines (vi)

\square Simulations

Conclusions

\square Noisy FRI scenario
\square Introduced FRI and explained extension
\square Modified TLS / Cadzow for coloured noise
\square Redesigned kernels
\square Future work
\square Subspace denoising: alternative improvements
\square Other approaches?
\square Adaptive filtering

Questions

\square Background on FRI
\square Signals with FRI
\square The sampling \& reconstruction process
\square Sampling kernels
\square The noisy scenario
\square A subspace approach
\square Prewhitening
\square Modified E-Spline kernels

The Sum of Sincs (i)

\square Consider a modified E-spline s.t.

- P even
- The number of samples $N=P+1$
- Kernel centred in zero

$$
\varphi^{\prime}(t)=\varphi\left(t+\frac{P+1}{2}\right) \quad \varphi(t)=\gamma(t) * \beta_{\vec{\alpha}_{P}}(t)
$$

- Satisfies

$$
\left|\hat{\varphi}\left(\omega_{m}\right)\right|=\left|\hat{\gamma}\left(\omega_{m}\right) \hat{\beta}_{\vec{\alpha}_{P}}\left(\omega_{m}\right)\right|=b_{m}
$$

\square We use the periodic extension of the kernel

$$
b(t)=\sum_{l \in \mathbb{Z}} \varphi^{\prime}(t+l N)
$$

The Sum of Sincs (ii)

\square Applying the Poisson summation formula

$$
b(t)=\sum_{l \in \mathbb{Z}} \varphi^{\prime}(t+l N)=\frac{1}{P+1} \sum_{k \in \mathbb{Z}} \hat{\varphi}^{\prime}\left(\frac{2 \pi k}{P+1}\right) \mathrm{e}^{\frac{2 \pi k}{P+1} t}
$$

where

$$
\hat{\varphi}^{\prime}(\omega)=\gamma(\omega) \prod_{m=0}^{P} \operatorname{sinc}\left(\frac{\omega-\omega_{m}}{2}\right)
$$

\square Consider now all the possible values of k, and the subset $\mathcal{K}=\left\{\dot{k}: k=\frac{2 m-P}{2}, m=0, \ldots, P\right\}$ then

$$
\omega_{k}=\frac{2 \pi k}{P+1} \quad \begin{array}{ll}
\hat{\varphi}^{\prime}\left(\omega_{k}\right)=b_{k} & k \in \mathcal{K} . \\
\hat{\varphi}^{\prime}\left(\omega_{k}\right)=0 & k \notin \mathcal{K}
\end{array}
$$

The Sum of Sincs (iii)

- In total we have that

$$
b(t)=\sum_{l \in \mathbb{Z}} \varphi^{\prime}(t+l N)=\frac{1}{P+1} \sum_{k \in \mathbb{Z}} \hat{\varphi}^{\prime}\left(\frac{2 \pi k}{P+1}\right) \mathrm{e}^{\frac{2 \pi k}{P+1} t}
$$

becomes

$$
b(t)=\frac{1}{P+1} \sum_{k=-\frac{P}{2}}^{\frac{P}{2}} b_{k} \mathrm{e}^{\frac{2 \pi k}{P+1} t}
$$

\square And, finally, with a change of variable we get the SoS kernel

$$
b\left(\frac{x}{T}\right)=g(x)=\operatorname{rect}\left(\frac{x}{\tau}\right) \frac{1}{N} \sum_{k \in \mathcal{K}} b_{k} \mathrm{e}^{\frac{2 \pi k}{\tau} x}
$$

