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Tikhonov regularization
The sparsity (r)evolution
Compressed sensing and /1 minimization
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Classical L2 regularization: theory of RKHS
Splines and operators
Minimization of gTV: the optimality of splines
Enabling components for the proof
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Inverse problems in bio-imaging

m Linear forward model

Integral operator

S Problem: recover s from noisy measurements y

m The easy scenario

Inverse problem is well BaSiC Iimitations
~ s~Hly 1) Inherent noise amplification

2) Difficulty to invert H (t
. ) 00 large or non-s uare
m Backprojection (p¢ 3) All interesting inverse problems are ill-gosed)

S

—

Linear inverse problems (20th century theory)

m Dealing with ill-posed problems: Tikhonov regularization
R(s) = ||Ls||3: regularization (or smoothness) functional

L: regularization operator (i.e., Gradient)

minR(s) subjectto ||y — Hs||3 < o2

S

m Equivalent variational problem Andrey N. Tikhonov (1906-1993)

s* = argmin ||y — Hs||3 + A|Ls||3
——— N——

data consistency  regularization
Formal linear solution: s = (H'H + \L'L)"'H'y =R, -y

Interpretation: “filtered” backprojection




Linear inverse problems: The sparsity (r)evolution

(20th Century) p=2 — 1 (21st Century)
\‘-‘
Srec = arg msin (lly — Hs||3 + AR(s)) N
m Non-quadratic regularization regularization -.

R(s) = |[Ls|l7, — [[Ls|[y, — [ILs],

= Total variation (Rudin-Osher, 1992)
R(s) = ||Ls||¢, with L: gradient

= Wavelet-domain regularization (Figuereido et al., Daubechies et al. 2004)

v = W 1ls: wavelet expansion of s (typically, sparse)
R(s) = [[vle

m Compressed sensing/sampling (Candes-Romberg-Tao; Donoho, 2006)
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Compressive sensing (CS) and /; minimization
Yy | A

Sparse representation of signal: s = Wx with |[|x]jo = K < N,

[Donoho et al., 2005
Candeés-Tao, 20086, ...]

+ “noise”

N EEEEECEE Y

Equivalent N, x N, sensing matrix: A = HW

m Constrained (synthesis) formulation of recovery problem

min ||x||; subjectto |ly — Ax|3 < o?
X




CS: Three fundamental ingredients
(Donoho, IEEE T. Inf. Theo. 2006) (Candés-Romberg, Inv. Prob. 2007)

1. Existence of sparsifying transform (W or L)

- Wavelet basis
- Dictionary
- Differential operator (Gradient)

2. Incoherence of sensing matrix A
- Restricted isometry; few linearly dependent columns (spark)

- Quasi-random and delocalized structure:
Gaussian matrix with i.i.d. entries,
random sampling in Fourier domain

3. Non-linear signal recovery (/i minimization)

CS: Examples of applications in imaging

- Magnetic resonance imaging (MRI)  (Lustig, Mag. Res. Im. 2007)

- Radio Interferometry (Wiaux, Notic. R. Astro. 2007)

- Teraherz Imaging (Chan, Appl. Phys. 2008)

- Digital holography (Brady, Opt. Express 2009; Marim 2010)
- Spectral-domain OCT (Liu, Opt. Express 2010)

- Coded-aperture spectral imaging (Arce, IEEE Sig. Proc. 2014)

- Localization microscopy (Zhu, Nat. Meth. 2012)

- Ultrafast photography (Gao, Nature 2014)




Part |: Discrete-domain regularization

Classical regularized least-squares estimator

= Linear measurement model:
Ym = (hy,xX) +n[m], m=1,..., M

= System matrix of size M x N: H = [hy ---hy]T

xus = arg min, [y — x|} + x|}

= x5 = HH+y) 'H'y

M
=H%a= Z amnh,, where a= (HHT + )\IM)_ly
m=1

Interpretation: xpg € span{h,, }}_,

Lemma
(H'H + My) 'HT = HT(HHT + M) !
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Generalization: constrained », minimization

= Discrete signal to reconstruct: x = (z[n])nez

= Sensing operator H : /5(Z) — RM
x—z=H{z} = ((z,h1),...,{(x, has)) with by, € l2(Z)

= Closed convex set in measurement space: C ¢ RM

Example: Cy ={z € RM : |y —z|} < 0?}

Representer theorem for constrained /> minimization
P2 min ||z||2 st H{z}eC
(P2) e [E4rA {z}

The problem (P2) has a unique solution of the form
M
rLs = Z amh, = H*{a}
m=1

with expansion coefficients a = (ay,--- ,ap) € RM.

(U.-Fageot-Gupta IEEE Trans. Info. Theory, Sept. 2016) »

Constrained /; minimization = sparsifying effect

= Discrete signal to reconstruct: = = (z[n])nez

= Sensing operator H : /1 (Z) — RM
x—z=H{z} = ((z,h),...,{(x, har)) with by, € Lo (Z)

= Closed convex set in measurement space: C C RM

Representer theorem for constrained /; minimization
(P1) VYV =arg min |zl st H{z}eC
x€ly(Z)

is convex, weak*-compact with extreme points of the form

K
xsparse['] = Z CLk(S[ - nk] with K = ||$sparse||0 S M.
k=1

If CS condition is satisfied,
then solution is unique

(U.-Fageot-Gupta IEEE Trans. Info. Theory, Sept. 2016)
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Controlling sparsity

Measurement model:  y,, = (hp,z) + njm], m=1,.... M

Tsparse — wé%l?z) (Z |ym — {hm,x ‘ + AHxHZl)

[$)]
o

Conv.
-+-DCT
-+-CS

_>
N
bl

[#]
o

Sparsity Index (K)
N

o o
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Geometry of I> vs. /1 minimization

m Prototypical inverse problem

min {|ly — Hx|7, + M[x|[7,} < min|x|l, subjectto |y —Hx|]7, <o

min {|ly — Hx|7, + Alx[le, } < min|x], subjectto [y —Hx]7, < o”

_ 1T
D) C yl - h]_ X
7IN
N
/, \\
4 ~
4 \-
AR , - 7 T
.S ..
. Ry & 99
N .
S P
Ml
fg-ba”: |JZ1|2 + ‘JJ2|2 = CQ

fl—ball: |(E1‘ + |£C2| = Cl
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Geometry of I> vs. /1 minimization

m Prototypical inverse problem

m}jn{Hy - Hx|;, + A x[7,} = min |[x[[¢, subjectto [ly — Hx|7, < o?

m)in {Hy — HXH?2 + A HX||@1} & m}in |lx||¢, subjectto ||y — HXH%2 <o
T

y1 =hyx

sparse extreme points

-
. . T
S .
N . 1
N ’
Dy v

7 tyball: 2|2 + |22 = Cy

{1 -ball: |(L'1‘ + |.’L‘2| =(C;

Configuration for non-unique ¢; solution
15

Part Il: Continuous-domain regularization
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Continuous-domain regularization (L2 scenario)

Regularization functional:  ||Lf|7, =/ ILf(x)]?de
R4

L: suitable differential operator

m Theory of reproducing kernel Hilbert spaces (Aronszajn 1950)

m Interpolation and approximation theory
m Smoothing splines (Schoenberg 1964, Kimeldorf-Wahba 1971)

m Thin-plate splines, radial basis functions (Duchon 1977)

m Machine learning
m Radial basis functions, kernel methods (Poggio-Girosi 1990)

m Representer theorem(s) (Schélkopf-Smola 2001)
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Representer theorem for L regularization

(P2) argmln <Z |?/m - 33m |2 + AHfHH)

h:R% x R? — R is the (unique) reproducing kernel for the Hilbert space H(RY) if
@iy h(xo,-) € H forall zy € R?
(i) f(xo) = (h(xo,-), f)3 forall f € H and 2o € R?

Convex loss function: F': RM x RM — R Sample values: f = (f(x1),..., f(zm))

(P2) arg mm( (v, F) + M fl5) (Scholkopf-Smola 2001)

Representer theorem for L,-regularization
The generic parametric form of the solution of (P2’) is
M

= Z amh(x, Z.,)
m=1

Supports the theory of SVM, kernel methods, etc.
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Sparsity and continuous-domain modeling

m Compressed sensing (CS)
m Generalized sampling and infinite-dimensional CS (Adcock-Hansen, 2011)

m Xampling: CS of analog signals (Eldar, 2011)

m Splines and approximation theory

m [ splines (Fisher-Jerome, 1975)
m Locally-adaptive regression splines (Mammen-van de Geer, 1997)
m Generalized TV (Steidl et al. 2005; Bredies et al. 2010)

m Statistical modeling

m Sparse stochastic processes (Unser et al. 2011-2014)
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Geometry of I> vs. /1 minimization

m Prototypical inverse problem

min { |y — Hx|[7, + A[x|Z,} « min|x]|, subjectto |y —Hx|7, <o’

min {|ly — Hx|7, + Mlx[le, } < min|x/, subjectto [y —Hx]7, < o”

y1 =hix
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“Geometry” of L> vs. TV minimization

m Prototypical inverse problem

min {|ly — H{s}|[7, + A[L{s}[|7,} <« min|L{s}|7, subjectto |y — H{s}|7, < o”

min {[ly — H{s}3, + A[L{s}lrv} & min|[L{s}|zv subjectto [y — H{s}, < o?

To % y1 = (h1, )
A L*L-splines with M fixed knots
/ / (H: pure sampling operator)

T

L-splines with few adaptive knots

(H: can be arbitrary)
22




Splines are analog and intrinsically sparse

L{-}: admissible differential operator
§(- — xo): Dirac impulse shifted by ¢y € R?

Definition
The function s : R? — R is a (non-uniform) L-spline with knots (x;)X_, if
K
L{s} = Z ard(- — k) =ws : spline’s innovation
k=1
I d
Spline theory: (Schultz-Varga, 1967 = 3.
p y: ( g ) w1 dzx
Lk Th+1

m FRI signal processing: Innovation variables (2/K) (Vetterli et al., 2002)
= Location of singularities (knots) : {zx }*_,

m Strength of singularities (linear weights): {ak}le
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Spline synthesis: example

d
L=D-= i Null space: ANp =span{p1}, pi(z)=1

pp(z) = D™} (x) = 14 (x): Heaviside function

T ws(x) = Zaké(a: — Tk)
k

1 0\ z

1 **

r s(x) =bipi(x) + Zakﬂ+(a: — 1)
k

o}
Y 1

\V&
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Spline synthesis: generalization

L: spline admissible operator (LSI)
pL(z) = L71{d}: Green’s function of L

Finite-dimensional null space: A;, = span{p,}.2,

Spline’s innovation: ws(x) = Z ard(x — xk)
k

No
= s@ =Y a@ -+ S bupa(®)
k n=1

\

A

a11

"H

Requires specification of boundary conditions

25

Principled operator-based approach

m Biorthogonal basis of NV;, = span{p,}°,

[ ] ¢ — (¢17 “ e 7¢NO> SUCh that <¢m,pn> — 6m7n
No
= Projection operator: p = Y (¢, p)pn  forallp € AL,

n=1
m Operator-based spline synthesis

= Boundary conditions: (s, ¢,) =b,, n=1,---, Ny

= Spline’s innovation: L{s} = ws = Zaké(- —xy)
k

s(2) = Ly {ws} () + Y bupu(®)

m Existence of L;l as a stable right-inverse of L ? (see Theorem 1)

n LL;lw =w
" (,b(L(;lw) =0
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From Dirac impulses to Borel measures

S (Rd): Schwartz’s space of smooth and rapidly decaying test functions on R¢

S’(R%): Schwartz’s space of tempered distributions

m Space of real-valued, countably additive Borel measures on R?

M(RY) = (CO(Rd))’ ={weS'RY: |w|m= ES(REW ” :l(w,go) < oo},

where w : ¢ = (w, @) = [pa @(r)w(r)dr

m Equivalent definition of “total variation” norm

|w|m = sup (w, )
0ECH(RD): [l gl =1

m Basic inclusions

= 0(- — x) € M(R?) with ||§(- — x0)||pm = 1 for any xg € R?
= [1fllae = fllz, ge forall f € Li(RY) = Li(R?) € M(R?)
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Optimality result for Dirac measures

= F: linear continuous map M(R%) — RM
= C: convex compact subset of RM

s Generic constrained TV minimization problem

VY =ar min w
gwEM(Rd) : F(w)ec H ”M

Generalized Fisher-Jerome theorem
The solution set V is a convex, weak+-compact subset of M (R9) with
extremal points of the form

K
ws = Za;ﬁ( — in)
k=1

- d
with K* < M and z, € R?. (U.-Fageot-Ward, ArXiv 2016)

Jerome-Fisher, 1975: Compact domain & scalar intervals
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General convex problems with gTV regularization

My(R?) = {5:gTV(s) = [[L{s}|m = ” S”up<1<L{8}790> < oo}

= Linear measurement operator My, (R?) — RM : f s z = H{f}

= C: convex compact subset of RM

= Finite-dimensional null space N1, = {q € My (R?) : L{g} = 0} with basis {p, }°,
Admissibility of regularization: H{q1} = H{g2} & q1 = ¢2 forall g1,¢2 € Ny,

Representer theorem for gTV regularization
The extremal points of the constrained minimization problem

V= i L t H eC
arg _min IL{f e s {f}

K No
are necessarily of the form f(x) = Z arpL(x — xk) + Z bppn () with K <
k=1 n=1

M — Ny; that is, non-uniform L-splines with knots at the =, and ||[L{f}||m =
> k—1 |ax|. The full solution set is the convex hull of those extremal points.

(U.-Fageot-Ward, ArXiv 2016) 30




Enabling components for proof of the theorem

31

Existence of stable right-inverse operator

Loong(RY) = {f : R? = R: sup (|f(2)|(1+[lz]))~") < +oo}

xzeRd

Theorem 1 (U.-Fageot-Ward, ArXiv 2016)
Let L be a spline-admissible operator with a Ny-dimensional null space N1, C Log 1, (RY)

such that p = Zf:[il(p, &n)pn for all p € Np,. Then, there exists a unique and sta-
ble operator L' : M(R?) — Lo n,(R?) such that, for all w € M(R?),

e Right-inverse property: LL,'w = w,
e Boundary conditions: ¢(L,'w) = 0 with ¢ = (¢1,- - , ).

lts generalized impulse response g4 (x,y) = L;l{é(- — y) }H(x) is given by

el = sl =)= el

with pr, such that L{pr,} = § and ¢, (y) = (¢n, pr.(- — ¥)).
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Characterization of generalized Beppo-Levi spaces

= Regularization operator L : Mp,(R%) — M(R?)
feMLRY) & gTV(f)=|[L{f}|m < oo

Theorem 2 (U.-Fageot-Ward, ArXiv 2016)
Let L be a spline-admissible operator that admits a stable right-inverse L;l of the

form specified by Theorem 1. Then, any f € Mz (R%) has a unique representation
as

f=Lzlw+p,

where w = L{f} € M(R¥) and p = 3™ (¢, f)ps € N1, with ¢, € (M, (R?))".
Moreover, M, (R?) is a Banach space equipped with the norm

1fllL,e = ILFlla + ld(f) 2
= Generalized Beppo-Levi space: My, (R?) = My, 4(R?) & N,
Myg([R?) = {f € ML(R?): ¢(f) = 0}
M. = {p € M (RY) : L{p} = 0}
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Example: Convex problem with TV regularization

L=D= - Np =span{p:1}, pi(z)=1
x

pp(z) = 14 (x): Heaviside function
m General linear-inverse problem with TV regularization

semin ID{s}|lp st H{s} = ((h1,s), -, (har,s)) € C(y)

m Generic form of the solution (by Theorem 4)

A

K

s(x) = by +Zak]1+(aﬁ—xk) a1
— it I

no penalty

with K < M and free parameters b; and (a, )5,

34




SUMMARY: Sparsity in infinite dimensions

= Discrete-domain formulation
Contrasting behavior of /; vs. > regularization
Minimization of /; favors sparse solutions (independently of sensing matrix)

= Continuous-domain formulation se X
Linear measurement model S 7 — H{s}
Linear signal model: PDE Ls=w = s=L 1w
L-splines = signals with “sparsest” innovation gTV(s) = ||Ls||m

= Deterministic optimality result
gTV regularization: favors “sparse” innovations
Non-uniform L-splines: universal solutions of linear inverse problems
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Link with “Total variation” of Rudin-Osher

& “Total variation of function” # “total variation of a measure”

m Total variation in 1D: TV(f) = sup|,.<1(Df, ) = [[Df]lm

= perfect equivalence
(with L=D)

m Usual total variation in 2D:  TV(f) = sup|,_<1(V f, ¥)

Problem: V = (9, 0,) is not a scalar operator

L version of the 2D total variation:

1 [ .
TV(f) = /2 |V f(z,y)|dzdy, = Z/ D, fllre 6 = angular averaging
R 0 (rotation invariance)

Dy, f = (up, Vf): directional derivative of f along up = (cos,sin @)

Present theory explains the regularisation effect of | D.,, f || m
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