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Signals with FRI (i) 
1 

 Signals with finite rate of innovation 

 Finite amount of degrees of freedom 

 Parametric representation 

 Known “shape” gr(t) 

 Unknown realisation (location tk, amplitude k,r, …) 

 Mathematically 

 



Signals with FRI (ii) 
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 Examples of signals with FRI 



Sampling a train of Diracs (i) 
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 1. Obtain the input measurements 

 Traditional linear scheme 

 

 

 

 

 Input characterised by (tk, ak) k = 0, …, K-1 

 Set of N samples 



 2. Modify the samples  

Obtain new measurements  

 Linear transform 

 Set of values sm for m = 0, …, P 

 Power series equivalence 

 

 

 

 Related to the locations and amplitudes 

 Classical spectral estimation problem: harmonic retrieval 

 

Sampling a train of Diracs (ii) 
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Sampling a train of Diracs (iii) 
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 3. Retrieve the input parameters (tk, ak) 

 Prony’s method --- Annihilating filter method 

 

 

 

 Toeplitz matrix S is rank deficient 

Obtain tk from h (null-space of S) 

 

 Find ak using equation 



 Finite support 

 Exponential reproducing kernels (Dragotti et al) 

 

 

 

 

Sampling kernels (i) 
6 

E-Splines 



Sampling kernels (ii) 
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 Kernel examples (E-Splines) 
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The noisy scenario 
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 Sampling scheme 

 

 

 

 

 Consider only digital noise: AWGN(0, σ) 

 

 Degrades performance reconstruction algorithms 



A Subspace Approach (i) 
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 Measurements change 

 

 Toeplitz matrix S changes too 

 



A Subspace Approach (ii) 
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 Assume the term B is due to AWGN 

 

 

 

 Covariance matrix  

 SVD is able to separate signal and noise subspaces 

 h vector corresponding to the noise subspace in SVD 

 Total Least Squares, Cadzow 



A Subspace Approach (iii) 
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 B for exp rep kernels is due to coloured noise 

 

 

 

 Covariance matrix  

 pre-whiten 

 SVD is now able to separate subspaces 

Modified TLS or Cadzow 
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P = 13, C

P = 13, MC

A Subspace Approach (iv) 
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 Simulations 

 



Modifying E-Splines (i) 
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 Coloured noise term 

 

 

 

 Goal: C to have orthonormal columns 

Orthogonal  

Orthonormal 

 Then, we have a DFT like transform  



Modifying E-Splines (ii) 
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Orthonormality 

 Then   is equivalent to 

 

 

 Now, the dual is related to the kernel as 

 

 

 Considering the transforms 



Modifying E-Splines (iii) 
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 Then   or 

 

 

 

 Implies that 

 



Modifying E-Splines (iv) 
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 Polynomial   interpolate 

Only find coefficients 

Maximal-order minimal-support kernel 

 



Modifying E-Splines (v) 
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 Kernel examples 



Modifying E-Splines (vi) 
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 Simulations 
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Conclusions 

 Noisy FRI scenario 

 Introduced FRI and explained extension 

Modified TLS / Cadzow for coloured noise 

 Redesigned kernels 

 Future work 

 Subspace denoising: alternative improvements 

Other approaches? 

 Adaptive filtering 
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The Sum of Sincs (i) 

 Consider a modified E-spline s.t. 

 P even 

 The number of samples 

 Kernel centred in zero 

 

 Satisfies 

 

We use the periodic extension of the kernel 

 



 Applying the Poisson summation formula 

 

 where 

 

 Consider now all the possible values of k, and the 

subset 

 then 

The Sum of Sincs (ii) 



 In total we have that 

 

 becomes 

 

 

 And, finally, with a change of variable we get the SoS 

kernel 

The Sum of Sincs (iii) 


