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Signals with FRI (i) 
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 Signals with finite rate of innovation 

 Finite amount of degrees of freedom 

 Parametric representation 

 Known “shape” gr(t) 

 Unknown realisation (location tk, amplitude k,r, …) 

 Mathematically 

 



Signals with FRI (ii) 
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 Examples of signals with FRI 



Sampling a train of Diracs (i) 
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 1. Obtain the input measurements 

 Traditional linear scheme 

 

 

 

 

 Input characterised by (tk, ak) k = 0, …, K-1 

 Set of N samples 



 2. Modify the samples  

Obtain new measurements  

 Linear transform 

 Set of values sm for m = 0, …, P 

 Power series equivalence 

 

 

 

 Related to the locations and amplitudes 

 Classical spectral estimation problem: harmonic retrieval 

 

Sampling a train of Diracs (ii) 
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Sampling a train of Diracs (iii) 
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 3. Retrieve the input parameters (tk, ak) 

 Prony’s method --- Annihilating filter method 

 

 

 

 Toeplitz matrix S is rank deficient 

Obtain tk from h (null-space of S) 

 

 Find ak using equation 



 Finite support 

 Exponential reproducing kernels (Dragotti et al) 

 

 

 

 

Sampling kernels (i) 
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E-Splines 



Sampling kernels (ii) 
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 Kernel examples (E-Splines) 
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The noisy scenario 
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 Sampling scheme 

 

 

 

 

 Consider only digital noise: AWGN(0, σ) 

 

 Degrades performance reconstruction algorithms 



A Subspace Approach (i) 
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 Measurements change 

 

 Toeplitz matrix S changes too 

 



A Subspace Approach (ii) 
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 Assume the term B is due to AWGN 

 

 

 

 Covariance matrix  

 SVD is able to separate signal and noise subspaces 

 h vector corresponding to the noise subspace in SVD 

 Total Least Squares, Cadzow 



A Subspace Approach (iii) 
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 B for exp rep kernels is due to coloured noise 

 

 

 

 Covariance matrix  

 pre-whiten 

 SVD is now able to separate subspaces 

Modified TLS or Cadzow 
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A Subspace Approach (iv) 
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 Simulations 

 



Modifying E-Splines (i) 
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 Coloured noise term 

 

 

 

 Goal: C to have orthonormal columns 

Orthogonal  

Orthonormal 

 Then, we have a DFT like transform  



Modifying E-Splines (ii) 
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Orthonormality 

 Then   is equivalent to 

 

 

 Now, the dual is related to the kernel as 

 

 

 Considering the transforms 



Modifying E-Splines (iii) 
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 Then   or 

 

 

 

 Implies that 

 



Modifying E-Splines (iv) 
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 Polynomial   interpolate 

Only find coefficients 

Maximal-order minimal-support kernel 

 



Modifying E-Splines (v) 
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 Kernel examples 



Modifying E-Splines (vi) 
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 Simulations 
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Conclusions 

 Noisy FRI scenario 

 Introduced FRI and explained extension 

Modified TLS / Cadzow for coloured noise 

 Redesigned kernels 

 Future work 

 Subspace denoising: alternative improvements 

Other approaches? 

 Adaptive filtering 
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The Sum of Sincs (i) 

 Consider a modified E-spline s.t. 

 P even 

 The number of samples 

 Kernel centred in zero 

 

 Satisfies 

 

We use the periodic extension of the kernel 

 



 Applying the Poisson summation formula 

 

 where 

 

 Consider now all the possible values of k, and the 

subset 

 then 

The Sum of Sincs (ii) 



 In total we have that 

 

 becomes 

 

 

 And, finally, with a change of variable we get the SoS 

kernel 

The Sum of Sincs (iii) 


