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Traditional Sampling

Sampling rate required in order to recover x(t) from its samples

¥ Shannon-Nyquist theorem: p(H | l
¢ Bandlimited signal with bandwidth 2B /,\/ \f\ : %

¢ Minimal sampling rate: fy,, = 2B

B 5[

¢ Landau rate:
¥ Multiband signal with known support of measure A

¥ Minimal sampling rate: A I L I I ,z_l /\:f

0

e Extension to arbitrary subspaces:
e Signal in a subspace with dimension D requires sampling at rate D

e Shift-invariant subspaces ).,z a|[n]h(t — nT) require sampling at
rate 1/T



Sampling of Structured Signals

Exploit analog structure to reduce sampling rate

¥ Multiband signal with unknown support - ﬁ| ‘ f

Of measure A fl f? fN fmax

a9
aq

Minimal sampling rate: 2ZA (vishali and Eldar ‘09)
e Stream of k pulses (finite rate of innovation)
Minimal sampling rate: 2k (vetterti, Dragotti et. a1 ‘02)

e Union of subspaces (Luand Do ‘08, Mishali and Eldar ‘09)

e Sparse vectors ;
(Candes, Romberg, Tau ‘06, Donoho “06)
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Sampling rate below Nyquist for recovery of

x(t) by exploiting structure




Sub-Nyquist Sampling

¥ Many examples in which we can reduce Compressed
. .. Sampling Sensing

sampling rate by exploiting structure Theory —  [ERSEEES

¥ Xampling: practical sub-Nyquist methods o

which allow low-rate sampling and low-

rate processing in diverse applications

Yonina C. Eldarand Gitta Kutyniok
"




Xampling Hardware

pi(t) are periodic functions

x(t) °
Pm (1) ¢
J\ e
X H(f) —"— ymln]

_j2m
Epi(t) =Y aime """ sums of exponentials

B The filter H(f) shapes the tones and reduces bandwidth

B The channels can be collapsed to a single channel
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Optimality of Xampling Hardware

b Achieves the Cramer-Rao bound for analog recovery given a sub-
Nyquist sampling rate (Ben-Haim, Michaeli, and Eldar 12)

¥ Minimizes the worst-case capacity loss for a wide class of signal
models (Chen, Eldar and Goldsmith 13)

¥ Capacity provides further justification for the use of random tones

n(t)

X(t) M/’
Message —» [ Encoder [—»| h(t) d \‘?ng [n]

signal structure
captured by channel

capacity-achieving

1 ~ .
min max CapLoss ~ 5 {7—[(5) — aH (§> } sub-Nyquist sampler

sampler states o '
¥ a: undersampling factor

H(B) = —flog f — (1 — f)log(1 - f)

binary entropy function

E B: sparsity ratio




Sampling of Structured Signals

—

¥ Careful design of measurement scheme Pt

ﬂ nT,
- H(f) —rt— ]
° . x(t)
¥ Nonlinear prior ﬁ% ' :
A o) | »® .

niy
1 1 Y L ym|n
¥ Typically non-linear recovery methods Lo o) —

¥ Often nonlinear processing needs to be accounted for
(such as beamforming, quantization etc.)

Extensions:
e Is structure necessary for sub-Nyquist sampling?

e Can careful measurement design and optimization-based
recovery methods help in other nonlinear problems?



Sub-Nyquist Without Structure

Can we reduce sampling rates when the signals
do not have structure?

¥ Goal: Recovery of some function of the signal
e Signal statistics: Power spectrum estimation with Geert Leus and Deborah Cohen
B Quantized version of the signal with Andrea Goldsmith and Alon Kipnis

e Sampling of a set of signals that are used for beamforming where the

beamformed signal has structure with Tanya Chernyakova




Measurement Design for Phase

Retrieval

Can we designh measurement schemes to enable
phase retrieval from Fourier measurements?

¥ Goal: Recover signals from their Fourier magnitude

Known to be impossible for 1D problems

No known stable methods for 2D problems

Fourier

e [~ X TR

Absolute value

. 2
Recent methods rely on random measurements rather than Fourier |{ax, )]

Proper design of deterministic Fourier measurements together with

optimization methods allows for recovery even in 1D problems!
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Talk Outline

Power spectrum estimation from sub-Nyquist samples

Rate-distortion theory of sampled signals

¥ Unify sampling theory and rate distortion theory ol

¥ Optimal distortion at sub-Nyquist rates

Sub-Nyquist beamforming in ultrasound
¥ Beamforming at sub-Nyquist rates
e Wireless ultrasound

Phase retrieval from Fourier measurements




Part 1;
Xampling Without
Structure




Power Spectrum Reconstruction

k. Sometimes reconstructing the covariance rather than

- _‘ it
/B o -
AN %. L
- e ME
=9 = q

the signal itself is enough: - .. "= omeeem
¥ Support detection ‘_l " | }mj\ [, 't

¥ Statistical analysis .
Financial time
Series analysis

. . Cognitive Radios‘me
¥ Parameter estimation (e.g. DOA) 5

What is the minimal sampling rate to estimate the signal

covariance?

¥ Assumption: Wide-sense stationary ergodic signal

e If all we want to estimate is the covariance then we can
substantially reduce the sampling rate even without
structure!



Covariance Estimation

Cohen, Eldar and Leus 15
¥ Let x(t) be a wide-sense stationary ergodic signal

¢ We sample x(t) with a stable sampling set at times R = {t;}iez
¥ We want to estimate ;. (1) = E[x(t)x(t — 7)]

What is the minimal sampling rate to recover 7, (7)?

¥ Sub-Nyquist sampling is possible!
Intuition:
¢ The covariance 7,(7) is a function of the time lags 7 = t; — t;

e To recover 1, (1), we are interested in

the difference set R: t, — 1
i3 — 11
t tz t4_ - tl t t
1 A 4 2
t, t,—t .
ts ts—ty 4 . 3/ Difference set
Sampling set ¢ > 3/ R={t;i —tj}ijez

R = {t} > ls — Ty t. > t.
LJIEZ l J



Difference Set Density

It is possible to create sampling sets with Beurling density 0
for which the difference set has Beurling density oo!

¥ There should be enough distinct differences so that the size of the
difference set goes like the square of the size of the sampling set

¥ The density of the set should go to 0 slower than the square root
—» the density of the square (difference set) goes to o

a4

R

Let R = {t;}icz, be a sampling set with lower Beurling density D~ (R) = 0,
so that the set of differences between two sets of size p and ¢ is of the order
of pg. Let R = {t; —t;},Vt; > t; € R be the associated difference set. If

lim,— oo df/(;) = 00, then, D™ (R) = c©




Universal Minimal Sampling Rate

Under the previous conditions on the sampling set, we can
reconstruct ;. () from {x(t;)};ez

We can reconstruct the covariance from signal samples with

density 0!

Let z(t) be a wide-sense stationary ergodic signal. Let R = {t;};cz, be a

da(r) _ o
i =

and the set of differences between two sets of size p and ¢ is of the order of pgq.

Then, r,(7) can be perfectly recovered from the samples x(t;),i € Z

sampling set with lower Beurling density D~ (R) = 0, so that lim,_, o



Sampling Sets Examples

¢ Cantor ternary set: repeatedly delete the open
middle third of a set of line segments, starting

. . E . E Em
with the interval [0,1] e us e
» Sampling set: D~(R;) — 0 nnmn wn wn

¥ Difference set: D~ (R;) — oo (both conditions hold) e e

¢ Uniform sampling: let Ry = {kT};ez be a uniform sampling
set spaced by T. It holds that Ry = Ry. If T — oo, then

» Sampling set: D~(Ry) — 0

i

e Difference set: D™ (Ry) — 0 (not enough distinct differences)

Can we analyze practical sampling sets with positive Beurling
density?




Multicoset Sampling

¥ Practical sampling set with finite rate

¥ Divide the Nyquist grid into blocks of n consecutive samples
(cosets)

¥ Keep m samples from each block

¥ Sampling set: D™ (R) = %

Time shifts =HknT

/ﬂ\ & | T e xl
n AN /T o
: % \U W ™ : t=_knT

N
s T s X, [K]

What is the minimal sampling rate for perfect covariance
recovery from multicoset samples with n cosets?




Multicoset — Bandlimited Signal

Let x(t) be bandlimted with bandwidth 1/7. The minimal rate for perfect
recovery of r,(7) when using multicoset sampling with n channels is given by

m 1++/4n —3 1
nT — 2nT VT

Signal recovery: m = n

Covariance recovery: m < \/n

e Achieved when the differences between two distinct cosets are
unique, namely ¢; — ¢; # ¢ — ¢, Vi # k,j # 1

e Known as the Golomb ruler
e Sparse ruler special case when sampling on the Nyquist grid



Multicoset — Sparse Signal

¢ Let x(t) be sparse with unknown support with occupancy ¢ < 1/,

I A l—(: I I I—l A I >/
—1 fwvo v

¥ Minimal sampling rate for signal recovery: %€/ (Mishali and Eldar 09)

Let z(t) be sparse with unknown support with occupancy € < 1/2. The minimal
rate for perfect recovery of . (7) when using multicoset sampling with n channels

is given by
m - 1+ +v/8n — 3 _ \/%
nT — 2nT = /nT

0

Signal recovery: m = 2en

Covariance recovery: m x v2en




The Modulated Wideband Converter
A

. m sequences
x(t) mB (total sampling rate)

: = 2N B (twice Landau)
Pm (t) I l
| nTp . L
& Ll 7y
2T,

T,,—periodic p;(t) gives the desired aliasing effect

Time ‘ | | || | | | Frequency
0 I 0

s/NYQ




Single Channel Realization

/\ H(f) /\
I | A N
—5fNvq s INvQ
H(f) )
nNTp
LR— N —/—y[n]...JAM‘All ...
E m,
Bandwidth
p(t) NB

e The MWC does not require multiple channels
e Does not need accurate delays
¥ Does not suffer from analog bandwidth issues



Application:
Cognitive Radio

“In theory, theory and practice are the same.
In practice, they are not.”
Albert Einstein




Cognitive Radio

¥ Cognitive radio mobiles utilize unused spectrum ""holes”
b Need to identity the signal support at low rates

frequency

Federal Communications Commission (FCC)

. \\Spectrum
frequency allocation / “holes”
UNITED — -— _ /. ..
STATES " > Hime

- : ! it Measured Spectrum Occupancy in Chicago, IL

FREQUENCY !- " - . = | ,

Moabile Satellte,

T5.0%

Shared Spectrum Company (SSC) — 16-18 Nov 2005

Licensed spectrum highly underused: E.g. TV white space, guard bands and more

23



Nyquist: 6 GHz

Sampling Rate:

Mishali, Eldar, Dounaevsky, and Shoshan, 2010
Cohen et. al. 2014

6% of Nyquist rate!

'High Rate Input Signal
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x(t)

MWC analog front end
Parameters:
e Nyquist rate: 6 GHz

¢ Xampling rate: 360 MHz
(6% of Nyquist rate)

Performance:

¥ Wideband receiver mode: 49 dB dynamic range, SNDR > 30 dB
¥ ADC mode: 1.2v peak-to-peak full-scale, 42 dB SNDR = 6.7 ENOB




. Headed by Yonina Eldar
o7 Technion “S_KX_MPL

Israel Institute of Signal Acquisition Modeling
Technology and Processing Lab

Sub-Nyquist -

g

Cognitive Radio System

sl
S o¥ = oY (({}[r:-)) ~ n/ﬁ ;ﬁ
"%\ 41 ‘ , o = ' o,



Reducing Rate with Quantization

' ' i7ati Kipnis, Goldsmith and Eldar 1
¢ Until now we ignored quantization ipnis, Goldsmith and Eldar 15

¥ Quantization introduces inevitable distortion to the signal

¥ Since the recovered signal will be distorted due to quantization
do we still need to sample at the Nyquist rate?
F\

> 1001001001
. /\/W — Eloom... -

--------------- — f Iog2 (#Ievels)
fs = # samples/ sec bit/sec
Sampling Theory Source Coding [Shannon]

Goal: Unify sampling and rate distortion theory




Unification of Rate-Distortion

¢ Standard source coding:

For a given discrete-time process y[n] and a given bit rate R
what is the minimal achievable distortion D(R)=inf |y[n]- y[n]||

R
y[n] —— ENC —»| DEC |— Y[N]

¢ Our question:

For a given continuous-time process x(t) and a given bit rate R
what is the minimal distortion Inf, D(f,R)=Inf ||X(t) X(t)”

n(t)

y[n] - X
x(t) —»| h(t) —» Y | ENC |—{ DEC > X(t)
f

S

¢ What sampling rate is needed to achieve the optimal distortion?

27



Quantizing the Samples:

Source Coding Perspective

R :%Ilog+[J/8]df
\ . =f min{J,B;df
s

0.9

0sf D(f R=1)

Distortion

Nyquist F|requency

Preserve signal components above “noise floor” q, dictated by R
Distortion corresponds to mmse error + signal components below noise floor

Theorem (Kipnis, Goldsmith, Eldar, Weissman 2014)
_1(% 1008
R(fs,e)_aj_glog [wa(f)/@}df

fs -
D(f,,0) = mmseX|Y(fs)+j % mingS, (1), O3df
2




Optimal Sampling Rate

Shannon [1948]:

“we are not interested in exact transmission when we have a continuous
source, but only in transmission to within a given tolerance”

¥ Can we achieve D(R) by sampling below fy.?

r Yes! For any non-flat PSD of the input for vs R

D(R, f.) = D(R) for |

fS Z fDR(R)I é; 1




Ultrasound

Ultrasonic probe

b Relatively simple, radiation free imaging
g(t) -y

Rx signal Unknowns
{Time _ i
Amplitude - a;

0

e Echoes result from scattering in the tissue

¥ The image is formed by identifying the
scatterers




Processing Rates

¥ Toincrease SNR and resolution an antenna array is used
¥ SNR and resolution are improved through beamforming by
introducing appropriate time shifts to the received signals

’ Focusing the received

beam by applying nonlinear
delays

Xdcr

128-256
elements

Scan Plane

D(t;0) = ﬁmigpm (t —%(t —\/t2 —4(5,,/c)tsin@ +4(5, /c)’ )j

e Requires high sampling rates and large data processing rates
e One image trace requires 128 samplers @ 20M, beamforming to
150 points, a total of 6.3x10° sums/frame




Challenges

¥ Can we reduce analog sampling rates?

¢ Can we perform nonlinear beamforming on the sub-Nyquist
samples without interpolating back to the high Nyquist-rate
grid digitally?

Compressed Beamforming

Goal: reduce ultrasound machine size at same resolution
Enable 3D imaging

Increase frame rate

Enable remote wireless ultrasound



Streams of Pulses

Gedalyahu, Tur, Eldar 10, Tur, Freidman, Eldar 10

~
7

¥ L pulses can be entirely recovered from only 2L Fourier coefficients —
finite-rate-of-innovation framework by Vetterli, Marziliano, Blu, Dragotti

¥ Efficient hardware;
x(t) — | s°(=t) " —| FFT | — c[K]

Theorem (Tur, Eldar and Friedman 11) ass

[f the filter s*(—t) satisfies : o
0 w=2rk/T,k & K 015
S*(w) =< nonzero w=2nk/T,k€K 0
arbitrary otherwise, 008

then c[k] are the desired Fourier coefficients

Here K are the desired set of Fourier coefficients
e Sum-of-Sincs filter with compact support S(w) = —— > besine ( 2 k)




Conventional Beamforming

Non-linear scaling of the received signals
M
1 1
P(t;8) = I Z @y (E (t + Jtz — 4y, tsing + 4}%))

m=1

Beamformed Signal & (t)

V- distance from m’th element to origin, normalized by c.

A

Performed digitally after sampling at sufficiently high rate
Individual traces @,y (t)

High rate ADC
(~20-50MHz /
element)

m Focusing along a certain axis — reflections originating from off-axis are
attenuated (destructive interference pattern)
m SNR is improved



Difficulty in Low Rate Sampling

¥ Each individual trace is buried in noise and has no structure

B Structure exists only after beamforming which improves resolution/SNR

¢ How can we perform beamforming on low rate data? How can we obtain
small time shifts without interpolation?

Compressed beamforming: Enables beamforming from low rate samples

m Key idea: Perform beamforming in frequency

:_Zzgpm[n]Qk mté'[k n]

m=1 n N
Fourier coefficient Fourier coefficient of 1ol
of BMF signal signal at element m 20}
Logi¢ th ts_of t; 0 al
1. Bl@f%ﬁéﬂaﬁrles R S ) S X N 40
50+

recovered from a sma r?ge}‘ccgf &2 o ]m S
mber

2. Seall; ﬁblml?(erc Qfr ey (@ W

of ¢, [n]

Zﬁkjﬁ [c-tsing o :
Leép rafte sﬁmﬁhh@ g @mn(t)' 00200 ;cé)u?'iercgeffici;r?tg 200300



Volumetric Ultrasound Imaging

)

Nex (m,n)
1 2 . . . .
C[k]z_ Cmn[k_I]kan'e o, [I] - (3'{1{},“{}} ~ (ﬂj‘:‘ ?L“}"ﬂ':
NRX (m,n)l=—L | B . ) A\ -
. . . (g, N) H"x.ﬁ
Fourier coefficient Fourier coefficient of : : ] \
of BMF signal signal detected at Uy "' 1\ :
element (m,n) \
20 elements of {Qk,m,n;nggy [l]} ; ? y
contain more than 95% of the energy

! Reflecting Element

10l | | | | | | | Ok min (t;gx’gy) = I[],mynlfmyn(T;gx,gy)J (t)x

20k

Signal model still holds, allowing the same
reconstruction technique to be used

i

70

dB

2

| . 2T t(7/mx¢9+7/ny6)_‘7/m,n
exp< —i—K-
B0H : T t_(j/mxe—i_ynye)

a0+




Ultrasound Results

Standard Imaging Xampled beamforming Xampled beamforming

-80 -60 -40 -20 0 20 40 60 80 4 R » R -80 -60 -40 -20 0

3328 real-valued samples, per sensor 360 complex-valued samples, per sensor per 100 complex-valued samples, per sensor per
per image line image line image line

~1/10 of the Nyquist rate ~1/32 of the Nyquist rate

We obtain a 32-fold reduction in sample rate and 1/16-fold
reduction in processing rate

All digital processing is low rate as well

Almost same quality as full rate image




Wireless Ultrasound Imaging

A wireless probe performs Xampling
and transmits the low rate data to a
server for processing

¥ Frequency Domain Beamforming and Wirelss £e
. . . erver
image reconstruction is performed by P w/

the server ().
¥ The image is sent for display on a |
monitor

Xampler
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Pulse-Doppler Radar

Bar-Ilan and Eldar, 13
¥ Same beamforming idea can be used in radar in order to
obtain high resolution radar from low rate samples

¢ Our radar prototype is robust to noise and clutter
e Doppler Focusing (beamforming in frequency):

¢ Optimal SNR scaling

e CS size does not increase with number of pulses

¥ No restrictions on the transmitter

¥ Clutter rejection and the ability to handle large dynamic range




Part 2:
Measurement design
for phase retrieval

Enabling phase retrieval from Fourier measurements
using practical devices!




Phase Retrieval:

Recover a signal from its Fourier magnitude

Fourier + - 2
zln] —> Absolute value | ylk] = [X k]

e Arises in many fields: crystallography eatterson 33),
astronomy (rienup 82), Optical imaging ittane 90, and more

e Given an optical image illuminated by coherent light, in the far field we
obtain the image’s Fourier transform

e Optical devices measure the photon flux,

which is proportional to the magnitude
e Phase retrieval can allow direct recovery
of the image B

Diffraction Pattern



Theory of Phase Retrieval

Difficult to analyze theoretically when recovery is possible

¢ No uniqueness in 1D problems (Hofstetter 64)
¢ Uniqueness in 2D if oversampled by factor 2 (Hayes 82)
e No guarantee on stability

¥ No known algorithms to achieve unique solution

Recovery from Fourier Magnitude Measurements is Ditficult!




Progress on Phase Retrieval

¥ Assume random measurements to develop theory (Candes et. al, Rauhut et.
al, Gross et. al, Li et. al, Eldar et. al, Netrapalli et. al, Fannjiang et. al ...)

¥ Introduce prior to stabilize solution
B Support restriction (Fienup 82)
B Sparsity (Moravec et. al 07, Eldar et. al 11, Vetterli et. al 11, Shechtman et. al 11)
¥ GESPAR: Greedy sparse phase retrieval (Shechtman, Beck and Eldar 14)

¥ Add redundancy to Fourier measurements

¥ Impulse addition and least-squares recovery (Huang et. al 15) ‘“

B Short-time Fourier transform (Nawab et. al 83, Eldar et. al 15,

Jaganathan et. al 15)

ul
mmmmm

B Masks (Candes et. al 13, Bandeira et. al 13, Jaganathan et. al 15) @;“ camens j




Analysis of Phase Retrieval

Analysis of Random Measurements:
y; = [{a;, x)|? + w; «— noise x € RV
t
random vector
¥ 4N — 2 measurements needed for uniqueness

(Balan, Casazza, Edidin 06, Bandira et. al 13)

Stable Phase Retrieval (Eldar and Mendelson 14):

O(N) measurements needed for stability
O (klog(N/k)) measurements needed for stability with sparse input

. M 2\ P . .
Solving P (yz — |{a;, )] ) 1 < p < 2 provides stable solution

How to solve objective function?




Recovery via Semidefinite Relaxation

Candes, Eldar, Strohmer ,Voroninski 12
e [{ag, x)|? = Tr(4,X) with 4, = agag’, X = xxT

¥ Phase retrieval can be written as
minimize rank (X)
subject to A(X)=b, X=>0
e SDP relaxation: replace rank(X) by Tr(X) or by logdet(X + €I) and apply
reweighting

e PhaseCut: semidefinite relaxation based on MAXCUT (waldspurger et. al 12)

Advantages / Disadvantages

# Yields the true vector whp for O(IN) Gaussian meas. (Candes et al. 12)

e Recovers sparse vectors whp for O(k?log(IN)) Gaussian meas. (Candes etal. 12)
¥ Computationally demanding

e Difficult to generalize to other nonlinear problems



Provable Efficient Algorithms for

Phase Retrieval

¥ Wirtinger flow: Gradient descent on [{a;, X)|* (Candes et. a1 14,15)
¥ Amplitude flow: Gradient descent on [{a;, x)| Wang, Giannakis and Eldar 16)

e All recovery results for random measurements (or random masks)

Recent overview:

Y. Shechtman, Y. C. Eldar, O. Cohen,

H. N. Chapman, J. Miao, and M. Segev,

“Phase retrieval with application to optical imaging,”
SP magazine 2015

Phase Retrieval
with Application
to Optical Imaging

Moving to practice: Provable recovery from Fourier measurements?




Design Measurements +

Optimization Methods

Lessons learned from sub-Nyquist sampling:
¥ Measurement design is crucial!

¥ Combine with modern optimization tools for recovery

Fourier measurements with a twist:
¥ Impulse addition and least-squares recovery
B Short-time Fourier transform

B Small number of fixed masks

Pulse to be
measured

L1111

11

Camera
_ Spec-
E(t-1) Nonlinear 1_:0"’“9“23r
= }mdﬂ%

Variable E(£)
delay, T




Least-Squares Phase Retrieval

Huang, Eldar and Sidiropoulos 15

¥ We have seen that SDP relaxation can recover the true signal for
sufficiently many random Gaussian measurements

» We can show that in fact SDP relaxation for Fourier phase retrieval
is tight!

Theorem (Huang, Eldar and Sidiropoulos 15)

Consider LS recovery Z%ﬂil(yz — |{fi, 2)|*)? from Fourier measurements. Then:

1. The SDP relaxation minxsg Efil (yi — Tr(ﬁfi"‘)i_’))2 is tight for any M

2. We can always find a rank-one solution from the SDP solution X

e Create the correlation sequence 7, = sum(diag(X, k))
e Any choice of x such that 7 = Sum(diag(aﬁx*, /f)) is optimal



Spectral Factorization

Minimum phase factor can be found by solving

r)rflg)éX(l, 1) s.t. rp =sum(diag(X,k))

The solution is always rank one

Minimum phase solution:

Let X(z) = er:_ol x[n|z~" be the z-transform of x[n]

x[n] is minimum phase if the zeros of X (z) are all inside the unit circle

Minimum phase solution can always be found in polynomial time




Summary: LS Phase Retrieval

Huang, Eldar and Sidiropoulos 15

k By solving two SDPs we can always solve the LS phase retrieval problem
from Fourier measurements min, Zf‘il (ys — |{fi, z)|?)?

¥ The solution can be found by implementing:

s

L. X = minx o Zi\il (yi — Tr(f%fz*X))z
2. 1 = sum(diag(X, k))
3. maxxs>o X (1,1) s.t. rr = sum(diag(X, k)) gives rank-one optimal solution

¥ The minimum phase solution is optimal namely minimizes the LS error

e However, solution may not be equal to the true x since there are no
uniqueness guarantees in 1D phase retrieval

Convert any signal into a minimum phase signal and then
measure it!




Impulse Addition

Huang, Eldar and Sidiropoulos 15

¥ Any signal can be made minimum phase by adding an impulse at zero

Theorem (Huang, Eldar and Sidiropoulos 15)

An arbitrary complex signal is minimum phase if |zg| > ||z]1

¥ Add an impulse at zero
¥ Take Fourier magnitude measurements
¥ Recover the minimum phase signal

¥ Subtract the impulse

Robust recovery of any 1D complex signal from Fourier
measurements using SDP!




Simulation: Exact Recovery

¥ Compare with Fourier measurements with recovery using PhaseLift
initialized by Fienup

¥ Both produced zero fitting error but only our approach led to
recovery of the true signal

3 |

EEEE W griginal
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Recovery From the STFT Magnitude

N-1 2 L —step size

X,(m, k) = xinlaimlI — nle—927kn/N N —signal length
o ) Z lg! | W —window length

n=0

¢ Easy to implement in optical settings
e FROG — measurements of short pulses (Trebino and Kane 91)

¥ Ptychography — measurement of optical images (Hoppe 69)

¥ Also encountered in speech/audio processing (Gritfin and Lim 84, Nawab et. al 83)

¥ Almost all signals can be recovered as long as there is overlap between
the segments

e Almost all signals can be recovered using semidefinite relaxation

e Simple least-squares recovery for many choices of windows



Frequency-Resolved Optical

Gating (FROG)

¥ Method for measuring ultrashort laser pulses

Trebino and Kane 91

¢ The pulse gates itself in a nonlinear medium and is then spectrally
resolved

Measured FROG trace

Pulse to be 05
measured ’
; N
Y Beam I
splitter Camera e
09 E(t-1) Nonli Sp o [ ? 0
. onlinear ele ) - -
om
N> medium > e =
2
ﬁ\—-v |I
- _ 1'_ (1T
Variable E(t)

delay, T %300 -200 0 200 400
Delay [fs]

e In XFROG a reference pulse is used for gating leading to STFT-magnitude

measurements:
N—1 | L —step size
Xg(m, k) = Z z[n)g[mL — n]eI2 kn/N N —signal length
n=0 W —window length




Ptychography

Hoppe 69

Plane wave

For all positions
(X;,Y;) record
diffraction
pattern I}

e Method for optical imaging with X-rays
® Records multiple diffraction patterns as a function of sample positions

» Mathematically this is equivalent to recording the STFT



Theoretical Guarantees

¢ Uniqueness condition for L=1 and all signals:

Theorem (Eldar, Sidorenko, Mixon et. al 15)

The STFT magnitude with L=1 uniquely determines any x[n] that is everywhere
nonzero (up to a global phase factor) if:

1. The length-N DTFT of|g [n]|* is nonzero

2. N>22Ww -1

3. N and W-1 are coprime

¢ Uniqueness condition for general overlap and almost all signals:
Theorem (Jaganathan, Eldar and Hassibi 15)

The STFT magnitude uniquely determines almost any x[n] that is everywhere
nonzero (up to a global phase factor) if:

1. The window g[n] is nonzero

2. L<W < N/2 (segments overlap)

Strong uniqueness for 1D signals and Fourier measurements




Recovery From STFT via SDP

Theorem (Jaganathan, Eldar and Hassibi 15)

SDP relaxation uniquely recovers any x[n] that is everywhere nonzero from the
STFT magnitude with L=1 (up to a global phase factor) if 2 < W < N/2

e In practice SDP relaxation seems to works as
long as L < W/2 (atleast 50% overlap)

¥ Proof in progress ...

e Strong phase transition at L=W/2

Probability of Success for N=32 for different
Land W

e Can prove the result assuming the first W/2 values of x[n] are known



Nonconvex Recovery From STFT

Magnitude

Bendory and Eldar 16

¥ We consider the data in a transformed domain (1D DFT with respect to
the frequency variable)
N-1
Xy(m,l) = Z z[n|x*[n + £lgimL — n]gimL —n — €] = 2" H,, 4o
n=0
where H,, ; is the (non-Hermitian) measurement matrix

¥ We suggest using gradient descent to minimize the non-convex loss
. 2
f(z) = Z (Xg(m,f) — Z*Hm?gz)
m,b

e Initialization by the principle eigenvector of a matrix, constructed as the
solution of a least-squares problem

¥ Under appropriate conditions, initialization is close to the true solution



Nonconvex Recovery From STFT

Magnitude

Simple example (N=23, W=7, L=1, SNR=20db)

Initialization Recovery
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Conclusions

B Compressed sampling and processing of many analog signals even
without structure

Wideband sub-Nyquist samplers in hardware
Many new applications like wireless ultrasound
Merging information theory and sampling theory

Importance of measurement design in phase retrieval

Exploiting processing task and careful design of
measurements can lead to new sampling and
processing techniques




Xampling Website

webee.technion.ac.il/people/YoninaEldar/xampling top.html

Y. C. Eldar, “Sampling Theory: Beyond Bandlimited Systems", Cambridge o
University Press, 2015 sampling
Theory

Beyond Bandlimited Systems
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Compressed
Sensing

Theory and Applications

Amplitude

Yonina C. Eldar and Gitta Kutyniok

Y. C. Eldar and G. Kutyniok, "Compressed Sensing: Theory and Applications”,

Cambridie Universiti Pressi 2012 —


http://webee.technion.ac.il/people/YoninaEldar/xampling_top.html

SAMPL Lab Website
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“""e“' ' 2 o Sampling research is becoming more applications-oriented: discoveries in
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“.. F““"“ i this field quickly find thei v into a wide array of products ranging from cl
cell phones and medical imaging equipment to defense technologies. e L )
Dictionary Reduction in Our team is constantly
€ 3 o " Pt op Magnetic Resonance exploring innovative
The SAMPL Lab focuses on sampling, modeling and processing of Pl i,

continuous-time and discrete-time signals. Traditicnal systems treat the
sampling and processing stages separately and require sampling at the

| well-known Nyquist rate. In contrast, SAMPL research focuses on new
“z2sign paradigms in which sampling and processing are designed jointly
1 order to expleit signal properties already in the sampling stage. This
approach has the potential to drastically reduce the sampling and
processing rates well below the Nyquist rate, typically considered as the
ultimate limit for analog to digital conversion. The proposed prototypes
can reduce power consumption, hardware size and complexity, and
enable efficient wideband sensing.

Y& Gain i,

The laboratory facilitates the transition from pure theoretical research to
the development, design and implementation of prototype systems.
SAMPL Lab integrates these new ideas directly into technology by close

§ more project proposals y more pictures

collaboration with leading industrial companies. Systems developed in the
lab demonstrate the research results and technology advances in a wide
range of applications ranging from bicimaging such as 3D ultrasound and
MRI through communications, laser optics, cognitive radio and radar
systems.

¥ more info

Contact Us: SAMPL Lab Team i more demo movies



http://www.sampl.technion.ac.il/
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