ON EXTENSIONS AND APPLICATIONS OF FRI THEORY

Jose Antonio Uriguen Pier Luigi Dragotti 17th December 2010

Communications & Signal Processing Group Department of EEE Imperial College of London

Outline

Part I: Dealing with noise effectively in FRI

- Overview: the FRI sampling scheme
- Modified TLS and Cadzow
- Alternative exponential reproducing kernels

Part II: Sparse Characterization of Neuronal Signals through FRI theory

- Neurons & Neuronal activity
 - Action Potentials
 - Calcium Transients
- Modelling Neuronal Signals

Dealing with noise effectively in FRI

Part I: Content

- Background on FRI
 - Signals with FRI
 - The sampling & reconstruction process
 - Sampling kernels
- □ The noisy scenario
 - A subspace approach
 - Prewhitening
 - Modified E-Spline kernels

Background on FRI (i)

- 1
- Signals with finite rate of innovation (FRI)
 - Parametric representation
 - Known "shape" g_r(t)
 - **D** Unknown realisation (location t_k , amplitude $\gamma_{k,r}$, ...)

Mathematically

$$x(t) = \sum_{k \in \mathbb{Z}} \sum_{r=0}^{R-1} \gamma_{k,r} g_r(t - t_k).$$

$$\rho = \lim_{\tau \to \infty} \frac{1}{\tau} C_x \left(-\frac{\tau}{2}, \frac{\tau}{2} \right).$$

Background on FRI (ii)

Examples of signals with FRI

The sampling process (i)

□ 1. Obtain the input measurements

 $y_n = \langle x(t), h(t - nT) \rangle$

The sampling process (ii)

2. Modify the samples

Sequence of new measurements s_m
 Power series

$$s_m = f\{y_n\} = \sum_{k=0}^{K-1} \hat{a}_k u_k^m \qquad \mathbf{s} = \mathbf{C}\mathbf{y}$$

Related to the locations and amplitudes

Classical spectral estimation problem: harmonic retrieval

The sampling process (iii)

5

3. *Retrieve* the parameters

Prony's method --- Annihilating filter method

$$\begin{array}{l}
 h_m \ast s_m = 0 \\
 \mathbf{Sh} = \mathbf{0}
 \end{array}
 \quad \hat{h}(z) = \prod_{k=0}^{K-1} (1 - u_k z^{-1})
 \end{aligned}$$

- Toeplitz matrix S is rank deficient
- Obtain h (null-space)
 Find a using equation $s_m = f\{y_n\} = \sum_{k=0}^{K-1} \hat{a}_k u_k^m$

Sampling kernels (i)

Infinite support

Classical kernel (Vetterli et al)

 $h_B(t) = B\operatorname{sinc}(Bt)$

$$s_m = \frac{\text{DFT}}{\mathbf{C}} \{y_n\}$$

Finite support

Poly, Exp reproducing (Dragotti et al)

$$\sum_{n \in \mathbb{Z}} c_{m,n} \varphi(t-n) = e^{\alpha_m t} \qquad \hat{\beta}_{\vec{\alpha}_P}(\omega) = \prod_{m=0}^{P} \left(\frac{1 - e^{\alpha_m - j\omega}}{j\omega - \alpha_m} \right)$$
$$s_m = \sum_n c_{m,n} y_n \qquad \varphi(t) = \gamma(t) * \beta_{\vec{\alpha}_P}(t)$$

$$c_{m,n} = e^{\alpha_m n} c_{m,0}$$

Sampling kernels (ii)

□ Kernel examples

The noisy scenario

Sampling scheme

 $\Box \text{ Consider only digital noise: AWGN(0, \sigma)}$ $\tilde{y}_n = \langle x(t), h(t - nT) \rangle + \epsilon_n$

Degrades performance of basic algorithms

A Subspace Approach (i)

9

Measurements change

$$\hat{s}_m = f\{y_n + \epsilon_n\} = f\{y_n\} + f\{\epsilon_n\} \qquad \mathbf{s} = \mathbf{C}\mathbf{y} + \mathbf{C}\mathbf{e}$$

Toeplitz matrix S changes too

 $\mathbf{Sh} = \mathbf{0}$ $\begin{pmatrix} s_L & s_{L-1} & \cdots & s_0 \\ s_{L+1} & s_L & \cdots & s_1 \\ \vdots & \vdots & \ddots & \vdots \\ s_P & s_{P-1} & \cdots & s_{P-L} \end{pmatrix}$ $\hat{\mathbf{S}} = \mathbf{S} + \mathbf{B}.$

A Subspace Approach (ii)

10

Assume the term **B** is due to AWGN

$$\hat{s}_m = f\{y_n + \epsilon_n\} = f\{y_n\} + f\{\epsilon_n\} \qquad \hat{\mathbf{S}} = \mathbf{S} + \mathbf{B}.$$
$$\mathbf{S}\mathbf{h} = \mathbf{0} \qquad \|\hat{\mathbf{S}}\mathbf{h}\|^2 \text{ s.t. } \|\mathbf{h}\|^2 = 1$$

- Covariance matrix B*B = σ²I R = Q^TQ
 SVD is able to separate B*B = σ²I noise subspaces
 Total Least Squares, Cadzow
 - h vector corresponding to the noise subspace in SVD

A Subspace Approach (iii)

11

B for exp rep kernels is due to coloured noise

$$\hat{s}_m = f\{y_n + \epsilon_n\} = f\{y_n\} + f\{\epsilon_n\} \quad \mathbf{s} = \mathbf{C}\mathbf{y} + \mathbf{C}\mathbf{e}$$

$$\hat{\mathbf{S}} = \mathbf{S} + \mathbf{B}. \quad \mathbf{S}\mathbf{h} = \mathbf{0} \quad \|\hat{\mathbf{S}}\mathbf{h}\|^2 \text{ s.t. } \|\mathbf{h}\|^2 = 1$$
Covariance matrix $\mathbf{R} = \lambda \mathbf{E}\{\mathbf{B}^*\mathbf{B}\} \quad \mathbf{R} = \mathbf{Q}^T\mathbf{Q}$
pre-whiten $\hat{\mathbf{S}}' = \hat{\mathbf{S}}\mathbf{Q}^{-1} \quad (\mathbf{B}\mathbf{Q}^{-1})^*(\mathbf{B}\mathbf{Q}^{-1}) = \sigma^2\lambda^{-1}\mathbf{I}$
SVD is now able to separate subspaces

Modified TLS or Cadzow

A Subspace Approach (iv)

12

Modifying E-Splines (i)

13

Coloured noise term $\mathbf{s} = \mathbf{C}\mathbf{y} + \mathbf{C}\mathbf{e}$ $c_{m,n} = \mathbf{e}^{\alpha_m n} c_{m,0}$ $\varphi(t) = \gamma(t) * \beta_{\vec{\alpha}_P}(t)$

Goal: **C** to have orthonormal columns Orthogonal $\alpha_m = j\omega_m = j\frac{2\pi m}{N}$

Orthonormal $\begin{aligned} |c_{m,0}| &= 1\\ |\hat{\varphi}(\omega_m)| &= |\hat{\gamma}(\omega_m)\hat{\beta}_{\vec{\alpha}_P}(\omega_m)| = 1\end{aligned}$

Modifying E-Splines (ii)

$$\begin{aligned} |\hat{\varphi}(\omega_m)| &= |\hat{\gamma}(\omega_m)\hat{\beta}_{\vec{\alpha}_P}(\omega_m)| = 1 \qquad \varphi(t) = \gamma(t) * \beta_{\vec{\alpha}_P}(t) \\ \Leftrightarrow \quad |\hat{\gamma}(\omega_m)| &= |\hat{\beta}_{\vec{\alpha}_P}(\omega_m)|^{-1} \end{aligned}$$

- Polynomial $\sum_i d_i (j\omega)^i$ interpolate $(\omega_m, |\hat{\beta}_{\vec{\alpha}_P}(\omega_m)|^{-1})$ Only find coeffs
 - Maximal-order minimal-support kernel

$$\hat{\varphi}(\omega) = \hat{\beta}_{\vec{\alpha}_P}(\omega) \sum_{i=0}^{P-1} d_i (j\omega)^i \qquad \qquad \varphi(t) = \sum_{i=0}^{P-1} d_i \beta_{\vec{\alpha}_P}^{(i)}(t)$$

Modifying E-Splines (iii)

15

□ Kernel examples

Modifying E-Splines (iv)

16

Sparse Characterization of Neuronal Signals through FRI theory

Part II: Content

- Neuroscience
- Brain cells
- Neuronal activity
 - Action Potentials (AP)
 - Calcium Transients
- Modelling Neuronal Signals
 - Sparsity
 - Simulations
- Conclusions

Neuroscience today

- 17
- Scientific study of the nervous system
- Interdisciplinary approach: best way to improve understanding of the brain

Levels of analysis

Study of the nervous system. In ascending order of complexity:

Computational Neuroscience

- □ Single neuron
- Physiological background
 - Characterise structure to reproduce behaviour
- Modelling
 - Maths / Physics: Hodgkin and Huxley's
 - Electrics: cable theory, Spike Response Model

Brain cells

- Sense
- Communicate
- React
- 🗆 Glia (10:1)
 - Insulate
 - Support
 - Nourish
- Different types of glia interact with neurons and the surrounding blood vessels

http://www.nature.com/nature/journal/v457/n7230/fig_tab/4576 75a_F1.html

Neurons

- □ Nerve cell
- Main parts
 - Soma
 - Axon
 - Dendrites
- Inner / Outer separation
 - Neuronal membrane

The Axon

- Unique to neurons
- Transfer information
- Parts
 - Hillock
 - Collaterals
 - Terminal
 - Contact with other neurons (synapse)
 - Axon terminal with dendrites or soma

Neurons at rest (i)

- Cytosolic &
 Extracellular fluids (Na⁺, K⁺, Ca²⁺, Cl⁻)
- Phospholipid bilayer (membrane)
- Proteins
 - Ion Pumps
 - Ion Channels
- Regulate membrane potential at rest

Neurons at rest (ii)

- Ion pumps
 [K⁺] ([Na⁺]) higher inside (outside)
- Ion channels
 - Initially more permeable to K⁺
- Diffusion vs Electrical potential
 - Balance: equilibrium potential

Neuronal activity (i)

24

Neuronal activity (ii)

- 25
- Axon hillock (voltagegated sodium channels)
- Absolute/relative refractory period
- Voltage Clamp (Hodgkin and Huxley)

Neuronal activity (iii)

- Dendrite spine heads
- Related to APs (Ca channels)
- (or to other synaptic stimuli, EPSP)
- Calcium imaging

Modelling AP signals

- Real voltage signal
 - Very noisy
 - Sparse? Can we apply FRI?

Inherent sparsity (i)

- □ Try to make it sparse
 - Isolate AP (remove noise)
 - The signal is sparse

Inherent sparsity (ii)

□ Simplify further

• One AP shape only, $@(t_k, a_k), k = 0...K-1$

If we detect the ideal spikes, we know (t_k, a_k)

Modelling AP signals

30

Sampling the AP signals

$\underbrace{ \begin{array}{c} x(t) \\ \hline \end{array} \\ h(t) = \varphi\left(-\frac{t}{T}\right) \xrightarrow{y(t)} y(t) \\ \downarrow \\ \end{array} \\ \downarrow \\ \end{array} \\ y_n = \left\langle x(t), \varphi\left(\frac{t}{T} - n\right) \right\rangle$

- Find equivalent sampling scheme
 - Rewrite the input
 - Equivalent expression for the samples

$$\begin{aligned} x(t) &= \sum_{k \in \mathbb{Z}} a_k \eta(t - t_k) \\ &= \sum_{k \in \mathbb{Z}} a_k \delta(t - t_k) * \eta(t) \\ &= s(t) * \eta(t) \end{aligned}$$

$$y_n = \left\langle s(t), \beta\left(\frac{t}{T} - n\right) \right\rangle$$

Equivalent sampling scheme

$$\left\{ \underbrace{\uparrow}_{s(t)} \uparrow \left\{ \begin{array}{c} \uparrow \\ s(t) \end{array} \right\} \xrightarrow{s(t)} \beta\left(-\frac{t}{T} \right) \xrightarrow{y(t)} y(t) \xrightarrow{\zeta}_{s} \xrightarrow{T} y_{n} = \left\langle s(t), \beta(t) \left(\frac{t}{T} - n \right) \right\rangle$$

- "Basic" train of deltas scenario
- Annihilating Filter Method can be used
 - Sample the original signal
 - Calculate coefficients provided by equivalent scheme
 - Find locations and amplitudes of Diracs

Simulations (i)

Ideal scenario

- **D** Place AP shape at locations t_k with amplitudes a_k
- Apply Annihilating Filter Method with equivalent scheme coefficients
- Sampling and Perfect Reconstruction is possible

Simulations (ii)

Real data

- Simple case: search for the same spike shape
- PR can be achieved
- Also tried
 - More spike shapes
 - More spikes at same time
 - Iterative: window (+) detect
 - Challenging

Modelling [Ca²⁺] transients

Sampling the Calcium transients

- Rewrite the input
- Weighted sample difference

$$\begin{aligned} x(t) &= \sum_{k=0}^{K-1} a_k \mathrm{e}^{-\alpha(t-t_k)} u(t-t_k) \\ &= \sum_{k=0}^{K-1} a_k \delta(t-t_k) \ast \mathrm{e}^{-\alpha t} u(t) \\ &= s(t) \ast \rho_\alpha(t) \end{aligned}$$

$$egin{split} \mathbf{z}_n &= \mathbf{y}_n - \mathrm{e}^{-lpha T} \mathbf{y}_{n-1} = \dots \ &= \left\langle \mathbf{s}(t), \psi\left(rac{t}{T} - n
ight)
ight
angle \end{split}$$

Equivalent sampling scheme

"Basic" train of deltas scenario

Annihilating Filter Method can be used

- Sample the original signal
- Calculate coefficients provided by equivalent scheme
- Find locations and amplitudes of Diracs

Simulations (i)

38

Simulations (ii)

- Windowing: fixed size
- Denoising: hard thresholding
- Number of spikes: least squares

Conclusions

- Noisy FRI scenario
 - Modified TLS / Cadzow for coloured noise
 - Redesign kernels
 - Improvement (higher P better)
- Modelling neuronal signals
 - Ideally they are sparse
 - Goals: reduce sampling rate, spike detection, sorting
 - 🗖 Real data
 - Different types of spikes
 - Noise: HT?

Future work

- Finite rate of innovation
 - Subspace denoising: alternative improvements
 - Other approaches?
 - Adaptive filtering
- Neuronal signals
 - Apply improved denoising + HT
 - Iterative retrieval
 - Different spike shapes / Superresolution?
- Compressed Sensing

Questions

Part I: Dealing with noise effectively in FRI

- Overview: the FRI sampling scheme
- Modified TLS and Cadzow
- Alternative exponential reproducing kernels

Part II: Sparse Characterization of Neuronal Signals through FRI theory

- Neurons & Neuronal activity
 - Action Potentials
 - Calcium Transients
- Modelling Neuronal Signals