
An Online Learning View via a Projections’ Path in the
Sparse-land

Sergios Theodoridis1

1Dept. of Informatics and Telecommunications, National and Kapodistrian University
of Athens, Athens, Greece.

Workshop on Sparse Signal Processing
Friday, Sep. 16, 2016

Joint work with
P. Bouboulis, S. Chouvardas, Y. Kopsinis, G. Papageorgiou, K. Slavakis

Sergios Theodoridis, University of Athens. An Online Learning View via a Projections’ Path in the Sparse-land, 1/58



Sparsity

Sparse Modeling

• Sparse modeling has been a major focus of research effort over
the last decade or so.

• Sparsity promoting regularization of cost functions copes with:

Ill conditioning-overfitting when solving inverse problems; Learning
from data is an instance of inverse problems.

Promote zeros when the underlying models have many
near-to-zero values.
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Sparse Modeling

The need for sparse Models: Two examples

• Compression

• Echo Cancelation
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Sparse Modeling

The Generic Model

OUTPUT=INPUT× SPARSE MODEL+NOISE
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Sparse Modeling

The Regression Model

• A generic model that covers a large class of problems (Filtering,
Prediction)

yn = uTna∗ + vn

a∗ ∈ RL, is the unknown vector.
un ∈ RL, is the incoming signal (sensing vectors).
yn ∈ R, is the observed signal (measurements).
vn is the additive noise process.

• a∗ is assumed to be sparse. That is, only a few, K << L, of its
components are nonzero

a∗ = [0, 0, ?︸︷︷︸
1

, 0, . . . , 0, ?︸︷︷︸
2

, 0, 0, . . . , 0, ?︸︷︷︸
K

, 0, . . . , 0]T

• In its simplest formulation the task comprises the estimation of
a∗, based on a set of measurements (yn,un), n = 1 . . . N .
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Sparse Modeling

Dictionary Learning

• This is a powerful tool in analysing signals in terms of
overcomplete basis vectors.

[y1, . . . ,yN ]︸ ︷︷ ︸
L×N

= [u1, . . . ,um]︸ ︷︷ ︸
L×m

[a1, . . . ,aN ]︸ ︷︷ ︸
m×N

, m>L

Y = UA

yn,∈ RL n = 1, 2, . . . , N , are the observation vectors.
ui ∈ RL, i = 1, 2, . . . ,m, are the unknown atoms of the
dictionary.
an ∈ Rm, n = 1, 2, . . . , N , are the vectors of the unknown
weights, corresponding in the respective expansion of the nth
input vector:

yn =

m∑
i=1

uiani

where, an, n = 1, 2, . . . , N , sparse vectors.
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Sparse Modeling

Low Rank Matrix Factorization

• This task is at the heart of dimensionality reduction.

Y = UA

=

r∑
i=1

uiâ
T
i

[y1, . . . ,yN ]︸ ︷︷ ︸
L×N

= [u1, . . . ,ur]︸ ︷︷ ︸
L×r

 âT1
...

âr
T


︸ ︷︷ ︸

r×N

• r < N .

• PCA performs low rank matrix factorization, by imposing sparsity
on the singular values as well as orthogonality on U .
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Sparse Modeling

Low Rank Matrix Factorization

• Matrix Completion is a special constrained version of low rank
matrix factorization

• Y has missing elements and the lower rank matrix factorization is
constrained to provide the non-missing elements at the respective
positions

Ŷ =


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
∗ ∗ ∗ ∗ ∗ ∗


=

r∑
i=1

uiâ
T
i
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Sparse Modeling

Low Rank Matrix Factorization

• Robust PCA is another special constrained version of low rank
matrix factorization.

Y = L+ V

L is a low rank matrix and V is a sparse matrix. The latter

models OUTLIER NOISE. Being outlier is sparse.

• The goal of the task is to obtain estimates L̃ and Ṽ by imposing
sparsity on the singular values of Y as well as on the elements of
V , constrained so that Y = L̃+ Ṽ .
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Sparse Modeling

Robust Regression

• Robust Regression is an old problem, with a major impact coming
from the works of Huber. The revival of interest is due to a new
look via sparsity-aware learning techniques. For example, the
noise may comprise a few large values (outliers) on top of the
Gaussian component. Since the large values are only a few, they
can be treated via sparse modeling arguments.
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Sparse Regression Modeling

There are two paths that lead to the “truth”, e.g, obtain an estimate â
of the unknown a∗.

Batch Learning Problem

Linear Regression Model yn = uTna∗ + vn

• U := [u1,u2, . . . ,uN ]T ∈ RN×L

• y := [y1, y2, . . . , yN ]T ∈ RN , and v := [v1, v2, . . . , vN ]T ∈ RN .

Batch Formulation: y = Ua∗ + v

=
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Estimating the unknown

There are two paths that lead to the “truth”, e.g, obtain an estimate â
of the unknown a∗.

Batch vs Online Learning

Batch formulation: y = Ua∗ + v

Online Formulation: yn = uTna∗ + vn,

obtain an estimate, an, after (yn,un) has been received

========
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Sparse Vs Online Learning

Sparsity-promoting Batch algorithm
(Compressed Sensing)

• Are mobilized after a finite
number of data, (un, yn)

N−1
n=0 , is

collected.

• For any new datum, the
estimation of a∗, is repeated
from scratch.

• Computational complexity might
become prohibitive.

• Excessive storage demands.

• It is a “mature” research field
with a diverse number of
techniques and applications.

Sparsity-promoting Online algorithms

• Infinite number of data.

• For any new datum, the estimate
of a∗ is updated dynamically.

• Cases of time-varying a∗ are
“naturally” handled.

• Low complexity is required for
streaming applications.

• Fast convergence / Tracking.

• Large potential in Big Data
applications
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Sparsity-Promoting Methods

`0-norm constrained minimization

• `0 (pseudo) norm minimization: NP-hard nonconvex task.

• â : mina∈Rl ‖a‖0, s.t. ‖y − Ua‖22 ≤ ε

• The above is carried out via greedy-type algorithmic arguments.

Constrained Least Squares Estimation: Three equivalent formulations

• â := argmina∈Rl

{
‖y − Ua‖22 + λ‖a‖1

}
• â : mina∈Rl ‖y − Ua‖22, s.t. ‖a‖1 ≤ ρ

• â : mina∈Rl ‖a‖1, s.t. ‖y − Ua‖22 ≤ ε
• Why `1 norm: It is the “closest” to `0 “norm” (number of

nonzero elements) that retains its convex nature.
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Sparsity-Promoting Methods

Hard and Soft thresholding

• The `1 norm is associated with a soft thresholding operation on the
respective coefficients. This is a continuous function operation, but
it adds bias even for the large values. On the other hand, hard
thresholding is a discontinuous one.
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Batch Penalized Least-Squares Estimator

Penalized Least-Squares - General Case

min
a∈RL

{
1

2
‖y −Ua‖22 + λ

L∑
i=1

p(|ai|)

}
• p(·), sparsity-promoting penalty function,

• λ, regularization parameter.
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2
‖y −Ua‖22 + λ

L∑
i=1

p(|ai|)

}
• p(·), sparsity-promoting penalty function,

• λ, regularization parameter.

Examples: Penalty functions

• p(|ai|) := |ai|γ , ∀ai ∈ R

• p(|ai|) = λ
(
1− e−β|ai|

)
• p(|ai|) := λ

log(γ+1) log(γ|ai|+ 1), ∀ai ∈ R
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Online Sparsity-Promoting Methods

Penalized Recursive LS

min
a∈RL

{
1

2

N∑
n=1

βN−ne2n + λ
L∑
i=1

p(|ai|)

}
,

rn+1 = βrn + yn+1un+1, Rn+1 = βRn + un+1u
T
n+1

an+1 = f(rn+1,Rn+1)

• It Works!

• Complexity O(L2)

• Regularization parameter needs fine tuning

• [Angelosante, Bazerque and Giannakis, 2010]

• [Eksioglu and Tanc, 2011]
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Online Sparsity-Promoting Methods

Penalized stochastic gradient descent: LMS type

min
a∈RL

{
1

2
e2n + λ

L∑
i=1

p(|ai|)

}

an+1 = an + µen(a)un − µλf(an)

f(an) =

[
∂p(|an,1|)
∂an,1

,
∂p(|an,2|)
∂an,2

, . . . ,
∂p(|an,L|)
∂an,L

]T
• Complexity O(L)
• It Works! (when it is compared to standard LMS)
• Slow convergence
• Regularization parameter needs fine tuning

• [Chen, Gu and Hero, 2009]
• [Mileounis, Babadi, Kalouptsidis and Tarokh, 2010]
• [Wang and Gu, 2012]
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The Set-Theoretic Estimation Approach

The main concept

A descendent of POCS

Projection onto a Closed Convex Set

Let C be a closed convex set in RL. Then, for each a ∈ RL there exists a
unique a∗ ∈ C such that

‖a− a∗‖ = min
g∈C
‖a− g‖.

Sergios Theodoridis, University of Athens. An Online Learning View via a Projections’ Path in the Sparse-land, 19/58



The Set-Theoretic Estimation Approach

The main concept

A descendent of POCS

Projection onto a Closed Convex Set

Let C be a closed convex set in RL. Then, for each a ∈ RL there exists a
unique a∗ ∈ C such that

‖a− a∗‖ = min
g∈C
‖a− g‖.

Sergios Theodoridis, University of Athens. An Online Learning View via a Projections’ Path in the Sparse-land, 19/58



The Set-Theoretic Estimation Approach

The main concept

A descendent of POCS

Projection onto a Closed Convex Set

Let C be a closed convex set in RL. Then, for each a ∈ RL there exists a
unique a∗ ∈ C such that

‖a− a∗‖ = min
g∈C
‖a− g‖.

Metric Projection Mapping

Metric Projection is the mapping
PC : RL → C : a 7→ PC(a) := a∗.
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The Set-Theoretic Estimation Approach

The main concept

A descendent of POCS

Projection onto a Closed Convex Set

Let C be a closed convex set in RL. Then, for each a ∈ RL there exists a
unique a∗ ∈ C such that

‖a− a∗‖ = min
g∈C
‖a− g‖.

Relaxed Projection Mapping

The relaxed Projection is the mapping
TC(a) := a+ µ(PC(a)− a),
µ ∈ (0, 2),∀a ∈ RL.
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The Set-Theoretic Estimation Approach

The POCS: Finite number of Convex Sets [Von Neumann ’33], [Bregman
’65], [Gubin, Polyak, Raik ’67]

Given a finite number of closed convex sets C1, . . . , Cq, with
⋂q
i=1 Ci 6= ∅, let

their associated projection mappings be PC1
, . . . , PCq

. For any a ∈ RL, define
the sequence of projections:

PC1
(a).
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Given a finite number of closed convex sets C1, . . . , Cq, with
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i=1 Ci 6= ∅, let

their associated projection mappings be PC1
, . . . , PCq

. For any a ∈ RL, define
the sequence of projections:

· · ·PC2
PC1
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The Set-Theoretic Estimation Approach

Convex Combination of Projection Mappings [Pierra ’84]

Given a finite number of closed convex sets C1, . . . , Cq, with
⋂q

i=1 Ci 6= ∅, let their
associated projection mappings be PC1 , . . . , PCq . Let also a set of positive constants
w1, . . . , wq such that

∑q
i=1 wi = 1. Then for any a0, the sequence

an+1 = an + µn(

q∑
i=1

wiPCi(an)︸ ︷︷ ︸
Convex combination of projections

−an), ∀n,

converges weakly to a point a∗ in
⋂q

i=1 Ci,
where µn ∈ (ε,Mn), for ε ∈ (0, 1), and

Mn :=
∑q

i=1 wi‖PCi
(an)−an‖2

‖
∑q

i=1 wiPCi
(an)−an‖2

.
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Set-Theoretic Estimation: The Online Case Approach

Constructing the Convex Sets

For each received set of measurements (training pairs) (un, yn), construct a
hyperslab:

Sn[ε] :={
a ∈ RL : |uTna− yn| ≤ ε

}

Solution
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Set-Theoretic Estimation: The Online Case Approach

Constructing the Convex Sets

For each received set of measurements (training pairs) (un, yn), construct a
hyperslab:

Sn[ε] :={
a ∈ RL : |uTna− yn| ≤ ε

}

Solution

[Yamada 2001], [Yamada, Slavakis, Yamada 2002], [Yamada, Ogura 2004],
[Slavakis, Yamada Ogura 2006].

[Chouvardas, Slavakis, Theodoridis, Yamada, 2013]: Under the assumption of
Bounded noise it converges with probability 1 arbitrarily close to the true
model.
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Adaptive Projection Subgradient Method (APSM)

The Algorithm

an+1 := an + µn

 n∑
i=n−q+1

ω
(n)
i

(
PSn[ε](an)− an

)
Projection onto Hyperslab

PSn[ε](a) = a+


yn−ε−uT

na
‖un‖2 un, if yn − ε > uTna

0, if |uTna− yn| ≤ ε
yn+ε−uT

na
‖un‖2 un, if yn + ε < uTna
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Adaptive Projection Subgradient Method (APSM)

Geometric illustration example
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APSM under the `1 ball constraint

The `1-ball case

Given (un, yn), n = 0, 1, 2, . . ., find a such that∣∣aTun − yn∣∣ ≤ ε, n = 0, 1, 2, . . .

‖a‖1 ≤ δ.

The recursion:

an+1 := PB`1
[δ]

an + µn

 n∑
j=n−q+1

ω
(n)
j PSj [ε](an)− an

 ,

converges to

a∗ ∈ B`1 [δ] ∩

 ⋂
n≥n0

Sn[ε]

 .
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Geometric illustration example
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APSM under the weighted `1 ball constraint

The weighted `1-ball case:

• Convergence can be significantly speeded up if `1-ball, is replaced
by the weighted `1 ball.

• Definition:

‖a‖1,w :=

L∑
i=1

wi|ai|.

• Time-adaptive weighted norm:

wn,i :=
1

|an,i|+ ε′n
.

• A time varying constraint case.

• The recursion:

an+1 := PB`1
[wn,δ]

an + µn

 n∑
j=n−q+1

ω
(n)
j PSj [ε](an)− an

 .
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APSM under the weighted `1 ball constraint

Geometric illustration example
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APSM under the weighted `1 ball constraint

Convergence of the Scheme

• Does this scheme converge?
Note that our constraint, i.e., the weighted `1-ball is a
time-varying constraint.
Remark: This case was not covered by the existing theory.

0
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Simulation Examples

Example: Time-invariant signal sparse in wavelet domain

L := 1024, ‖a∗‖0 := 100 wavelet coefficients. The radius of the `1-ball is set to δ := 101.
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Simulation Examples

Example: Time varying signal compressible in wavelet domain

L := 4096.
The sum of two chirp signals.

Sergios Theodoridis, University of Athens. An Online Learning View via a Projections’ Path in the Sparse-land, 31/58



Simulation Examples

Example: Time varying signal compressible in wavelet domain

L := 4096. The radius of the `1-ball is set to δ := 40.

Movies of the OCCD, and the APWL1sub.
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Generalized Thresholding Rules

Thresholding rules associated with non-convex penalty functions

• Penalized LS thresholding operators:

min
a

1

2
(ã− a)2 + λp(|a|)

• p(·): nonnegative, nondecreasing and differentiable function on
(0,∞)

• Under some general conditions it has a unique solution [Antoniadis
2007].

• PLSTO basically defines a mapping

ã 7→ min
a

1

2
(ã− a)2 + λp(|a|)

which corresponds to a Shrinkage operator.
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Generalized Thresholding Rules

Examples: Penalty functions

• p(|a|) := |a|γ , ∀a ∈ R

• p(|a|) = λ
(
1− e−β|a|

)
• p(|a|) := λ

log(γ+1) log(γ|a|+ 1), ∀a ∈ R

Examples: Penalized Least-Squares Thresholding Operators
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Generalized Thresholding Rules

Generalized Thresholding (GT) operator: Definition:

For any a ∈ RL, z := T
(K)
GT (a) is obtained coordinate-wise:

∀l ∈ 1, L, zl :=

{
al, If, al is one of the largest K components,

shr(al), otherwise

Shrinkage Function (Shr)

• τshr(τ) ≥ 0, ∀τ ∈ R.

• shr acts as a strict shrinkage operator over all intervals which do not
include 0.

• Any arbitrary function inline with the properties above can be used.

• All the penalized Least-Squares thresholding operators are included.
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Generalized Thresholding Rules

Generalized Thresholding (GT) operator: Definition:

For any a ∈ RL, z := T
(K)
GT (a) is obtained coordinate-wise:

∀l ∈ 1, L, zl :=

{
al, If, al is one of the largest K components,

shr(al), otherwise

In words

• Choose the largest K components of the estimate.

• The rest are shrunk according to the shrinkage rule.
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Generalized Thresholding Rules

Generalized Thresholding (GT) operator: Definition:

For any a ∈ RL, z := T
(K)
GT (a) is obtained coordinate-wise:

∀l ∈ 1, L, zl :=

{
al, If, al is one of the largest K components,

shr(al), otherwise

Examples: Generalized Thresholding (GT) operator
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Adaptive Projection-Based Algorithm With Generalized
Thresholding (APGT)

The Algorithm

an+1 := Tn

an + µn

 n∑
i=n−q+1

ω
(n)
i (P (an)− an)


• Each piece of a-priori information, is also represented by a set

*

Thresholding Operator
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Adaptive Projection-Based Algorithm With GT (APGT)

Convergence of APGT

• Partially Quasi-nonexpansive Mapping.
∀x ∈ RL,∃Yx ⊂ Fix(T ) : ∀y ∈ Yx,
‖T (x)− y‖ ≤ ‖x− y‖

• The fixed point set of GT is a union of
subspaces (non-convex).

Examples: Union of Subspaces for s = 2
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each one of the cluster points is guaranteed to be, at most, s-sparse,
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Simulation Examples

Example: Time-varying case exhibiting an abrupt change

L := 1024, s = 100 (up to n = 1500, and s = 110 afterwards)

APGT:
O(qL+ qK)
OSCD: O(L2)
IPAPA: O(q3)
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Simulation Examples

Example: Sparse system identification with colored input

L := 600, s = 60, AR input (cond ' 100) .
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Thank you
for your patience...

I hope that there are NO QUESTIONS !!!!!!!!!
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