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Machine Learning

Available data 
training collection of feature vectors = point cloud 

Goals 
infer parameters to achieve a certain task 
generalization to future samples with the same probability distribution 

Examples 
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Motivation

Goal: Infer parameters ✓ from n-dimensional data X = {x
1

, . . . ,xN}. This
typically requires extensive access to the data. Proposed method: Infer
from a sketch of the data ) memory and privacy savings.

n x
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. . .
xN

Learning set
(size Nn)

ˆ

A

=) m
ˆ

z

Database sketch
(size m)

L
=) K ✓

Learned parameters
(size K)

Figure 1: Illustration of the proposed sketching framework. A is a sketch-

ing operator, L is a learning method from the sketch.

Model and problem statement

Application to mixture of isotropic Gaussians in Rn:

fµ / exp

�
�kx� µk2

2

/(2�2

)

�
. (1)

Data X = {xj}Nj=1 ⇠
i.i.d.

p =

Pk
s=1↵sfµs

with:

•weights ↵
1

, . . . ,↵k (positive, sum to one)
•means µ

1

, . . . ,µk 2 Rn.

Sketch = Fourier samplings at different frequencies: (Af )l = ˆf (!l).
Empirical version: ( ˆA(X ))l =

1

N

PN
j=1 exp(�ih!l,xji) ⇡ (Ap)l.

We want to infer the mixture parameters from ˆ

z =

ˆ

A(X ).
Problem casted as:

p̂ = argmin
q2⌃k

kˆz�Aqk2
2

, (2)

where ⌃k = mixtures of k isotropic Gaussians with positive weights.
Standard CS Our problem

Signal x 2 Rn f 2 L1

(Rn
)

Dimension n Infinite
Sparsity k k

Dictionary {e
1

, . . . , en} F = {fµ,µ 2 Rn}
Measurements x 7! ha,xi f 7!

R
Rn f (x)e�ih!,xidx

Algorithm

Current estimate p̂ with weights {↵̂s}ks=1 and support ˆ� = {ˆµs}ks=1.
Residual ˆr = ˆ

z�Ap̂.
1. Searching new support functions:

Search for ”good components to add” to the support
) Local minima of µ 7! �hAfµ, ˆri, added to the support ˆ�.
New support ˆ�0.

2. k-term thresholding:
Projection of ˆz onto ˆ

�

0 with positivity constraints on coefficients:

argmin
�2RK

+

||ˆz�U�||2
2

, (3)

with U = [

ˆµ
1

, . . . , ˆµK].
k highest coefficients and corresponding support are kept
! new support ˆ� and coefficients ↵̂

1

, . . . , ↵̂k.
3. Final ”shift”:

Gradient descent algorithm on the objective function, with initialization at
the current support and coefficients.

First step Second step Third step

Figure 2: Algorithm illustration in dimension n = 1 for k = 3 Gaus-

sians. Top: Iteration 1. Bottom: Iteration 2. Blue curve=true mixture,

Red curve=reconstructed mixture, Green curve=gradient function. Green

Dots=Candidate Centroids, Red Dots=Reconstructed Centroids.

Experimental results

Data setup: � = 1, (↵
1

, . . . ,↵k) drawn uniformly on the simplex.
Entries of µ

1

, . . . ,µk ⇠
i.i.d.

N (0, 1).

Algorithm heuristics:
•Frequencies drawn i.i.d. from N (0, Id).

•New support function search (step 1) initialized as ru, where r uniformly

drawn in

0,max

x2X
||x||

2

�
and u uniformly drawn on B

2

(0, 1).

Comparison between:
•Our method: Sketch is computed on-the-fly and data is discarded.

•EM: Data is stored to allow the standard optimization steps to be per-
formed.

Quality measures: KL Divergence and Hellinger distance.

N
Compressed EM

KL div. Hell. Mem. KL div. Hell. Mem.
10

3

0.68± 0.28 0.06± 0.01 0.6 0.68± 0.44 0.07± 0.03 0.24
10

4

0.24± 0.31 0.02± 0.02 0.6 0.19± 0.21 0.01± 0.02 2.4
10

5

0.13± 0.15 0.01± 0.02 0.6 0.13± 0.21 0.01± 0.02 24

Table 1: Comparison between our method and an EM algorithm. n =

20, k = 10,m = 1000.
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Figure 3: Left: Example of data and sketch for n = 2. Right: Reconstruc-

tion quality for n = 10.
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Point cloud = large matrix of feature vectors 

Challenging dimensions
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Challenging dimensions
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Point cloud = large matrix of feature vectors 

Challenging dimensions
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Point cloud = large matrix of feature vectors 

High feature dimension n 
Large collection size N 

Challenging dimensions
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Point cloud = large matrix of feature vectors 

High feature dimension n 
Large collection size N 

Challenging dimensions

7

x1 x2 xN…X X

Challenge: compress     before learning ?X
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Compressive Machine Learning ?

Point cloud = large matrix of feature vectors 

8

x1 x2 xN…X X

yNy2 …y1Y = MX

M
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Compressive Machine Learning ?

Point cloud = large matrix of feature vectors 

Reduce feature dimension 
[Calderbank & al 2009, Reboredo & al 2013] 

(Random) feature projection 
Exploits / needs low-dimensional feature model 
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x1 x2 xN…X X

yNy2 …y1Y = MX
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Challenges of large collections

Feature projection: limited impact 
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Challenges of large collections

Feature projection: limited impact 

9

X

Y = MX

“Big Data” Challenge: compress collection size



R. GRIBONVAL 
London Workshop on Sparse Signal Processing, September 2016 

Compressive Machine Learning ? 

Point cloud = … empirical probability distribution 
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Compressive Machine Learning ? 

Point cloud = … empirical probability distribution 

Reduce collection dimension 
(adaptive) column sampling / coresets 

see e.g. [Agarwal & al 2003, Felman 2010]  

sketching & hashing 
see e.g. [Thaper & al 2002, Cormode & al 2005] 
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Compressive Machine Learning ? 

Point cloud = … empirical probability distribution 

Reduce collection dimension 
(adaptive) column sampling / coresets 

see e.g. [Agarwal & al 2003, Felman 2010]  

sketching & hashing 
see e.g. [Thaper & al 2002, Cormode & al 2005] 
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Sketching operator 
nonlinear in the feature vectors 

linear in their probability distribution
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Example: Compressive K-means
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Motivation
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typically requires extensive access to the data. Proposed method: Infer
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Figure 1: Illustration of the proposed sketching framework. A is a sketch-

ing operator, L is a learning method from the sketch.
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sians. Top: Iteration 1. Bottom: Iteration 2. Blue curve=true mixture,
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Experimental results

Data setup: � = 1, (↵
1

, . . . ,↵k) drawn uniformly on the simplex.
Entries of µ
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N (0, 1).

Algorithm heuristics:
•Frequencies drawn i.i.d. from N (0, Id).

•New support function search (step 1) initialized as ru, where r uniformly

drawn in
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0,max
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Comparison between:
•Our method: Sketch is computed on-the-fly and data is discarded.

•EM: Data is stored to allow the standard optimization steps to be per-
formed.

Quality measures: KL Divergence and Hellinger distance.
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Table 1: Comparison between our method and an EM algorithm. n =
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Figure 3: Left: Example of data and sketch for n = 2. Right: Reconstruc-

tion quality for n = 10.
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Computational impact of sketching

12

Ph.D.  A. Bourrier & N. Keriven
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Figure 7: Time (top) and memory (bottom) usage of all algorithms on synthetic data with dimension n = 10,
number of components K = 5 (left) or K = 20 (right), and number of frequencies m = 5(2n+ 1)K, with respect
to the number of items in the database N .RG: remplacer BS-GMM par Algorithm 3

distributions for further work. In this configuration, the speaker verification results will indeed be far
from state-of-the-art, but as mentioned before our goal is mainly to test our compressive approach on
a different type of problem than that of GMM estimation on synthetic data, for which we have already
observed excellent results.

In the GMM-UBM model, each speaker S is represented by one GMM (⇥

S

,↵
S

). The key point is the
introduction of a model (⇥

UBM

,↵
UBM

) that represents a "generic" speaker, referred to as Universal
Background Model (UBM). Given speech data X and a candidate speaker S, the statistic used for
hypothesis testing is a likelihood ratio between the speaker and the generic model:

T (X ) =

p
⇥S ,↵S (X )

p
⇥UBM ,↵UBM (X )

. (23)

If T (X ) exceeds a threshold ⌧ , the data X are considered as being uttered by the speaker S.

The GMMs corresponding to each speaker must somehow be “comparable” to each other and to the UBM.
Therefore, the UBM is learned prior to individual speaker models, using a large database of speech data
uterred by many speakers. Then, given training data X

S

specific to one speaker, one M-step from the
EM algorithm initialized with the UBM is used to adapt the UBM and derive the model (⇥

S

,↵
S

). We
refer the reader to [51] for more details on this procedure.

In our framework, the EM or compressive estimation algorithms are used to learn the
UBM.

5.2 Setup

The experiments were performed on the classical NIST05 speaker verification database. Both train-
ing and testing fragments are 5-minutes conversations between two speakers. The database contains
approximately 650 speakers, and 30000 trials.

20



R. GRIBONVAL 
London Workshop on Sparse Signal Processing, September 2016 

Data distribution 

Sketch 

The Sketch Trick
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finite-dimensional Mean Map Embedding, cf 

Smola & al 2007, Sriperumbudur & al 2010
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Information preservation ?

Data distribution 
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The Sketch Trick
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The Sketch Trick

Data distribution 

Sketch 

finite-dimensional Mean Map Embedding, cf 

Smola & al 2007, Sriperumbudur & al 2010 

Dimension reduction ?

14

X ⇠ p(x)

y

Signal 

space 

x

Observation space

Signal Processing 
inverse problems 
compressive sensing

MM

Probability  
space

Sketch space

Machine Learning 
method of moments 
compressive learning

z

p

Linear 
“projection”

nonlinear in the feature vectors 
linear in the distribution p(x)

z` =

Z
h`(x)p(x)dx

= Eh`(X)

⇡ 1

N

NX

i=1

h`(xi)



Compressive Learning (Heuristic) Examples

R. GRIBONVAL 
London Workshop on Sparse Signal Processing, September 2016 



R. GRIBONVAL 
London Workshop on Sparse Signal Processing, September 2016 

Compressive Machine Learning

Point cloud = empirical probability distribution 

Reduce collection dimension ~ sketching 
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Goal: find k centroids  

Standard approach = K-means 

  Sketching approach 

p(x) is  spatially localized 

need “incoherent” sampling 
choose Fourier sampling 

sample characteristic function 

choose sampling frequencies

Example: Compressive K-means
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Figure 1: Illustration of the proposed sketching framework. A is a sketch-

ing operator, L is a learning method from the sketch.
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Figure 2: Algorithm illustration in dimension n = 1 for k = 3 Gaus-
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Algorithm heuristics:
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Figure 2: Algorithm illustration in dimension n = 1 for k = 3 Gaus-

sians. Top: Iteration 1. Bottom: Iteration 2. Blue curve=true mixture,

Red curve=reconstructed mixture, Green curve=gradient function. Green

Dots=Candidate Centroids, Red Dots=Reconstructed Centroids.

Experimental results

Data setup: � = 1, (↵
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Entries of µ
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Algorithm heuristics:
•Frequencies drawn i.i.d. from N (0, Id).

•New support function search (step 1) initialized as ru, where r uniformly
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Comparison between:
•Our method: Sketch is computed on-the-fly and data is discarded.

•EM: Data is stored to allow the standard optimization steps to be per-
formed.
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KL div. Hell. Mem. KL div. Hell. Mem.
10

3

0.68± 0.28 0.06± 0.01 0.6 0.68± 0.44 0.07± 0.03 0.24
10

4

0.24± 0.31 0.02± 0.02 0.6 0.19± 0.21 0.01± 0.02 2.4
10

5

0.13± 0.15 0.01± 0.02 0.6 0.13± 0.21 0.01± 0.02 24

Table 1: Comparison between our method and an EM algorithm. n =

20, k = 10,m = 1000.
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Figure 3: Left: Example of data and sketch for n = 2. Right: Reconstruc-

tion quality for n = 10.
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Goal: find k centroids 
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Sampled 
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of K Diracs
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Compressive Gaussian Mixture Estimation
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Motivation

Goal: Infer parameters ✓ from n-dimensional data X = {x
1

, . . . ,xN}. This
typically requires extensive access to the data. Proposed method: Infer
from a sketch of the data ) memory and privacy savings.

n x

1

. . .
xN

Learning set
(size Nn)

ˆ

A

=) m
ˆ

z

Database sketch
(size m)

L
=) K ✓

Learned parameters
(size K)

Figure 1: Illustration of the proposed sketching framework. A is a sketch-

ing operator, L is a learning method from the sketch.

Model and problem statement

Application to mixture of isotropic Gaussians in Rn:

fµ / exp

�
�kx� µk2

2

/(2�2

)

�
. (1)

Data X = {xj}Nj=1 ⇠
i.i.d.

p =

Pk
s=1↵sfµs

with:

•weights ↵
1

, . . . ,↵k (positive, sum to one)
•means µ

1

, . . . ,µk 2 Rn.

Sketch = Fourier samplings at different frequencies: (Af )l = ˆf (!l).
Empirical version: ( ˆA(X ))l =

1

N

PN
j=1 exp(�ih!l,xji) ⇡ (Ap)l.

We want to infer the mixture parameters from ˆ

z =

ˆ

A(X ).
Problem casted as:

p̂ = argmin
q2⌃k

kˆz�Aqk2
2

, (2)

where ⌃k = mixtures of k isotropic Gaussians with positive weights.
Standard CS Our problem

Signal x 2 Rn f 2 L1

(Rn
)

Dimension n Infinite
Sparsity k k

Dictionary {e
1

, . . . , en} F = {fµ,µ 2 Rn}
Measurements x 7! ha,xi f 7!

R
Rn f (x)e�ih!,xidx

Algorithm

Current estimate p̂ with weights {↵̂s}ks=1 and support ˆ� = {ˆµs}ks=1.
Residual ˆr = ˆ

z�Ap̂.
1. Searching new support functions:

Search for ”good components to add” to the support
) Local minima of µ 7! �hAfµ, ˆri, added to the support ˆ�.
New support ˆ�0.

2. k-term thresholding:
Projection of ˆz onto ˆ

�

0 with positivity constraints on coefficients:

argmin
�2RK

+

||ˆz�U�||2
2

, (3)

with U = [

ˆµ
1

, . . . , ˆµK].
k highest coefficients and corresponding support are kept
! new support ˆ� and coefficients ↵̂

1

, . . . , ↵̂k.
3. Final ”shift”:

Gradient descent algorithm on the objective function, with initialization at
the current support and coefficients.

First step Second step Third step

Figure 2: Algorithm illustration in dimension n = 1 for k = 3 Gaus-

sians. Top: Iteration 1. Bottom: Iteration 2. Blue curve=true mixture,

Red curve=reconstructed mixture, Green curve=gradient function. Green

Dots=Candidate Centroids, Red Dots=Reconstructed Centroids.

Experimental results

Data setup: � = 1, (↵
1

, . . . ,↵k) drawn uniformly on the simplex.
Entries of µ

1

, . . . ,µk ⇠
i.i.d.

N (0, 1).

Algorithm heuristics:
•Frequencies drawn i.i.d. from N (0, Id).

•New support function search (step 1) initialized as ru, where r uniformly

drawn in

0,max

x2X
||x||

2

�
and u uniformly drawn on B

2

(0, 1).

Comparison between:
•Our method: Sketch is computed on-the-fly and data is discarded.

•EM: Data is stored to allow the standard optimization steps to be per-
formed.

Quality measures: KL Divergence and Hellinger distance.

N
Compressed EM

KL div. Hell. Mem. KL div. Hell. Mem.
10

3

0.68± 0.28 0.06± 0.01 0.6 0.68± 0.44 0.07± 0.03 0.24
10

4

0.24± 0.31 0.02± 0.02 0.6 0.19± 0.21 0.01± 0.02 2.4
10

5

0.13± 0.15 0.01± 0.02 0.6 0.13± 0.21 0.01± 0.02 24

Table 1: Comparison between our method and an EM algorithm. n =

20, k = 10,m = 1000.
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tion quality for n = 10.

Recovery 
algorithm 

= 
“decoder”

�

Example: Compressive K-means

CLOMP =Compressive Learning OMP 
similar to: OMP with Replacement, 
            Subspace Pursuit & CoSaMP

z = Mp ⇡
KX

k=1

↵kM�✓k

⇡ arg min
↵k,✓k

kz �
KX

k=1

↵kM�✓kk2
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Compressive K-Means: Empirical Results
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N training samples
K=10 clusters

M z 2 Rm

SSE(X ,C) =
NX

i=1

min
k

kxi � ckk2.

Sketch vector Matrix of centroids

C = CLOMP(z) 2 Rn⇥K

xi 2 Rn

Training set

K-means objective
1 rep. 5 rep.
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E
/N

N
1
=70 000

KM

CKM

1 rep. 5 rep.

N
2
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N
3
=1 000 000

MNIST infMNIST infMNIST

Lloyd-Max vs Sketch+CLOMP algorithm
 with 1 or 5 replicates (random initialization)

CLOMP
Lloyd-Max

Spectral features 
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Goal: fit k Gaussians 

X M z 2 Rm
Sampled 

Characteristic 
Function

m = 5 000N = 60 000 000;n = 12

21

z = Mp ⇡
KX

k=1

↵kMp✓k

p ⇡
KX

k=1

↵kp✓k

Density model=GMM with 
diagonal covariance

Recovery 
algorithm 

= 
“decoder”

�

Example: Compressive GMM

⇡ arg min
↵k,✓k

kz �
KX

k=1

↵kMp✓kk2

estimated GMM  
parameters (⇥,↵)

Compressive Hierarchical Splitting (CHS) 
 = extension of CLOMP to general GMM
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Proof of Concept: Speaker Verification 
Results (DET-curves)

22

MFCC coefficients xi 2 R12

N = 300 000 000

~ 50 Gbytes 
~ 1000 hours of speech
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Proof of Concept: Speaker Verification 
Results (DET-curves)
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MFCC coefficients xi 2 R12

After silence detection

N = 60 000 000

Maximum size manageable by EM

N = 300 000

N = 300 000 000

~ 50 Gbytes 
~ 1000 hours of speech

CHS

for EM
for CHS
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CHS

Proof of Concept: Speaker Verification 
Results (DET-curves)
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MFCC coefficients xi 2 R12

After silence detection

N = 60 000 000

Maximum size manageable by EM

N = 300 000

N = 300 000 000

~ 50 Gbytes 
~ 1000 hours of speech

for EM

for CHS
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 m= 5 000
720 000-fold compression 
exploit whole collection  
improved performance

Proof of Concept: Speaker Verification 
Results (DET-curves)

25

~ 50 Gbytes 
~ 1000 hours of speech

 m= 1000
3 600 000-fold compression

 m= 500
7 200 000-fold compression

CHS
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Decoding = next layers 
DNN ~ hierarchical sketching ?

see also [Bruna & al 2013, Giryes & al 2015]
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DNN ~ hierarchical sketching ?
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Summary: Compressive K-means / GMM
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✓ Dimension reduction ✓ Resource efficiency
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Figure 7: Time (top) and memory (bottom) usage of all algorithms on synthetic data with dimension n = 10,
number of components K = 5 (left) or K = 20 (right), and number of frequencies m = 5(2n+ 1)K, with respect
to the number of items in the database N .RG: remplacer BS-GMM par Algorithm 3

distributions for further work. In this configuration, the speaker verification results will indeed be far
from state-of-the-art, but as mentioned before our goal is mainly to test our compressive approach on
a different type of problem than that of GMM estimation on synthetic data, for which we have already
observed excellent results.

In the GMM-UBM model, each speaker S is represented by one GMM (⇥

S

,↵
S

). The key point is the
introduction of a model (⇥

UBM

,↵
UBM

) that represents a "generic" speaker, referred to as Universal
Background Model (UBM). Given speech data X and a candidate speaker S, the statistic used for
hypothesis testing is a likelihood ratio between the speaker and the generic model:

T (X ) =

p
⇥S ,↵S (X )

p
⇥UBM ,↵UBM (X )

. (23)

If T (X ) exceeds a threshold ⌧ , the data X are considered as being uttered by the speaker S.

The GMMs corresponding to each speaker must somehow be “comparable” to each other and to the UBM.
Therefore, the UBM is learned prior to individual speaker models, using a large database of speech data
uterred by many speakers. Then, given training data X

S

specific to one speaker, one M-step from the
EM algorithm initialized with the UBM is used to adapt the UBM and derive the model (⇥

S

,↵
S

). We
refer the reader to [51] for more details on this procedure.

In our framework, the EM or compressive estimation algorithms are used to learn the
UBM.

5.2 Setup

The experiments were performed on the classical NIST05 speaker verification database. Both train-
ing and testing fragments are 5-minutes conversations between two speakers. The database contains
approximately 650 speakers, and 30000 trials.

20

✓ In the pipe: information preservation 
(generalized RIP, “intrinsic dimension”)

✓ Neural net - like

z

•Challenge: provably good 
recovery algorithms ?
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Projections & Learning

33

y
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Signal Processing 
compressive sensing
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Machine Learning 
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Linear 
“projection”

Compressive sensing  
random projections of data items 

Compressive learning with sketches  

     random projections of collections 

nonlinear in the feature vectors 

linear in their probability distribution

Reduce dimension of data items 

Reduce size of collection
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Summary
  

Compressive GMM 

Bourrier, G., Perez, Compressive Gaussian Mixture Estimation.           ICASSP 2013 
Keriven & al, Sketching for Large-Scale Learning of Mixture Models.   ICASSP 2016 & arXiv:1606.02838  

Compressive k-means 

Keriven & al, Compressive K-Means                                  submitted to ICASSP 2017 

Compressive spectral clustering (with graph signal processing) 

Tremblay & al, Accelerated Spectral Clustering using Graph Filtering of Random Signals     ICASSP 2016                

Tremblay & al, Compressive Spectral Clustering                                    ICML 2016 & arXiv:1602.02018 

Ex: with Amazon graph (106 edges), 5 times speedup (3 hours instead of 15 hours for k= 500 classes) 

34

 Challenge: compress     before learning ?X

Introduction Graph signal processing... ... applied to clustering Conclusion

What’s the point of using a graph ?

N points in d = 2 dimensions.
Result with k-means (k=2) :

After creating a graph from
the N points’ interdistances,
and running the spectral clus-
tering algorithm (with k=2) :

N. Tremblay Graph signal processing for clustering Rennes, 13th of January 2016 8 / 26

O(k2 log2 k +N(logN + k))O(k2N)
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Recent / ongoing work / challenges
  

When is information preserved with sketches / projections  ? 
Bourrier & al, Fundamental perf. limits for ideal decoders in high-dimensional linear inverse problems. 
IEEE Transactions on Information Theory, 2014 

Notion of Instance Optimal Decoders = Uniform guarantees 
Fundamental role of general Restricted Isometry Property  

How to reconstruct: algorithm / decoder ? 
Traonmilin & G., Stable recovery of low-dimensional cones in Hilbert spaces - One RIP to rule them all.  
ACHA 2016 

RIP guarantees for general (convex & nonconvex) regularizers  

How to (maximally) reduce dimension? 
[Dirksen 2014] : given a random sub-gaussian linear form 
Puy & al,  Recipes for stable linear embeddings from Hilbert spaces to ℝ^m                                         
arXiv:1509.06947 

Role of covering dimension / Gaussian width of normalized secant set 

What is the achievable compression for learning tasks ? 
Compressive statistical learning, work in progress with G. Blanchard, N. Keriven, Y. Traonmilin 

Number of random moments = “intrinsic dimension” of PCA, k-means, Dictionary Learning … 
Statistical learning: risk minimization + generalization to future samples with same distribution 

35

 Guarantees ?

�(y) := argmin
x2H

f(x) s.t.kMx� yk  ✏
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