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Dealing with noise effectively in FRI 



Part I: Content 

 Background on FRI 

 Signals with FRI 

 The sampling & reconstruction process 

 Sampling kernels 

 The noisy scenario 

 A subspace approach 

 Prewhitening 

Modified E-Spline kernels 

 



Background on FRI (i) 
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 Signals with finite rate of innovation (FRI) 

 Parametric representation 

 Known “shape” gr(t) 

 Unknown realisation (location tk, amplitude k,r, …) 

 Mathematically 

 



Background on FRI (ii) 
2 

 Examples of signals with FRI 



The sampling process (i) 
3 

 1. Obtain the input measurements 

 



The sampling process (ii) 
4 

 2. Modify the samples  

 Sequence of new measurements sm 

 Power series 

 

 

 

 Related to the locations and amplitudes 

 Classical spectral estimation problem: harmonic retrieval 

 



The sampling process (iii) 
5 

 3. Retrieve the parameters 

 Prony’s method --- Annihilating filter method 

 

 

 

 Toeplitz matrix S is rank deficient 

Obtain h (null-space) 

 Find a using equation 



 Infinite support 

 Classical kernel (Vetterli et al) 

 

 Finite support 

 Poly, Exp reproducing (Dragotti et al) 

 

 

 

 

Sampling kernels (i) 
6 



Sampling kernels (ii) 
7 

 Kernel examples 



The noisy scenario 
8 

 Sampling scheme 

 

 

 

 

 Consider only digital noise: AWGN(0, σ) 

 

 Degrades performance of basic algorithms 



A Subspace Approach (i) 
9 

 Measurements change 

 

 Toeplitz matrix S changes too 

 



A Subspace Approach (ii) 
10 

 Assume the term B is due to AWGN 

 

 

 

 Covariance matrix  

 SVD is able to separate signal and noise subspaces 

 Total Least Squares, Cadzow 

 h vector corresponding to the noise subspace in SVD 



A Subspace Approach (iii) 
11 

 B for exp rep kernels is due to coloured noise 

 

 

 

 Covariance matrix  

 pre-whiten 

 SVD is now able to separate subspaces 

Modified TLS or Cadzow 



A Subspace Approach (iv) 
12 

 Simulations 
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Modifying E-Splines (i) 
13 

 Coloured noise term 

 

 

 

 Goal: C to have orthonormal columns 

Orthogonal  

 

Orthonormal 

 



Modifying E-Splines (ii) 
14 

 

 

 

 Polynomial   interpolate 

Only find coeffs 

Maximal-order minimal-support kernel 

 



Modifying E-Splines (iii) 
15 

 Kernel examples 



Modifying E-Splines (iv) 
16 

 Simulations 
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Sparse Characterization of Neuronal 

Signals through FRI theory 



Part II: Content 

 Neuroscience 

 Brain cells 

 Neuronal activity 

 Action Potentials (AP) 

 Calcium Transients 

 Modelling Neuronal Signals 

 Sparsity 

 Simulations 

 Conclusions 



Neuroscience today 
17 

 Scientific study of the nervous system 

 Interdisciplinary approach: best way to improve 
understanding of the brain 

Neuroscience 

Medicine Biology Chemistry 

Psycology 

Physics Mathematics Engineering 

… 



Levels of analysis 
18 

 Study of the nervous system. In ascending order of 

complexity: 

Molecular Neuroscience 

Cellular Neuroscience 

Systems Neuroscience 

Behavioral Neuroscience 

Cognitive Neuroscience 

Computational Neuroscience 

 Single neuron 

 Physiological background 

 Characterise structure to reproduce 

behaviour 

 Modelling 

 Maths / Physics: Hodgkin and Huxley's 

 Electrics: cable theory, Spike Response 

Model  



Brain cells 

 Neurons 

 Sense 

 Communicate 

 React 

 Glia (10:1) 

 Insulate 

 Support 

 Nourish 

 Different types of glia interact 

with neurons and the 

surrounding blood vessels 
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http://www.nature.com/nature/journal/v457/n7230/fig_tab/4576

75a_F1.html 

 



Neurons 

 Nerve cell 

 Main parts 

 Soma 

 Axon 

 Dendrites 

 Inner / Outer 

separation 

 Neuronal membrane 

20 

Dendrites 

Soma 

Axon 

Wikipedia: Neuron 



The Axon 

 Unique to neurons 

 Transfer information 

 Parts 

 Hillock 

 Collaterals 

 Terminal 

 Contact with other 

neurons (synapse) 

 Axon terminal with 

dendrites or soma 

21 

Neuroscience: Exploring the Brain, 3rd Ed. Bear, Connors and 

Paradiso. Copyright © 2007 Lippincott Williams & Wilkins 



Neurons at rest (i) 

 Cytosolic & 
Extracellular fluids 
(Na+, K+, Ca2+, Cl-) 

 Phospholipid bilayer 
(membrane) 

 Proteins 

 Ion Pumps 

 Ion Channels 

 Regulate membrane 
potential at rest 

22 

Neuroscience: Exploring the Brain, 3rd Ed. Bear, Connors and 

Paradiso. Copyright © 2007 Lippincott Williams & Wilkins 



Neurons at rest (ii) 

 Ion pumps 

 [K+] ([Na+]) higher 
inside (outside) 

 Ion channels 

 Initially more 
permeable to K+ 

 Diffusion vs Electrical 
potential 

 Balance: equilibrium 
potential 
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Neuroscience: Exploring the Brain, 3rd Ed. Bear, Connors and 

Paradiso. Copyright © 2007 Lippincott Williams & Wilkins 



Neuronal activity (i) 
24 

Rest 

AP 

Depolarization 

Propagation 

Threshold? 

Stimulus 

Na ch open 

Depolarization 

Ca ch open 

∆[Ca2+] 
Principles of Neural Science, 4th Ed. Kandel, Schwartz, and 

Jessel. Copyright © 2000 McGraw Hill 

Threshold? 



Neuronal activity (ii) 

 Axon hillock (voltage-

gated sodium 

channels) 

 Absolute/relative 

refractory period 

 

 Voltage Clamp 

(Hodgkin and Huxley) 
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Neuroscience: Exploring the Brain, 3rd Ed. Bear, Connors and 

Paradiso. Copyright © 2007 Lippincott Williams & Wilkins 
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Neuronal activity (iii) 

 Dendrite spine heads 

 Related to APs (Ca 

channels) 

 (or to other synaptic 

stimuli, EPSP) 

 

 Calcium imaging 
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 Real voltage signal 

 Very noisy 

 Sparse? Can we apply FRI? 
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Inherent sparsity (i) 
28 

 Try to make it sparse 

 Isolate AP (remove noise) 

 The signal is sparse 
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Inherent sparsity (ii) 
29 

 Simplify further 

 One AP shape only, @(tk, ak), k = 0…K-1 

 If we detect the ideal spikes, we know (tk, ak) 

@20KHz 

1[ms] 

120[mVpp] 

0 10 20 30 40 50 60 70 80 
-50 

0 

50 

100 

t[ms] 

V
 m

 [m
V

] 



0 10 20 30 40 50 60 70 80
-50

0

50

100

t[ms]

V
m

[m
V

]
Modelling AP signals 

30 

@20KHz 
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Sampling the AP signals 
31 

 Find equivalent sampling 

scheme 

 Rewrite the input 

 Equivalent expression for the 

samples 



Equivalent sampling scheme 
32 

 “Basic” train of deltas scenario 

 Annihilating Filter Method can be used 

 Sample the original signal 

 Calculate coefficients provided by equivalent scheme 

 Find locations and amplitudes of Diracs 



Simulations (i) 
33 

 Ideal scenario 

 Place AP shape at locations tk with amplitudes ak 

 Apply Annihilating Filter Method with equivalent scheme 
coefficients 

 Sampling and Perfect Reconstruction is possible 
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Simulations (ii) 
34 

 Real data 

 Simple case: search for 
the same spike shape 

 PR can be achieved 

 Also tried 

More spike shapes 

More spikes at same 
time 

 Iterative: window (+) 
detect 

 Challenging 
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Sampling the Calcium transients 
36 

 Find equivalent sampling 

scheme 

 Rewrite the input 

Weighted sample difference 



Equivalent sampling scheme 
37 

 “Basic” train of deltas scenario 

 Annihilating Filter Method can be used 

 Sample the original signal 

 Calculate coefficients provided by equivalent scheme 

 Find locations and amplitudes of Diracs 



Simulations (i) 
38 



Simulations (ii) 
39 

 Real data 

Windowing: fixed size 

 Denoising: hard thresholding 

 Number of spikes: least squares 
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Conclusions 

 Noisy FRI scenario 

Modified TLS / Cadzow for coloured noise 

 Redesign kernels 

 Improvement (higher P better) 

 Modelling neuronal signals 

 Ideally they are sparse 

Goals: reduce sampling rate, spike detection, sorting 

 Real data 

 Different types of spikes 

 Noise: HT? 
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Future work 

 Finite rate of innovation 

 Subspace denoising: alternative improvements 

Other approaches? 

 Adaptive filtering 

 Neuronal signals 

 Apply improved denoising + HT 

 Iterative retrieval 

 Different spike shapes / Superresolution? 

 Compressed Sensing 
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Questions 

 Part I: Dealing with noise effectively in FRI 

Overview: the FRI sampling scheme 

Modified TLS and Cadzow 

 Alternative exponential reproducing kernels 

 Part II: Sparse Characterization of Neuronal 
Signals through FRI theory 

 Neurons & Neuronal activity 

 Action Potentials 

 Calcium Transients 

Modelling Neuronal Signals 

 


