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Abstract

Recently there has been a surge of interest in sampling theory in signal process-

ing community. New efficient sampling techniques have been developed that allow

sampling and perfectly reconstructing some classes of non-bandlimited signals at

sub-Nyquist rates. Depending on the setup used and reconstruction method in-

volved, these schemes go under different names such as compressed sensing (CS),

compressive sampling or sampling signals with finite rate of innovation (FRI).

In this thesis we focus on the theory of sampling non-bandlimited signals

with parametric structure or specifically signals with finite rate of innovation. Most

of the theory on sampling FRI signals is based on a single acquisition device with

one-dimensional (1-D) signals. In this thesis, we extend these results to the case of

2-D signals and multichannel acquisition systems. The essential issue in multichan-

nel systems is that while each channel receives the input signal, it may introduce

different unknown delays, gains or affine transformations which need to be estimated

from the samples together with the signal itself. We pose both the calibration of

the channels and the signal reconstruction stage as a parametric estimation problem

and demonstrate that a simultaneous exact synchronization of the channels and re-

construction of the FRI signal is possible. Furthermore, because in practice perfect

noise-free channels do not exist, we consider the case of noisy measurements and

show that by considering Cramér-Rao bounds as well as numerical simulations, the

multichannel systems are more resilient to noise than the single-channel ones.

Finally, we consider the problem of system identification based on the multi-
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channel and finite rate of innovation sampling techniques. First, by employing our

multichannel sampling setup, we propose a novel algorithm for system identification

problem with known input signal, that is for the case when both the input signal and

the samples are known. Then we consider the problem of blind system identification

and propose a novel algorithm for simultaneously estimating the input FRI signal

and also the unknown system using an iterative algorithm.
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Chapter 1

Introduction

1.1 Background

Real world signals such as for example communication signals, audio signals and

video signals are all analog signals; signals that are continuous in time and ampli-

tude. In order to process such signals, we need to convert them in discrete form.

The process in which a continuous-time signal g(x) is represented by a discrete set

of values or samples g[k], where k ∈ Z, is called “Sampling” in signal processing.

The process of sampling plays a fundamental role in modern signal processing and

communications where it is employed in majority of signal processing related ap-

plications such as computers, mobile phones, MP3 players, satellite receivers, radar

communications, complex telescopes and many more.

A typical sampling setup often used in practice is described by a pre-filtering

module together with a sampling device. The sampling device observes a filtered

version of the input analog signal g(x), where the filter h(x) is an antialiasing filter

or a sampling kernel. Depending on the application, the samples are taken at pre-

defined intervals where if the samples are taken at equal time instances, that is,

g[k] = g(kT ) for every T seconds, then the signal is uniformly sampled. When
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the samples are not taken at equal time instances but at arbitrary points, then we

call this form of sampling, non-uniform [51]. Considering that the sampling devices

takes uniform samples from the observed signal, the samples g[k] will be given by:

g[k] = gs(kT )

= g(x) ∗ h(x)|x=kT ,

where gs(x) is the filtered signal observed by the sampling device and ∗ denotes

the convolution operator. Given the samples, the fundamental questions of inter-

est for such a process are, 1) Under what conditions signal g(x) is perfectly and

uniquely recovered from the set of samples g[k] and 2) What are the methods of

reconstruction?

The classical yet powerful answer to these key questions was given by Whit-

taker [85], Kotel’nikov [39, 40], and Shannon [67], in a well-known sampling theo-

rem1, which states that any bandlimited continuous-time signal g(x) can be perfectly

reconstructed from its samples, if the sampling rate is chosen to be equal or greater

than twice the maximum non-zero frequency of the signal2. If this condition is met,

then the reconstruction of the bandlimited signal from its samples can be obtained

with a sinc interpolation function.

This extremely fruitful result however, has two major drawbacks. First, real

world signals are never exactly bandlimited and second, an ideal sinc interpolation

function is physically not implementable. Thus, different approximations need to

be taken into account for such a sampling scheme to be used in practice [74, 37,

76]. These limitations have led researchers to re-examine some of the core ideas

of the classical sampling theory and take it further into more advanced sampling

techniques, including extensions to a larger class of signals that are not necessarily

1From here on, we will be referring to the theorem as Shannon’s sampling theory.
2This is also referred to as Nyquist rate [56].
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bandlimited.

Recently in [25, 17, 84], it has been shown that it is possible to sample and

perfectly reconstruct some classes of non-bandlimited signals. In these schemes, the

prior that the signal is sparse in a basis or in a parametric space is taken into account

and perfect reconstruction is achieved based on a set of suitable measurements.

Depending on the setup used and reconstruction method involved, these sampling

methods go under different names such as compressed sensing (CS), compressive

sampling [25, 17, 10] or sampling signals with finite rate of innovation (FRI) [84, 52,

27].

Signals with finite rate of innovation, first introduced by Vetterli et al. in [84],

are parametric non-bandlimited signals that posses a finite number of parameters

per unit of time or, as mentioned in [84], they posses a finite number of degrees of

freedom per unit of time. Some examples of FRI signals include streams of Diracs,

piecewise-polynomial [84, 27] and piecewise-sinusoidal signals [11]. The reconstruc-

tion of these FRI signals is based on the annihilating filter method (also known

as Prony’s method [70]). More recently, the extensions to the sampling of multi-

dimensional FRI signals have been considered in [48, 47] and [69] where sampling

schemes for 2-D FRI signals, such as set of 2-D Diracs and bi-level polygons have

been presented. In-depth discussions of sampling 2-D FRI signals can be found in

[46] and [68].

The core idea behind the sampling theory of FRI signals can be thought of an

estimation problem where by recovering the degrees of freedom of the signal from

its samples, the original signal can be perfectly recovered. The sampling theory

introduced in [84], assumes a prior knowledge of the acquisition device employed,

i.e. its sampling kernel. The sampling kernels considered in [84], are infinite-support

kernels, however, it has been shown in [27] that many 1-D FRI signals with local

finite rate of innovation can be sampled and perfectly reconstructed using a wide
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range of sampling kernels that have finite support. Such kernels have the property

of reproducing polynomials or exponentials and deliver practical implementation of

the same sampling and retrieval techniques used in [84].

1.2 Motivation and Problem Statement

The process of sampling has allowed us to manipulate, store and transmit vast

amount of data with increasing convenience. However, in data-intensive and/or

power-limited applications such as sensor networks, the information contained is

normally far less than the data observed, therefore, efficient sampling techniques

is vital and necessary in such applications. Sparse sampling theories [25, 17, 84]

are considered to be in the category of efficient sampling techniques as they allow

sub-Nyquist sampling rates while achieving perfect retrieval of the observed signal.

However, most of the papers on sparse sampling and in particular FRI sampling

focus on a single-channel acquisition model and this normally requires expensive

acquisition devices working at high sampling rates. On the contrary, multichannel

sampling allows a reduction in the complexity of the acquisition device while keeping

higher rates of conversion. For example, modern and fast Analogue-to-Digital Con-

verters (ADC) use a parallel array of lower-rate ADCs working in a time-interleaved

fashion [12]. Sensor networks and acquisition of images in a multi-camera system

are other examples of multichannel systems where highly efficient sampling schemes

are of interest. Therefore, given the practical importance of multichannel acquisi-

tion devices, it is natural to investigate extensions of sparse sampling theories to the

multichannel scenario.

In this thesis we present a possible extension of the theory of sampling sig-

nals with finite rate of innovation to the case of multichannel acquisition systems.

The critical issue in our proposed multichannel sampling setup, shown in Figure
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Figure 1.1: The proposed multichannel sampling setup.

1.1, is the precise synchronization of the various channels, since different devices

introduce different drifts and gains in 1-D and geometric transformations such as

affine transformation in 2-D, within each channel. For the signal reconstruction,

these parameters need to be estimated in advance, which we refer to as the channel

synchronization stage.

In this thesis we consider the multichannel sampling of FRI signals and extend

the results in [27] to this new scenario. Furthermore, we also consider multichannel

sampling of FRI signals under the presence of noise and assume that the samples are

corrupted by white Gaussian noise. By evaluating the Cramér-Rao bounds (CRB)

and taking numerical simulations into account, we asses the resilience to noise of

multichannel sampling systems compared to single-channel ones.

Multichannel sampling was first proposed by Papoulis in 1977 in the context

of bandlimited signals [58] and extended by Unser et al. [80, 81] for signals lying

in shift-invariant subspaces. A further extension related to union of shift-invariant

subspaces has been recently considered in [28]. The multichannel sampling of FRI

signals has been considered in [43], [57] and [66], but in all cases the channel syn-

chronization problem nor the channel noise was addressed.

Also in this thesis, we consider the problem of system identification based

on multichannel and finite rate of innovation sampling techniques. First, by em-
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ploying our multichannel sampling setup, we propose a novel algorithm for system

identification problem with known input signal, that is for the case when both the

input signal and the samples are known. Then we consider the problem of blind

system identification and propose a novel algorithm for simultaneously estimating

the unknown system as well as the input FRI signal using an iterative algorithm.

1.3 Organization of the Thesis

The organization of this thesis is as follows:

In Chapter 2, we provide a background on FRI sampling theory where we

present and discuss the different elements of the sampling setup used for sampling

1-D FRI signals, including the sampling kernels and the reconstruction methods

involved. In this chapter, we also consider the case of noisy measurements and

discuss the common methods and tools involved for retrieving FRI signals from

noisy samples.

In Chapter 3, we present a possible extension of sampling 1-D FRI signals

to the case of multichannel sampling. In this chapter, by considering both the syn-

chronization stage and the signal reconstruction stage as a parametric estimation

problem, we propose our novel algorithm for multichannel sampling of FRI signals

and demonstrate that it is possible to estimate simultaneously the channel param-

eters (i.e., delays and gains) and the signal itself from the measured samples. Then

we consider the noisy scenario and assume that the noise samples are corrupted by

additive white Gaussian noise. By evaluating the Cramér-Rao bounds and taking

numerical simulations into account, we asses the resilience to noise of multichannel

sampling systems compared to single-channel ones.

In Chapter 4, we propose our novel algorithms for system identification based

on the theories of FRI sampling. The novelty of this chapter is divided into two
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sections; first, by employing the multichannel sampling setup presented in Chapter

3, we propose a novel algorithm for system identification problem with known input

signal. Then we consider the problem of blind system identification where by blind

we mean that only the output samples are given and the input signal is not known.

We will propose a novel algorithm for simultaneously estimating the input FRI signal

and also the unknown system using an iterative algorithm.

In Chapter 5, we consider the problem of multichannel sampling of multi-

dimensional FRI signals. In this chapter, we first introduce the multidimensional

sampling framework for FRI signals which include the definition of 2-D FRI signals,

sampling setup used and the properties of the sampling kernels involved. We then

introduce our novel algorithms for sampling and perfectly reconstructing set of 2-D

Diracs and bi-level polygons using exponential splines. Finally, we will extend the

multichannel sampling setup presented in Chapter 3, to the case of multichannel

sampling of 2-D FRI signals and present our novel algorithm for signal and channel

estimation under simple 2-D translations and also affine transformations.

We finally conclude in Chapter 6, and present some ideas and remarks for

future works.

1.4 Original Contribution

The main contribution of this thesis is the extension of finite rate of innovation

sampling to the case of multichannel sampling along with channel synchronization,

both in 1-D and 2-D. Furthermore, as the channel synchronization stage could be

thought of a system identification problem, we also consider the problem of system

identification based on FRI sampling techniques and propose a novel algorithm for

identifying unknown systems by employing a FRI sampling setup.

To the best of our knowledge, Chapters 3, 4 and 5 contain original research
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work where these contributions have led to the following publications:

• H. Akhondi Asl and P.L. Dragotti. Simultaneous Estimation of Sparse

Signals and Systems at sub-Nyquist Rates. To appear in the 19th Eu-

ropean Signal Processing Conference (EUSIPCO11), Barcelona, Spain, 2011.

• H. Akhondi Asl and P.L. Dragotti. Multichannel Sampling of Multidi-

mensional Parametric Signals. To appear in the special issue of Sampling

Theory in Signal and Image Processing Journal, 2011.

• H. Akhondi Asl and P.L. Dragotti and L. Baboulaz. Multichannel Sam-

pling of Signals with Finite Rate of Innovation. IEEE Signal Processing

Letters, vol.17, no.8, pp.762-765, August 2010.

• H. Akhondi Asl and P.L. Dragotti. Multichannel Sampling of Translated,

Rotated and Scaled Bi-level Polygons using Exponential Splines. 8th

International Conference on Sampling Theory and Applications (SAMPTA09),

Marseille, France, May 2009.

• H. Akhondi Asl and P.L. Dragotti. Single and Multichannel Sampling

of Bi-level Polygons using Exponential Splines. IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP09), Taipei,

Taiwan, April 2009.

• H. Akhondi Asl and P.L. Dragotti. A Sampling Theorem For Bi-level

Polygons using E-Splines, 8th International Conference on Mathematics

in Signal Processing (IMA08), Royal Agriculture College, Cirencester, UK,

December 2008.
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Chapter 2

Finite Rate of Innovation

Sampling Theory

2.1 Introduction

In 2002, Vetterli et al. [84] introduced the notion of signals with finite rate of

innovation. In their work, they showed that it is possible to sample and perfectly

reconstruct some classes of signals that are neither bandlimited nor belong to a fixed

subspace. Signals that can be reconstructed using this framework are called signals

with finite rate of innovation (FRI) as they can be completely defined by a finite

number of parameters per unit of time.

Since its introduction in 2002, finite rate of innovation sampling is finding

more and more applications, for example, for compression of ECG signals [31], res-

olution enhancement [27, 52], distributed compression [30, 18], synchronization and

channel estimation for ultra-wideband signals [46, 50, 42], ADC converters [38] and

image super-resolution [7, 8, 9].

In this chapter we provide a background on finite rate of innovation sampling

theory which is the core foundation of this thesis. The organization of this chapter
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is as follows: In Section 2.2 we start by presenting a mathematical definition for 1-D

FRI signals. Then, the different elements of the sampling setup used for sampling

1-D FRI signals, including the sampling kernels and the reconstruction methods

involved will be presented and fully discussed. In Section 2.4, we will consider

the case of noisy scenario and present and discuss the common methods and tools

involved for retrieving FRI signals from noisy samples. We will finally conclude with

a summary at the end of this chapter.

2.2 Finite Rate of Innovation Sampling Frame-

work

2.2.1 Signals with Finite Rate of Innovation

Let us consider a 1-D signal of the form [27]:

g(x) =
N∑

r=0

∑

j∈Z

γj,r φr(x− xj). (2.1)

The degrees of freedom of the signal g(x) are the shifts xj and the coefficients γj,r,

assuming that the set of functions φr(x) are known. If we introduce a counting

function Cg(xa, xb) which counts the number of free parameters of g(x) over the

interval L = [xa, xb], then the rate of innovation ρ of the signal g(x) is defined as:

ρ = lim
L→∞

1

L
Cg(−L/2, L/2). (2.2)

If ρ is finite, then the signal is said to have a finite rate of innovation. It is important

to note that all shift-invariant signals, including bandlimited signals can be defined

with the above definition. The rate of innovation of real-valued bandlimited signals

is: ρ = 2× fmax where fmax is the maximum frequency of the bandlimited signal.
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2.2.2 Sampling Setup

Figure 2.1 shows the typical sampling setup employed for 1-D FRI signals where

g(x) represents the input 1-D FRI signal, h(x) the impulse response of the acquisi-

tion device, φ(x) a re-scaled and time-reversed version of h(x) (also known as the

sampling kernel), gs(x) the sampled version of the input signal, sk the samples and T

the sampling interval. The box C/D (continuous-to-discrete) reads out the sample

values sk from gs(x). From the setup shown in Figure 2.1, the following expression

Figure 2.1: A typical sampling setup for 1-D FRI signals. Here, g(x) is the
continuous-time input signal, h(x) the impulse response of the acquisition de-
vice, φ(x) the sampling kernel and T the sampling period. The measured
samples are sk = 〈g(x), φ(x/T − k)〉.

for the samples sk can be deduced:

sk = g(x) ∗ h(x)|x=kT

=

∫ ∞

−∞

g(x) φ(
x

T
− k) dx

= 〈g(x), φ(x
T

− k)〉.

(2.3)

Having achieved the samples from the setup described above, we want to see under

what conditions perfect reconstruction of the signal g(x) can be obtained from the

samples sk. This includes the type of sampling kernels that can be employed and

also the reconstruction techniques that are required. The answers to these questions

are discussed in detail in the subsequent subsections.
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2.2.3 Sampling Kernels

Sampling kernels are characterized by the physical properties of the acquisition

device which are normally specified and cannot be modified. Unlike the classical

sampling schemes, FRI sampling schemes provide a larger choice of kernels that

allow perfect reconstruction of the input signal. The sampling kernels considered

in [84] are the sinc and the Gaussian kernels. Such kernels have an infinite support

and are therefore not physically realizable. Moreover, the use of such kernels make

the reconstruction algorithm unstable. Dragotti et al. [27] showed that FRI signals

with local finite rate of innovation can be sampled and reconstructed using a wide

range of sampling kernels that have finite support. Such kernels have the property

of reproducing polynomials or exponentials and deliver practical implementation of

the same sampling and retrieval techniques used in [84] for 1-D FRI signals.

In this thesis, we will focus on polynomial and exponential reproducing ker-

nels and in particular exponential splines (E-splines) [79, 75], splines that can repro-

duce real or complex exponentials. E-splines are compact support splines that are

practically implementable (using RC circuits for example [27]) and our simulation

results show that they tend to be more stable than other kernels.

Polynomial Reproducing Kernels

Any kernel φ(x) that together with its shifted versions can reproduce polynomials

of maximum degreeM is called a polynomial reproducing kernel. That is any kernel

satisfying the following property:

∑

k∈Z

cm,kφ(x− k) = xm, (2.4)

for a proper choice of coefficients cm,k with m = 0, 1, . . . ,M . Here, the subscript k

represents the shifts index and the superscript m represents the polynomial degree.
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The choice of M depends on the local rate of innovation of the signal g(x) and will

be discussed later on. Furthermore, the coefficients cm,k can be calculated as follows:

cm,k =

∫ ∞

−∞

xmφ̃(x− k) dx, (2.5)

where φ̃(x) is chosen to form with φ(x) a quasi-biorthonormal set [15]. This includes

the particular case where φ̃(x) is the dual of φ(x), that is, 〈φ̃(x−j), φ(x−k)〉 = δj,k.

We should mention that, given the specified kernel and the required polynomial

degree, the coefficients can also be calculated numerically.

Polynomial reproducing kernels include any function satisfying the so-called

Strang-Fix conditions [71] which states that, the kernel φ(x) satisfies Equation (2.4)

if and only if its Fourier transform φ̂(jω) satisfies:





φ̂(0) 6= 0 and,

φ̂(m)(2kπ) = 0 for k 6= 0 and m = 0, 1, . . . ,M,

(2.6)

where the superscript (m) stands for the m-th order derivative of φ̂(jω). B-splines

[77, 78, 73] are one of the most well-known examples of kernels satisfying the Strang-

Fix conditions. A function β(x) with Fourier transform:

β̂M(jω) =
M∏

m=0

1− e−jω

jω
, (2.7)

is called a B-spline of order M + 1. The resulting spline has compact support and

can reproduce any polynomial in the subspace spanned by {1, x, x2, . . . , xM}. In the

time-domain, the expression of a B-spline of order 1 is given as follows:

β0(x) =





1 0 ≤ x < 1

0 otherwise,

(2.8)
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and the higher order B-spline functions are obtained by successive convolutions of

the first order B-spline, defined above. B-splines are biorthogonal functions and

their dual basis is defined in [65]. Figures 2.2(a)(b)(c) and (d) show B-splines of

order 1, 2, 3 and 4 respectively.

(a) (b)

(c) (d)

Figure 2.2: B-splines of orders 1, 2, 3 and 4. (a) B-spline of order 1 (b) B-spline
of order 2 (c) B-spline of order 3 (d) B-spline of order 4.

Strang-Fix conditions are also used extensively in wavelet theory and

Daubechies scaling functions satisfy such conditions [20, 83]. More precisely, a

wavelet with M + 1 vanishing moments is generated by a scaling function that can

reproduce polynomials of degree M . Daubechies scaling functions are orthogonal

functions, and their dual basis is: φ̃(x) = φ(x).
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Exponential Reproducing Kernels

Any kernel φ(x) that together with its shifted versions can reproduce real or com-

plex exponentials of the form eαmx with m = 0, 1, . . . ,M is called an exponential

reproducing kernel. That is any kernel satisfying the following property:

∑

k∈Z

cm,kφ(x− k) = eαmx, with αm ∈ C, (2.9)

for a proper choice of coefficients cm,k ∈ C. The coefficients cm,k in the above

equation are given by the following expression:

cm,k =

∫ ∞

−∞

eαmxφ̃(x− k)dx, (2.10)

where, as in the polynomial reproducing kernel’s case, φ̃(x) is chosen to form with

φ(x) a quasi-biorthonormal set. The choice of the exponents in Equation (2.9) is

restricted to αm = α0 + mλ with α0, λ ∈ C and m = 0, 1, ...,M . This is done to

allow the use of the annihilating filter method at the reconstruction stage. This fact

will be more evident when the reconstruction methods are described later on.

The theory of exponential reproducing kernels is quite recent and is based on

the notion of E-splines [79]. A function β~α(x) with Fourier transform:

β̂~α(jω) =

M∏

m=0

1− eαm−jω

jω − αm

, (2.11)

is called an E-spline of orderM+1 where ~α = (α0, α1, . . . , αM). The produced spline

has compact support and can reproduce any exponential in the subspace spanned

by (eα0x, eα1x, . . . , eαMx). Moreover, the values of α0 and λ can be chosen arbitrarily,

but too small or too large values could lead to unstable results for the reproduction

of exponentials. In the time-domain, the expression of an E-spline of order one is



2.3 Reconstruction Algorithms 40

given by:

βα0(x) =





eα0x 0 ≤ x < 1

0 otherwise,

(2.12)

where the higher order E-splines are obtained by successive convolutions of lower

order ones with their specific αm parameters. Moreover, since the exponen-

tial reproduction formula is preserved through convolution [79], any composite

function of the form φ(x) ∗ β~α(x) is also able to reproduce exponentials. Fig-

ure 2.3 shows E-splines of order 1, 2, 3 and 4 with the following αm values:

α0:3 = [−0.2 + 0.3j,−0.1 + 0.1j, 0.5, 0.2 − 0.1j]. In the figure, the blue and the

red lines show the real and imaginary parts of the E-splines respectively.

2.3 Reconstruction Algorithms

Having gone through the sampling stage, we will now discuss the reconstruction

process of 1-D FRI signals. For most 1-D FRI signals, the problem of reconstructing

the signal g(x) is reduced to the problem of reconstructing a set of 1-D Diracs.

For example, in [84] it is shown that the problem of reconstructing non-uniform

splines can be reduced to the problem of reconstructing stream of 1-D Diracs. Also,

in the case of piecewise polynomials, the reconstruction procedure is reduced to

reconstructing a sum of derivatives of Diracs. For this reason we concentrate on

stream of Diracs only.

Let us assume our input signal g(x) consists of K Diracs, with amplitudes ak

located at distinct instants xk ∈ [0, L[, that is:

g(x) =
K∑

k=1

akδ(x− xk). (2.13)

The signal is sampled using the sampling setup shown in Figure 2.1 with a sampling
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(a) (b)

(c) (d)

Figure 2.3: E-splines of orders 1, 2, 3 and 4. (a) E-spline of order 1 with α0 =
−0.2+0.3j (b) E-spline of order 2 with α0:1 = [−0.2+0.3j,−0.1+0.1j] (c) E-spline
of order 3 with α0:2 = [−0.2 + 0.3j,−0.1 + 0.1j, 0.5] (d) E-spline of order 4 with
α0:3 = [−0.2+0.3j,−0.1+0.1j, 0.5, 0.2− 0.1j]. The blue and red lines show the real
and imaginary parts of the E-splines respectively.

kernel φ(x). Furthermore, we assume the sampling period is T = L/N whereN is the

number of samples. Consequently, the samples sk are given by: sk = 〈g(x), φ(x/T −

k)〉. In [84] and [27], it is shown that such a stream of Diracs can be perfectly

reconstructed using sinc, Gaussian, polynomial and exponential reproducing kernels.

As we mainly focus on polynomial and exponential reproducing kernels in this thesis,
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let us consider the following weighted sum of the samples:

τm =
∑

k

cm,ksk. (2.14)

Substituting Equation (5.4) into the above equation, yields (for simplicity we have

assumed T = 1):

τm = 〈g(x),
∑

k

cm,kφ(x− k)〉, (2.15)

where we have used the linearity of the inner product to move the sum operator

inside the inner product. The second term in the inner product can be replaced

by one of the equations defined in (2.4) or (2.9) depending on the sampling kernel

used. If polynomial reproducing kernels are employed, then from Equation (2.15),

the polynomial moments of the signal are obtained:

τm =

∫ ∞

−∞

g(x) xm dx. (2.16)

Given that our input signal is a set of K 1-D Diracs, measurements τm will lead to

a power-sum series form, that is:

τm =

∫ ∞

−∞

g(x) xm dx (2.17)

=

∫ ∞

−∞

K∑

k=1

ak δ(x− xk) x
m dx (2.18)

=
K∑

k=1

ak x
m
k , m = 0, 1, . . . ,M. (2.19)

Likewise, if exponential reproducing kernels are employed as the sampling kernel,
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then the exponential moments of the signal are obtained, that is:

τm =

∫ ∞

−∞

g(x) eαmx dx (2.20)

=

∫ ∞

−∞

K∑

k=1

ak δ(x− xk) e
αmx dx (2.21)

=

K∑

k=1

ak e
αmxk (2.22)

=
K∑

k=1

âk u
m
k , m = 0, 1, . . . ,M, (2.23)

where âk = ake
α0xk and uk = eλxk . In the case of purely imaginary E-splines, that is

with αm = jmλ, the Fourier transform of the signal g(x) at αm are obtained from

the exponential moments, that is:

τm = ĝ(αm),

where ĝ(jω) represents the Fourier transform of the signal g(x).

For both cases explained above, the given expressions for polynomial and

exponential reproducing kernels leads to a power-sum series structure in the form:

τm =

K∑

k=1

ak u
m
k , m = 0, 1, . . . ,M. (2.24)

In 1795 Prony showed that the unknown parameters ak and uk can be exactly

recovered, provided that the number of measurements τm is at least 2K. Prony’s

method, also referred as the annihilating filter method in [84, 27], is a widely used

technique in spectral estimation [70, 55] and error-correction coding [13]. In the

following subsection, the annihilating filter method will be discussed and explained.
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Annihilating Filter Method

The field of spectral estimation, which is related to estimating frequency contents

of a signal, has a vast range of applications in signal processing. Although there

are many spectral estimation methods available, most of them suffer from resolution

inaccuracy and large amount of computational burden. Subspace spectral estimation

methods are generally more efficient than the classical methods [70, 41, 60]. The

well-known methods such as ESPRIT [61] (Estimation of Signal Parameters via

Rotational Invariance Techniques) and MUSIC [64] (MULtiple Signal Classification)

are examples of subspace spectral estimation methods for one dimensional signals

where matrix decomposition techniques are used to estimate unknown parameters

such as amplitude, phase and frequency (see [60] for a detailed tutorial). In this

section we will explain the annihilating filter method, which is the most popular

estimation method in the FRI sampling community.

Let us define a filter hm with m = 0, 1, . . . , K, such that the locations uk are

the roots of the filter. The z-transform of such a filter is:

H(z) =
K∑

m=0

hmz
−m =

K∏

k=1

(1− ukz
−1). (2.25)

The observed signal τm convolved with the filter defined above, results in:

hm ∗ τm =
K∑

i=0

hi τm−i

=
K∑

i=0

K∑

k=1

ak hi u
m−i
k

=

K∑

k=1

ak u
m
k

K∑

i=0

hi u
−i
k

︸ ︷︷ ︸
=0

,

The under-braced term in the set of equations above equals to zero, as H(uk) = 0,
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thus:

hm ∗ τm = 0. (2.26)

The filter H(z) is called the annihilating filter as it annihilates the observed signal

τm. The zeros of such a filter uniquely define the distinct locations uk. To retrieve

the locations, the convolution equation is written in the following matrix form:

τ ·H =




τK τK−1 · · · τ0

τK+1 τK · · · τ1
...

...
. . .

...

τ2K τ2K−1 · · · τK
...

...
. . .

...

τM τM−1 · · · τM−K




×




h0

h1
...

hK



= 0, (2.27)

where τ is a Toeplitz matrix of size (M −K +1)× (K +1), H is a column vector of

length K + 1 and M ≥ 2K − 1 as at least 2K consecutive values of τm are required

in order to solve the matrix equation shown above. Notice that the above expression

indicates that the matrix is rank deficient. By assuming h0 = 1, it can be written

as a system of Yule-Walker equations:




τK−1 τK−2 · · · τ0

τK τK−1 · · · τ1
...

...
. . .

...

τM−1 τM−2 · · · τM−K



×




h1

h2
...

hK



= −




τK

τK+1

...

τM



, (2.28)

where by taking the inverse of the left-hand-side matrix we can solve for the coef-

ficients hm. Given the filter coefficients, the locations of the Diracs are found by

taking the roots of the filter. The system of equations above gives a unique solution

for uk since the filter coefficients hm are unique for a given signal. After finding the

locations uk, we are able to find the weights ak from the power-sum series expression
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given in Equation (2.24). By expanding the equation and writing it in the matrix

form, we obtain:




1 1 · · · 1

u1 u2 · · · uK

u21 u22 · · · u2K
...

...
. . .

...

uK−1
1 uK−1

2 · · · uK−1
K




×




a1

a2
...

aK



=




τ0

τ1
...

τK−1



. (2.29)

The above system of equations is also known as a Vandermonde system and leads

to a unique solution for the amplitudes ak since the uk are distinct. The modified

versions of the annihilating filter method can also be used for other 1-D FRI signals

such as differentiated Diracs [27], piecewise-polynomial signals [27] and piecewise-

sinusoidal signals [11].

Having discussed the annihilating filter method, we conclude that perfect

reconstruction of a stream of K Diracs is possible with any kernel able to reproduce

polynomials or exponentials. If g(x) has more than K Diracs or possibly an infinite

number of Diracs, we cannot use the above discussed method directly. However,

since the kernels considered have compact support, the above scheme can be applied

sequentially. More precisely, it was shown in [27] that if there are no more than K

Diracs in an interval of size L = 2KPT , where P denotes the support of the kernel

used, then we are guaranteed that two groups ofK consecutive Diracs are sufficiently

distant and that they are separated by some zero samples. By locating these zeros,

one can separate the two groups and apply the above reconstruction method on each

group independently. If g(x) has more than K Diracs in an interval of size 2KPT

then the only way to sample it is by increasing the sampling rate. In Chapter 3, we

show that this can be avoided by using a multichannel acquisition system. We will

now discuss the reconstruction of FRI signals in the presence of noise.
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Figure 2.4: FRI sampling setup with possible sources of noise in the entire
sampling process.

2.4 FRI Sampling in the Presence of Noise

The annihilating filter method, discussed in the previous section is ideal for the

noiseless case. However, when noise is present the described method can become

unstable. In this section our aim is to introduce more robust methods that yield

more accurate reconstruction in the presence of noise [49, 14, 84]. The sources of

noise could be both in the analog domain, for example in transmission, or in the

digital domain. Some examples of the sources of digital noise which are also known

as the sampling noise are the quantization process and the noise introduced by the

acquisition devices. Figure 2.4 shows the block diagram of the possible sources of

the noise.

In this thesis, we only consider the sampling noise, where noisy samples

measured at the output are:

ŝk = sk + ǫk, (2.30)

where ǫk is assumed to be additive white Gaussian (AWGN), independent of the

sample sk. Given the noisy samples, our goal is to recover the innovation parameters

of the input signal g(x). To achieve robustness to noise, however, there is no option

but to increase the sampling rate and obtain more samples. We will now discuss

some of the popular methods used for recovering FRI signals from noisy samples.
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2.4.1 Total Least-Squares Method

Given the noisy samples, the annihilating filter equation τ ·H = 0 will not be satisfied

exactly. However, as discussed in [14, 84, 59], a total least-squares approach can be

applied to reduce the effect of noise, by minimizing the Euclidean norm ||τ · H||2

under the constraint that ||H||2 = 1. This can be done by evaluating the singular-

value-decomposition (SVD) [55, 23] of the Toeplitz matrix τ = UΣVT , and choosing

the annihilating filter H to be the column vector of matrix V that corresponds to

the smallest singular value. As the matrix Σ is a diagonal matrix, containing the

singular value elements in a decreasing order, the last column vector of the matrix

V will correspond to the annihilating filter [14].

2.4.2 Matrix Pencil Method

Another popular subspace spectral estimation method is the matrix pencil method

[34, 35, 62] which makes use of Hankel matrices, singular-value-decomposition and

Eigen-value-decomposition (EVD) [55]. Matrix pencil method, tends to perform

well under noisy conditions and in our simulations it performs slightly better the

total least-squares method.

The estimation algorithm is as follows: As before, let us assume that we

have access to the measurements τm =
∑K

k=1 ak u
m
k , with unknown locations uk and

amplitudes ak. Then we arrange the measurements τm into a Hankel matrix H of

dimension M1 ×M2 as follows:

HM1×M2 =




τ0 τ1 . . . τM1−1

τ1 τ2 . . . τM1

...
...

. . .
...

τM2−1 τM2−2 . . . τM1+M2−2



, (2.31)
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where M1 ≥ K + 1, M2 ≥ K. As for the annihilating filter method, the number

of measurements of τm should be at least 2K in order to fully recover the unknown

parameters. The matrix H, with the arrangement shown, is a product of three

matrices: S, A and T where S and T are Vandermonde matrices of the locations

uk and A is a diagonal matrix containing the amplitudes ak. More precisely, the

Hankel matrix H can be written as:

H = SATT , (2.32)

with the following decomposition:

H =




1 1 . . . 1

u1 u2 . . . uK
...

...
. . .

...

uM1−1
1 uM1−1

2 . . . uM1−1
K







a1 0 . . . 0

0 a2 . . . 0

...
...

. . .
...

0 0 . . . aK







1 1 . . . 1

u1 u2 . . . uK
...

...
. . .

...

uM2−1
1 uM2−1

2 . . . uM2−1
K




T

.

(2.33)

The singular-value-decomposition decomposes a matrix into a product of three ma-

trices: U, Σ and V where UHU = I, VHV = I and Σ is a diagonal matrix

containing the singular values. Here, the superscript H stands for the Hermitian

transpose. If we take the SVD of the described Hankel matrix H, we obtain:

HM1×M2 = UM1×M1ΣM1×M2V
H
M2×M2

. (2.34)

In order to obtain the signal subspace, only the product of the first K columns of

the matrices U and V, and also the K ×K upper left matrix of Σ are taken into
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account, resulting in a truncated version of the original matrix H, that is:

HK = UKΣKV
H
K

= [U1 U2 . . . UK ]




Σ1 0 . . . 0

0 Σ2
... 0

... . . .
. . . 0

0 . . . 0 ΣK




[V1 V2 . . . VK ]
H .

Since the matrices S and UK span the same column space, the following relationship

holds true:

UK = SQ, (2.35)

where Q is a non-singular matrix of dimension K × K. We mentioned that the

matrices S and T have a Vandermonde structure. Vandermonde matrices satisfy

the “shift-invariant” subspace property which states that if S and S denote the

matrix S after omission of the first and the last row respectively, then the following

relationship is valid:

S = SΦ, (2.36)

where Φ = diag{u1, u2, . . . , uK}. Knowing that UK = SQ, we clearly have (true for

any matrix multiplication):

UK = SQ (2.37)

UK = SQ (2.38)

= SΦQ. (2.39)

Now let us consider the matrix pencil (UK ,UK) as follows:

UK − λUK = S(Φ− λI)Q, (2.40)
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where λ is called the rank reducing number. We can solve for uk by finding the

Eigen-values of the matrix pencil. The problem of finding the Eigen-values of a

matrix pencil is called the “Generalized Eigen-value problem”. Therefore, to obtain

the locations uk we construct the following matrix equation:

UK
−1.UK = Q−1ΦQ, (2.41)

where by taking the Eigen-value-decomposition, we obtain the matrix Φ which is a

diagonal matrix containing all the locations uk:

eig(UK
−1UK) = eig(Q−1ΦQ) = Φ. (2.42)

Moreover, since we have found the exact values of the locations uk, we can now

construct the matrices S and T to obtain the amplitudes ak, using the following

equation:

A = (S†)H(TT )†, (2.43)

where the dagger † stands for pseudo-inverse of the matrix.

2.4.3 Cadzow’s Algorithm

The total least-squares method and the matrix pencil method are reliable only for

moderate values of noise. In [14], an iterative denoising algorithm, known as Cad-

zow’s algorithm [16, 72] is introduced where, when applied before one of the methods

discussed above, yields more robust and reliable results.

In the noiseless case, the Toeplitz matrix τ , which is constructed from the

measurements τm, has rank K, equal to the number of Diracs in the input signal.

This is due to the fact that the annihilating filter H in τ · H = 0, has K + 1

coefficients. When the signal is corrupted by noise, this rank deficiency property
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is lost. However, by taking the SVD, we can assume that the K largest singular

values in τ = UΣVH correspond to the actual signal and the rest correspond to

the noise. To restore the rank deficiency property of the matrix, we set the singular

values of the noise to zero. This will in-turn alter the Toeplitz structure of the

original matrix, but by taking the average of the diagonals of the matrix, Toeplitz

structure can be restored back. By iterating this procedure, the matrix τ converges

to a well-approximated Toeplitz matrix of correct rank. The resulting matrix, is a

properly denoised version of the original matrix τ and the matrix pencil method or

the total-least squares method can be applied to the denoised matrix. Given a noise

contaminated discrete-time measurements of a signal, Cadzow’s algorithm exploits

the signal attributes (i.e. rank deficiency property and Toeplitz structure) from its

matrix representation.

The Cadzow’s algorithm combined with the matrix pencil method will be

utilized in the next chapter, when we consider the multichannel sampling of FRI

signal in the presence of noise.

2.5 Summary

In this chapter we presented a background on the 1-D sampling framework of FRI

signals. We described the different elements of the sampling setup and showed

how a set of 1-D Diracs can be sampled and perfectly reconstructed using both

polynomial and exponential reproducing kernels. Then we considered the case of

noisy measurements and presented some denoising techniques for the reconstruction

of the innovation parameters from the noisy samples.
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Chapter 3

Multichannel Sampling of Finite

Rate of Innovation Signals

3.1 Introduction

Multichannel sampling was first proposed by Papoulis in the context of bandlim-

ited signals [58] in 1977. In his work, Papoulis introduced a powerful extension of

Shannon’s sampling theory, showing that a bandlimited signal g(x) could be recon-

structed exactly from the samples of M linear shift-invariant systems, sampled at

1/Mth of the Nyquist rate.

In this chapter we present a possible extension of the theory of sampling sig-

nals with finite rate of innovation to the case of multichannel acquisition systems.

The critical issue in our proposed multichannel sampling setup is the precise syn-

chronization of the various channels, since different devices introduce different drifts

and different gains within each channel. This could be due, for example, to imper-

fections of electronic circuits. For the signal reconstruction, these parameters need

to be estimated in advance, which we refer to as the channel synchronization stage.

In this chapter we consider the multichannel sampling of FRI signals and extend the
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results in [27] to this new scenario. The material of this chapter has been in part

published at [5].

The organization of this chapter is as follows: In the next section, we present

an extension of 1-D FRI sampling framework, discussed in the previous chapter,

to the case of multichannel sampling. In Section 3.3, by considering both the syn-

chronization stage and the signal reconstruction stage as a parametric estimation

problem, we propose our novel algorithm for multichannel sampling of FRI signals

and demonstrate that it is possible to simultaneously estimate the channel param-

eters (i.e., delays and gains) and the signal itself from the measured samples. This

is achieved by operating at a sampling rate proportional to 1/TM , where M is the

number of channels involved. In Section 3.5 we consider the noisy scenario and

assume that the samples are corrupted by additive white Gaussian noise. By eval-

uating the Cramér-Rao bounds and taking numerical simulations into account, we

asses the resilience to noise of multichannel sampling systems compared to single-

channel ones. We finally summarize this chapter in Section 3.6.

3.2 Multichannel Sampling Framework

3.2.1 Sampling Setup

Figure 3.1 shows our proposed multichannel setup for 1-D FRI signals. As shown

in the figure, the bank of acquisition devices or sampling kernels with functions

φ1(x), φ2(x), . . . , φM(x), receive drifted and scaled versions of the input FRI signal

g(x) denoted with ∆i and Ai for i = 2, 3, . . . ,M . Given the setup model, the prob-

lem can be divided into two stages, the channel synchronization stage and the signal

reconstruction stage. The samples si,k measured at the output of the multichannel

sampling setup are utilized jointly for the channel synchronization and the signal re-
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Figure 3.1: The proposed multichannel sampling setup for 1-D FRI signals.
Here, the continuous-time signal g(x) is received by multiple channels with
multiple acquisition devices. The samples si,k from each channel are utilized
jointly for the reconstruction process.

construction process. Our goal is to see under what conditions the multiple channels

can be synchronized, that is under what conditions the estimation of the unknown

parameters ∆i and Ai is possible. Moreover, given the synchronized channels, we

also want to see under what conditions perfect reconstruction of the input FRI signal

g(x) can be achieved. In the following subsections all these questions are addressed

and a novel algorithm will be presented.

3.2.2 Sampling Kernels

For the multichannel setup shown in Figure 3.1, we will assume that the acquisition

devices are all E-spline sampling kernels. The reason for the use of such compact

support kernel is that, unlike polynomial reproducing kernels, dynamic multichan-

nel sampling is possible with E-splines. By dynamic sampling, we mean that the

overall number of samples required from the multichannel setup, can be arbitrarily

distributed within different channels, as long as the conditions necessary for channel

synchronization are met. This is due to the fact that, arbitrary exponentials can be

reproduced with E-splines and this rises from the arbitrary choice of the parameters

α0 and λ in αm = α0+mλ. Moreover, the exponents of the E-spline can be chosen so
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that a number of exponents are in common between the different sampling kernels

and this will allow the synchronization of the channels which will be explained in

detail in the next section.

3.3 Multichannel Sampling of Finite Rate of In-

novation Signals

3.3.1 Channel Synchronization

Without loss of generality, let us assume that the input signal g(x) is a stream of K

Diracs at distinct instants xk with amplitudes ak. Let us also assume for simplicity

that M = 2, that is, our multichannel system is restricted to two channels only. We

specify each channel sampling kernel to be of the form:

φ̂1(jω) =

P∏

m=0

(
1− eαm−jω

jω − αm

)
(3.1)

φ̂2(jω) =

Q∏

m=P−1

(
1− eαm−jω

jω − αm

)
, (3.2)

where Q depends on the structure of the input signal. For simplicity we will assume

that Q = 2P − 1, so that both sampling kernels will be of equal order P + 1.

As can be seen from the equations given above, both kernels can reproduce the

exponentials eαP−1x and eαP x. Given our pre-specified sampling kernels, the input

signal is observed by each of the two channels and then sampled at a sampling

interval T . The samples sk of the i-th channel, where i = 1, 2 are thus given by:

si,k = 〈Aig(x−∆i), φi(x/T − k)〉, (3.3)
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where A1 = 1 and ∆1 = 0 within the first channel (or reference channel). Given

the samples, we calculate the exponential moments from the two channels, with the

proper coefficients c
(i)
m,k, i = 1, 2, as follows:

τ (1)m =
N∑

k=0

c
(1)
m,ks1,k =

∫ ∞

−∞

g(x)eαmxdx, (3.4)

where m = 0, 1, . . . , P and,

τ (2)m =

N∑

k=0

c
(2)
m,ks2,k =

∫ ∞

−∞

A2g(x−∆2)e
αmxdx = A2τ

(1)
m eαm∆2 , (3.5)

where m = P − 1, P, . . . , 2P − 1. Here, the parameter N represents the number

of samples measured. As shown in the equations above, in our setup we have two

common parameters between the exponents of the two channels, that is atm = P−1

andm = P . Given these two common parameters, we can build the following system

of equations:

τ
(2)
P = A2τ

(1)
P eαP∆2 (3.6)

τ
(2)
P−1 = A2τ

(1)
P−1e

αP−1∆2 , (3.7)

Now, from the above equations, the delay and the gain parameters are estimated as

follows:

∆2 =
1

αP−1 − αP

ln

(
τ
(1)
P τ

(2)
P−1

τ
(1)
P−1τ

(2)
P

)
(3.8)

and

A2 =
τ
(2)
P

τ
(1)
P

e−αP∆2. (3.9)

Therefore with only two common parameters, the delay and gain parameters can be

estimated. We should point out that by having more than two common parameters,

more accurate estimations can be achieved for the unknown parameters, however,

one has to bear in mind that having more common parameters require higher spline
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orders for each channel and thus more samples will be needed.

From the set of results obtained above we can see that independently of the

input signal g(x), it is possible to synchronize the two channels exactly from the

samples si,k. However, a few considerations need to be addressed here. In the above

analysis we have implicitly assumed that τ
(i)
m 6= 0 for m = P − 1, P and i = 1, 2 and

this is not always true. Thus, for a guaranteed synchronization of the channels, some

constraints need to be imposed on the signal. In our context we are interested in

streams of Diracs and in this case the simple assumption that, given the K locations

of the Diracs, the amplitudes are drawn from a non-singular distribution over RK

guarantees that the event τ
(i)
m = 0 has probability zero. This is clearly a fairly mild

hypothesis and similar types of conditions can be imposed on any other FRI signal.

3.3.2 Signal Reconstruction

Let us now return to the original problem of reconstructing the stream of Diracs

g(x). Given the exact gain and delay of channel two, we can now estimate the

moments τ
(1)
m , with m = P + 1, P + 2, ..., 2P − 1 from τ

(2)
m as follows:

τ (1)m =
τ
(2)
m

A2
e−αm∆2, m = P + 1, P + 2, ..., 2P − 1. (3.10)

It follows that if 2P −1 ≥ 2K−1 or, more simply, P ≥ K then a perfect recovery of

g(x) is possible from the moments τ
(1)
m , m = 0, 1, ...2P − 1 by using the annihilating

filter method discussed in Chapter 2. The advantage of the new setup is that we

now require splines of lower order (i.e., P ≥ K rather than P ≥ 2K − 1) and this

leads to shorter kernels.

For example, as mentioned in Chapter 2, the sampling of an infinite stream

of Diracs in the single-channel case requires that there are no more than K Diracs
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in an interval of size1 of 2K(P + 1)T ≤ 4K2T , where we have used the fact that

in the single-channel setup P ≥ 2K − 1. In the case of the two-channel acquisition

system, the interval is reduced to (2K2 + 2K)T since P ≥ K. This indicates that

in the new setup we can either sample signals with a higher concentration of Diracs

or alternatively for the same signal we can almost halve the sampling rate.

As an example, let us assume that our input signal g(x) consists of 8 Diracs

located within xk ∈ [0, 1s[. We sample this signal at T = 0.05s with a single-

channel and also a two-channel sampling system where the unknown gain and delay

parameters are A2 = 2 and ∆2 = 0.1s respectively. The order of the E-spline

sampling kernel in the single-channel case is set to its least possible value of 2K = 16,

and in the two-channel case is set to K +1 = 9 for both channels. Figure 3.2 shows

the simulations results for both scenarios. With N = 20 samples, the retrieval

of the locations of the input signal is not possible with the single-channel case

(Figure 3.2(a)). However, with the multichannel sampling system employed, we can

perfectly retrieve all the 8 Diracs with shorter sampling kernels for each channel

(Figure 3.2(b)).

3.3.3 Generalization

Thus far, we have restricted the E-spline sampling kernel to be of equal order P+1 =

K + 1 for each channel. It is also possible to employ sampling kernels of different

orders, as long as the following criteria are met: Denoting the E-spline order of

channel 1 and 2 with Q1 and Q2 respectively, we require the order of each kernel

to be Q1 ≥ 2 and Q2 ≥ 2 and the overall E-spline order to be Q1 + Q2 ≥ 2K + 2.

To make things clearer, Figure 3.3 shows the sampling region for the multichannel

case. As can be seen from the figure, as long as the equality Q1 + Q2 ≥ 2K + 2

holds, then we can synchronize the two channels and perfectly reconstruct the input

1For E-splines of order P + 1, the support is also P + 1.
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(a) (b)

Figure 3.2: Multichannel sampling with M = 2 versus single-channel sam-
pling. (a) Single-channel sampling of 8 Diracs with N = 20 samples taken. (b)
Multichannel sampling of the same signal with N = 20 samples taken for each
channel, M = 2, A2 = 2 and ∆2 = 0.1s. In both figures, Diracs with circles on top
are the true locations and Diracs with asterisks on top are the reconstructed
Diracs.

signal consisting of K Diracs.

Having gone through the two-channel case, the extension to the case of M

channels is now straightforward. By designing each sampling kernel so that pairs of

channels have two moments in common, it is possible to synchronize the channels

using Equations (3.8) and (3.9) and then reconstruct g(x). For M channels and

K Diracs the requirement is now that MP − (M − 1) ≥ 2K − 1 which implies

P ≥ ⌈(2K − 2)/M⌉ + 1. This indicates that by using an M-channel system we can

either sample the same FRI signals with a reduced sampling rate proportional to

∼ 1/TM or sample signals with a much higher density of Diracs.

Having presented our algorithm for multichannel sampling of FRI signals, we

now assess the resilience to noise of the proposed system.
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Figure 3.3: Multichannel sampling region with M = 2. Here, Q1 and Q2
represent the E-spline sampling kernel order for each channel.

3.4 Noisy Scenario

We have seen already that, in the noiseless case, a multichannel acquisition system

achieves perfect reconstruction of FRI signals with a sampling rate proportional to

1/TM . Thus, perfect reconstruction is achieved at a sampling rate lower than the

single channel case. We now show both theoretically and numerically that, if we

do not reduce the sampling rate and leave it fixed at 1/T , a multichannel system

is more resilient to noise than a single-channel one. For numerical evaluation, we

will apply the denoising algorithms discussed in Chapter 2, particularly the matrix

pencil method and the Cadzow’s algorithm. For theoretical evaluation, we will use

a common and useful tool known as the Cramér-Rao bound which gives the lowest

achievable bound at a given noise level, for any unbiased estimator.
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3.5 Multichannel Sampling of FRI Signals in the

Presence of Noise

Consider the multichannel sampling setup of Figure 3.1 and let us now assume that,

due to the noise, the samples we measure are given by:

ŝi,k = 〈Aig(x−∆i), φi(x/T − k)〉+ ǫi,k, (3.11)

where k = 0, 1, ...N − 1, i = 1, 2, ...,M , ǫi,k is i.i.d. additive Gaussian noise with

zero mean and variance σ2 and T = L/N , with L = 1 seconds. We also assume

that the gains introduced by the channels are all equal and known a-priori, that is,

Ai = 1, i = 1, 2, ...,M , therefore only the delays need to be estimated. Moreover, we

assume that the input signal g(x) has K = 3 Diracs with known fixed amplitudes.

We have considered these assumptions only for the sake of simplicity, however, in

practice the gain parameters introduced and the amplitudes of the Diracs are not

necessarily known a-priori.

Our aim is to compare the performance of the single-channel setup (i.e.,

M = 1) against the two-channel and three-channel systems. Since for all cases

we have a standard parametric estimation problem, we use Cramér-Rao bounds

(CRB) to compare the minimum bounds of the different setups and probe whether

the multichannel systems are in theory more resilient to noise. The Cramér-Rao

bound is given by the inverse of the Fisher information (see Appendix A for full

derivation2):

CRB(Θ) = σ2

(
N−1∑

k=0

∇f(Θ, k) · ∇f(Θ, k)T
)−1

, (3.12)

2Regarding the single-channel case, we should point out that, Blu et al. [14] have computed the
Cramér-Rao bounds for sampling a single Dirac with a sinc kernel and Homann et al. [26] have
computed the Cramér-Rao bounds for sampling a single Dirac with polynomial and exponential
reproducing kernels.
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where Θ is the vector of all unknown parameters to be estimated, σ2 is the variance

of the noise, N is the total number of the samples, k is the sample index, ∇ represents

the divergence operator and f(Θ, k) is a function that depends on the Θ vector and

the sample index k and is obtained from the samples sk.

In the single-channel scenario, the reconstruction of g(x) involves the estima-

tion of three unknown parameters (i.e., the three locations of the Diracs) and there-

fore its corresponding Θ vector will consist of three parameters Θ = (x1, x2, x3).

The vector ∇f(Θ, k) for the single-channel case will therefore be:

∇f(Θ, k)M=1 =

(
∂ŝk
∂x1

,
∂ŝk
∂x2

,
∂ŝk
∂x3

)T

. (3.13)

In the multichannel setup however, one has to retrieve the unknown delays for the

synchronization process as well as the unknown locations of the Diracs. Therefore,

there are four parameters to be estimated when M = 2, that is Θ = (x1, x2, x3,∆2),

and five parameters when M = 3, that is Θ = (x1, x2, x3,∆2,∆3). Their corre-

sponding divergence vectors are as follows:

∇f(Θ, k)M=2 =

(
∂ŝk
∂x1

,
∂ŝk
∂x2

,
∂ŝk
∂x3

,
∂ŝk
∂∆2

)T

(3.14)

∇f(Θ, k)M=3 =

(
∂ŝk
∂x1

,
∂ŝk
∂x2

,
∂ŝk
∂x3

,
∂ŝk
∂∆2

,
∂ŝk
∂∆3

)T

. (3.15)

To construct the Fisher information matrix, we evaluate the vectors shown above

by taking partial derivatives of the samples, and then calculate the matrix multipli-

cation ∇f(Θ, k) · ∇f(Θ, k)T , to obtain 3 × 3, 4 × 4 and 5 × 5 Fisher information

matrices for each of the cases M = 1, 2 and 3. It should be pointed out that the

total number of samples forM = 2 andM = 3 is 2N−1 and 3N−1 respectively. As

the large number of unknown parameters leads to a fairly large Fisher information

matrices, it is simpler to evaluate the CRB numerically for all cases. Therefore, after

constructing the Fisher information matrices, the values of the sampling kernels and
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their corresponding partial derivatives, at different sampling indices, are evaluated

numerically.

3.5.1 Simulation Results
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Figure 3.4: CRB for single-channel and multichannel sampling systems. The

input SNR is calculated as 10log10
||sk||

2

σ2 where σ2 is the noise variance and ∆t is
the uncertainty on the estimated locations. Dirac locations are set at 0.5, 0.6
and 0.7 for all cases. The delays ∆2 and ∆3 are fixed at T

2 and T respectively.

The sampling kernel used in our analysis is a complex-valued E-spline func-

tion with equally spaced, purely imaginary exponents (for derivation of the CRB for

complex-valued functions, see Appendix A). The order of E-splines for each channel

is fixed and set to P = 9. The CRB for the estimation of the Diracs for the three

cases discussed previously, assuming a fixed number of samples N = 20, are shown in

Figure 3.4. Interestingly, the results reveal that the CRB improves with the number

of channels. More precisely, the CRB improvement when going from single-channel

to two-channels is approximately 0.86dB, while the improvement when going from
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single-channel to three-channel system is approximately 1.1dB. It is interesting to

see that, despite the fact that the unknown delays need to be estimated in order

to synchronize the channels, there is still a noticeable gain by using multichannel

sampling setup when compared to the single-channel sampling case.
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Figure 3.5: Theoretical uncertainties on the estimated locations with varying

sampling rates. The input SNR is calculated as 10log10
||sk||

2

σ2 where σ2 is the
noise variance and ∆t is the uncertainty on the estimated locations. Dirac
locations are set at 0.5, 0.6 and 0.7 for all cases. The delays ∆2 and ∆3 are
fixed at T

2 and T respectively.

Furthermore, in Figure 3.5 we show the CRB of each sampling system at

varying sampling rates. We can see that at a given target uncertainty for the esti-

mation of the locations, there is a reduction in the number of samples needed when

going from single-channel to multichannel sampling systems. For example, at the

reconstruction quality of ∆t
σ

= 0.04, the number of samples could be reduced from

38 samples to 27 samples when going from the single-channel to the three-channel

setup.
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Figure 3.6: Numerical results with single and multichannel sampling. The

input SNR is calculated as 10log10
||sk||

2

σ2 where σ2 is the noise variance and ∆t is
the uncertainty on the estimated locations. Dirac locations are set at 0.5, 0.6
and 0.7 for all cases. The delays ∆2 and ∆3 are fixed at T

2 and T respectively.

To analyse the performance of the reconstruction algorithm, Figure 3.6

presents some actual numerical results on the uncertainty of the estimated loca-

tions which are also compared against the theoretical bounds from Figure 3.4. The

delays are estimated using Equation (3.8), while the locations of the Diracs are

obtained using the matrix pencil method and also the Cadzow’s algorithm to fur-

ther denoise the exponential moments τm. While none of the algorithms achieve the

CRB, our results show that the gain in performance with multichannel sampling over

single-channel sampling can be significant. For instance, at input SNR= 15dB, the

gain in performance from single-channel to three-channels is approximately 4.4dB.

The additional noise robustness in our numerical simulations when compared to the

CRB is mostly due to the denoising algorithms that we use. This will be further

discussed in our ’Future Research’ section in Chapter 6.
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3.6 Summary

In this chapter we have extended the theory of sampling FRI signals to the case

of multichannel acquisition systems. We illustrated that by synchronizing the dif-

ferent channels of the proposed multichannel sampling setup, one can estimate the

unknown delays and gains introduced within the channels, regardless of the input

FRI signal. In the case of noisy measurements, we showed that by evaluating the

CRB, the multichannel system can achieve a target performance with a number of

samples which is smaller than the number of samples needed in the single-channel

setup. The improvement in the resilience to noise of the multi-channel architecture

was also confirmed with numerical simulations.
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Chapter 4

System Identification based on the

Theories of Finite Rate of

Innovation Sampling

4.1 Introduction

In many practical applications the impulse response of an unknown system is re-

quired to be estimated. This problem which is usually referred to as “System Iden-

tification Problem” in literature has a vast number of applications, such as line

echo cancellation, channel equalization and model mismatch estimation. Figure 4.1

shows a system identification problem setup where a signal g(x) is fed to an unknown

system with impulse response ψ(x). The output signal from the unknown system

then goes through a sampling process with a sampling rate 1/T which outputs the

samples sk.

The aim of system identification is to completely determine the function ψ(x)

from the samples sk. Unlike standard techniques for system identification, such as

least mean squares (LMS) algorithm [63], which require the sampling rate to be at
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or above the Nyquist rate, sparse sampling techniques could be employed to identify

the unknown system at sub-Nyquist sampling rates.

Figure 4.1: A system identification problem setup. Here, g(x) represents the
continuous-time input signal, ψ(x) represents the unknown system and sk rep-
resent the output samples

System identification using the sparse sampling techniques has already been

considered (or partly considered) in [53, 19, 33]. In [53] McCormick et al. consider

a similar problem to ours and present a novel sub-Nyquist sampling algorithm for

system identification in the frequency domain by exploiting the sparsity feature of

the unknown system. In this method, the impulse response of the unknown system

is adaptively estimated using a frequency-domain LMS filter [53], however, the input

signal is considered to be known and bandlimited. In this chapter we will propose

a novel algorithm for simultaneous estimation of sparse signals along with system

identification using the theories of sparse sampling.

The novelty of our work is divided into two sections; first, by employing the

multichannel sampling setup presented in the previous chapter, we propose a novel

algorithm for the system identification problem with known input signal, that is

for the case when both the input signal and the output samples are known. Then

we consider the problem of blind system identification where by blind we mean

that only the output samples are given and the input signal is not known. We will

propose a novel algorithm for simultaneously estimating the input FRI signal and

also the unknown system using an iterative algorithm. We will show that, based on

our numerical simulations, the solution to the blind system identification problem

is normally convergent.

The organization of the chapter is as follows: In Section 4.2, we propose our
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novel algorithm for system identification with known input signal. We will present

few examples on system identification problems and highlight their corresponding

applications. In Section 4.3, we present our iterative algorithm for blind system

identification and show that simultaneous estimation of both the input FRI signal

and the unknown system ψ(x) is possible. We summarize the chapter in Section 4.4.

4.2 System Identification with Known Input Sig-

nal

In the previous chapter, we presented a novel algorithm for multichannel sampling

of FRI signals. We assumed that in the multichannel sampling setup, each channel

introduces an unknown delay and gain parameter on the incoming input signal. It

can be shown that the channel parameters estimation stage or rather the channel

synchronization stage, could be thought of a system identification problem, where

the unknown system to be identified is ψ(x) = Aiδ(x − ∆i) for i = 2, 3, . . . ,M .

In this section we will show how a similar sampling scheme could be employed to

estimate the unknown function ψ(x) from the samples, given the input signal.

Figure 4.2: System identification setup with known input signal g(x). Here,
the function φ(x), identical in both channels, represents the E-spline sampling
kernel and the output samples sSIGk and sSY S

k represent the signal and the
system samples respectively.

Figure 4.2 shows the sampling setup proposed, where g(x) represents the

input signal, ψ(x) represents the stationary unknown system to be identified, φ(x)
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represents the sampling kernel which is considered to be an E-spline and sk represent

the samples. As can be seen, a two-channel sampling system with identical sampling

kernels has been employed to sample the input signal with and without the unknown

system ψ(x). In the first channel, the input signal is directly sampled with our pre-

specified E-spline sampling kernel φ(x). We recall here that the Fourier transform

of φ(x) is given by:

φ̂(jω) =

P∏

m=0

(
1− eαm−jω

jω − αm

)
, (4.1)

where P depends only on the structure of the unknown function ψ(x). This will

be more evident later on. The samples sk at the output of the first channel are

therefore:

sSIGk = 〈g(x), φ(x− k)〉. (4.2)

Given the samples, we then calculate the exponential moments of the input signal,

as was shown in Equation (2.20). For the sake of clarity and without loss of gener-

ality, we will assume that the αm parameters are purely imaginary αm = jmλ and

therefore:

τSIGm = ĝ(αm), (4.3)

where ĝ(αm) represents the Fourier transform of the signal g(x) at αm with m =

0, 1, . . . , P . In the second channel, the same input signal is fed through the unknown

function ψ(x) and then sampled with the same sampling kernel. Therefore, its

corresponding samples sk are:

sSY S
k = 〈g(x) ∗ ψ(x), φ(x− k)〉. (4.4)

Given the samples of the second channel, we calculate its corresponding exponential

moments. This will lead to:

τSY S
m = ĝ(αm) · ψ̂(αm). (4.5)
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Here, the function ψ̂(αm) represents the Fourier transform of the function ψ(x)

at αm. Moreover, the above equation is deduced from that fact that convolution

in time domain corresponds to multiplication in Fourier domain. From the set of

results obtained above, we derive that:

τSY S
m

τSIGm

=
ĝ(αm) · ψ̂(αm)

ĝ(αm)
= ψ̂(αm), (4.6)

where we have assumed that ĝ(αm) 6= 0. Therefore, by dividing the exponential

moments obtained from the two-channels, we have shown that the Fourier transform

of the unknown stationary function ψ(x) can be obtained, regardless of the structure

of the input signal. Now, given ψ̂(αm) with m = 0, 1, .., P and αm = jmλ, we will

have an inverse problem to solve for the unknown parameters of the function ψ(x).

Once the unknown parameters are estimated, the function ψ(x) will be completely

determined and the system will therefore be fully identified. In the following section,

we show cases where we can solve the above inverse problem (i.e. we identify the

system) and highlight the applications in which the proposed system model is of

interest.

4.2.1 Identification of a System with K Diracs

Consider the unknown function ψ(x) to be a stream of K Diracs with unknown

locations and amplitudes. Applications of such a system could be acoustic room

impulse response estimation or line echo cancellation. We already know that the

Fourier transform of such a function has a power-sum series form:

β̂(jω) =
K∑

k=1

ak e
jωxk , (4.7)

where ak and xk correspond to the unknown amplitudes and locations respectively.

From the setup shown in Figure 4.2, as previously described, the exponential mo-
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ments of the output samples with and without the unknown function, that is τSY S
m

and τSIGm are obtained. The Fourier transform of the function ψ(x) at αm = jmλ

can now be easily calculated as follows:

τSY S
m

τSIGm

= ψ̂(αm), (4.8)

where,

ψ̂(αm) = β̂(αm) (4.9)

=

K∑

k=1

ake
αmxk (4.10)

=
K∑

k=1

aku
m
k , m = 0, 1, . . . , P, (4.11)

where uk = ejλxk . As ψ̂(αm) has a power-sum series form, we apply the annihilating

filter method to the measurements τSY S
m

τSIG
m

= ψ̂(αm) to retrieve the unknown param-

eters ak and xk. For such a system, in order to recover the K Diracs, the E-spline

sampling kernel is required to be of order P ≥ 2K. This setup is similar to the one

discussed in [33].

As an example, let us assume that our signal g(x) is a piecewise-polynomial

signal and the unknown function ψ(x) is a stream of 3 Diracs. Our goal is to

estimate the system, given the input signal and its corresponding sSIGk and sSY S
k

samples. Figure 4.3 shows the simulation results for this example. We can see that

the unknown system is perfectly estimated, regardless of the structure of the input

signal.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: System identification of an unknown system ψ(x) consisting of 3
Diracs. (a) The input piecewise-polynomial signal. (b) The true parameters
of the function ψ(x). (c) Input signal convolved with the function ψ(x). (d)
The real (blue) and imaginary (red) samples of the signal. (e) The real (blue)
and imaginary (red) samples of the system. (f) Estimated parameters of the
function ψ(x).

4.2.2 B-Splines

Let us consider ψ(x) to be a B-spline βK(x) of unknown order K+1. An application

of such a system could be the camera lens calibration [6]. This is because the point
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spread function of a camera lens is very often assumed to be a Gaussian pulse and

B-splines of order K ≥ 2 are increasingly similar to Gaussian functions. We already

know that the Fourier transform function of a B-spline of order K + 1 is given by:

β̂K(jω) =

K∏

k=0

1− e−jω

jω
=

(
1− e−jω

jω

)K+1

. (4.12)

Assuming the unknown function in our setup shown in Figure 4.2 is a B-spline of

unknown order, that is ψ(x) = βK(x), then by calculating the exponential moments

of the output samples with and without the unknown filter, we can obtain the

Fourier transform of ψ(x) at αm = jmλ as follows:

τSY S
m

τSIGm

= ψ̂(αm), (4.13)

where,

ψ̂(αm) = β̂K(αm) (4.14)

=

(
1− e−αm

αm

)K+1

. (4.15)

By taking logarithms on both sides of the equation, the unknown order K + 1 is

calculated as follows:
log
(
ψ̂(αm)

)

log
(

1−e−αm

αm

) = K + 1. (4.16)

In order to estimate the unknown order of the B-spline, the E-spline sampling kernel

is required to be of order P ≥ 1.

As an example, let us assume that our signal g(x) consists of 2 Diracs and

the unknown function ψ(x) to be estimated is a B-spline of order 4. Our goal is to

estimate the order of the B-spline, given the input signal and its corresponding sSIGk

and sSY S
k samples. Figure 4.4 shows the simulation results for this example. As

can be seen from the figure, the system with B-spline of order 4 has been perfectly
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identified.

(a) (b)

(c) (d)

(e) (f)

Figure 4.4: System identification of an unknown system ψ(x) with a B-spline of
order 4. (a) The input signal with 2 Diracs. (b) The true values of the function
ψ(x). (c) Input signal convolved with the function ψ(x). (d) The real (blue)
and imaginary (red) samples of the signal. (e) The real (blue) and imaginary
(red) samples of the system. (f) The estimated function ψ(x).
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4.2.3 E-Splines

Let us now consider ψ(x) to be an E-spline β~γ(x) of known orderK+1 with unknown

exponent parameters ~γ. An application of such a system could be the estimation

of the electronic components of a finite order electronic circuit, which will be fully

described in the next subsection. As stated previously, the Fourier transform of an

E-spline of order K + 1 is:

β̂~γ(jω) =

K∏

k=0

1− eγk−jω

jω − γk
. (4.17)

From the setup shown in Figure 4.2, the exponential moments τSY S
m and τSIGm are

calculated from the samples sSY S
k and sSIGk respectively. Given the exponential

moments, the Fourier transform of the function ψ(x) at αm = jmλ can be obtained

as follows:

τSY S
m

τSIGm

= ψ̂(αm), (4.18)

where,

ψ̂(αm) = β̂~γ(αm) (4.19)

=
K∏

k=0

1− eγk−αm

αm − γk
. (4.20)

Calculation of the unknown parameters of the E-splines (as the unknown function

ψ(x)) is more involved. We first need to simplify both the numerator and denomi-

nator of the E-spline function. Simplifying the numerator gives:

K∏

k=0

(
1− eγk−αm

)
=

K∏

k=0

(1− aku
m) , (4.21)
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where ak = eγk and um = eαm . This can be further simplified as follows:

K∏

k=0

(1− aku
m) = (1− a1u

m)(1− a2u
m)...(1− aKu

m) (4.22)

=

K∑

k=0

qku
km (4.23)

=

K∑

k=0

qkt
m
k , (4.24)

where tk = uk. Simplifying the denominator gives:

K∏

k=0

(αm − γk) = Q(m) =

K∑

k=0

rkm
k, (4.25)

where Q(m) is a polynomial of degree K + 1. Rearranging Equation (4.20) using

Equation (4.24) and (4.25), leads to:

K∑

k=0

rkm
k · ψ̂(αm) =

K∑

k=0

qkt
m
k . (4.26)

The above equation can be considered as a linear system, consisting of 2K unknowns

with the unknown parameters being Θ = (r0, r1, . . . , rK−1, q1, . . . , qK). Here, q0 = 1,

t0 = 1 and tk are a known set of parameters. As we have a linear system, by

constructing the following matrix equation and taking its inverse we are able to

calculate the unknown parameters:




ψ(α0) 0 . . . 0 1 . . . 1

ψ(α1) ψ(α1) . . . ψ(α1) t2 . . . tK

ψ(α2) 2ψ(α2) . . . 2K−1ψ(α2) t2
2

. . . t2
K

... . . . . . . . . . . . . . . .
...

ψ(α2K−1) (2K − 1)ψ(α2K−1) . . . (2K − 1)K−1ψ(α2K−1) t2K−1

2
. . . t2K−1

K
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×




r0

r1
...

rK−1

q1
...

qK




=




1

1− ψ(α1)rK

1− 2Kψ(α2)rK
...

1− (2K − 1)Kψ(α2K−1)rK




. (4.27)

Once the parameters are estimated, by taking the roots of the polynomial qk for

k = 0, 1, . . . , K and then taking the logarithm of the roots we obtain the unknown

γk parameters, since roots(qk) = ak = eγk . The E-spline sampling kernel is required

to be of order P ≥ 2K in order to estimate the parameters of the E-spline function

ψ(x).

As an example, let us assume that our input signal g(x) consists of 2 Diracs

and the unknown function ψ(x) to be estimated is an E-spline of order 2 with

γ0 = −1 and γ1 = 2. Our goal is to estimate the system, given the input signal and

its corresponding sSIGk and sSY S
k samples. Figure 4.5 shows the simulation results

for this example. As can be seen from the figure, the function ψ(x) is fully identified

(The small error is due to numerical imprecision).

4.2.4 Linear Time-Invariant Circuits

Finite order linear time-invariant electronic circuits can be modelled as modified

E-splines [27]. In general any p-th order electronic circuit has a transfer function

(s = jω):

β̂(s) =
bqs

q + bq−1s
q−1 + . . .+ b1q + b0

apsp + ap−1sp−1 + . . .+ a1p+ a0
=

∑Q

q=0 bqs
q

∑P

p=0 aps
p
. (4.28)

The equation above has a very similar structure to the E-spline case and one may

suggest a similar simplifying procedure with constructing a system of linear equa-

tions with Q + P + 1 unknowns, as discussed previously. However, the transient

response of a finite order electronic circuit is infinite and this would mean that the

function ψ(x) will not be time-limited. Assuming that the electronic circuit has a
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: System identification of an unknown system ψ(x) with an E-spline
of order 2 and parameters γ0 = −1 and γ1 = 2. (a) The input signal with 2
Diracs. (b) The true values of the function ψ(x). (c) Input signal convolved
with the function ψ(x). (d) The real (blue) and imaginary (red) samples of the
signal. (e) The real (blue) and imaginary (red) samples of the system. (f) The
estimated function ψ(x) with MSE of 3× 10−6 due to numerical imprecision.

fast decaying transient response, we can approximate the above function to have a

finite duration and thus, as in the E-spline case, a linear system of matrix equations
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with Q+ P + 1 unknown parameters can be constructed.

As a simple example, consider the setup shown in Figure 4.6 where the un-

known function ψ(x) is a first order RC circuit (low-pass filter) with R = 100kΩ

and C = 20µF . We already know that the transfer function of such a circuit is:

Figure 4.6: First order RC circuit as the unknown function ψ(x). Here, the
output samples sSIGk and sSY S

k represent the input signal and the system sam-
ples respectively.

β̂(jω) =
γ

γ + jω
, (4.29)

where γ = 1/RC. Our goal is to estimate the parameter γ = 1/RC = 1
100k·20µ

= 0.5

and therefore identify the transfer function. Like before, we obtain the exponential

moments at αm = jmλ, which in turn will lead to the the Fourier transform of the

function ψ(x) at αm:
τSY S
m

τSIGm

= ψ̂(αm), (4.30)

where,

ψ̂(αm) = β̂(αm) (4.31)

=
γ

γ + αm

. (4.32)

The above function has one unknown parameter only and therefore the product RC

can be estimated as follows:

γ =
αm · ψ̂(αm)

1− ψ̂(αm)
. (4.33)

Figure 4.7 shows the simulation results for this example. As can be seen from the

figure, the transient response is perfectly estimated.
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We have shown in this section that by having access to the input signal and by

exploiting the sparsity feature of the unknown system, system identification problem

can be solved at low sampling rates by employing a multichannel sampling setup.

Sampling at lower rates, which generally results in the reduction of computational

complexity, is indeed the main advantage of our proposed algorithm when compared

to the classical methods. The amount of complexity reduction and other features

such as accuracy and noise robustness of our proposed method is an area of future

research and currently is out of the scope of our work.

4.3 Blind System Identification

In the previous section, we looked at the case where both the input signal and the

output samples were known. For the case of blind system identification however,

that is when both the input signal and the system are unknown, the above solution

cannot be used directly and the problem is more involved. However, a recursive

version of the previously discussed method, as shown in Figure 4.8(a) and 4.8(b),

can be utilized to estimate both the input FRI signal and the unknown function

ψ(x). Let us assume that the input sparse signal is a stream of Diracs with unknown

locations. As shown in Figure 4.8(a), the unknown input signal is fed to the unknown

system ψ(x) and then is sampled with our pre-specified E-spline sampling kernel with

αm = jmλ. Therefore, its corresponding exponential moments are:

τ 0m = ψ̂(αm) · ĝ(αm), (4.34)

where both ψ̂(αm) and ĝ(αm) are unknown. As our input signal is a stream of

Diracs with unknown locations, we directly apply the annihilating filter method

to the moments τ 0m and obtain an estimate of the input signal, denoted as ḡ(x)

(Figure 4.8(b)). Once an estimate of the input signal is obtained, we recursively

feed the estimated signal ḡ(x) back to our pre-specified sampling kernel and obtain
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: System identification of an unknown system ψ(x) with a first order
RC circuit where γ = 1/RC = 0.5. (a) The input signal with 2 Diracs. (b) The
true values of the function ψ(x). (c) Input signal convolved with the function
ψ(x). (d) The real (blue) and imaginary (red) samples of the signal. (e) The
real (blue) and imaginary (red) samples of the system. (f) The estimated
function ψ(x) with MSE of 1.3× 10−6 due to numerical imprecision.

its corresponding exponential moments at each recursion:

τupdm = ˆ̄g(αm). (4.35)
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(a)

(b)

Figure 4.8: The setup proposed for recursive estimation. Here, g(x) is the input
FRI signal, ψ(x) is the unknown system to be identified, φ(x) is the E-spline

sampling kernel, τ0m represent the initial measurements, τupdm represent the

updated measurements,
ˆ̄̄
ψ(αm) represents the re-estimated Fourier transform

of the unknown system and ḡ(x) represents the estimated input FRI signal.

Here the superscript “upd” stands for “updated” and ˆ̄g(αm) is an estimate of the

Fourier transform of the input signal at αm. Now, we divide the updated exponential

moments τupdm by the initial measurements τ 0m to obtain an estimate for the unknown

system ψ̂(αm) as follows:

τ 0m

τupdm

=
ĝ(αm) · ψ̂(αm)

ˆ̄g(αm)
= ˆ̄ψ(αm). (4.36)

From ˆ̄ψ(αm), as was shown in Section 4.2, the unknown parameters of the unknown

system can be estimated. Once the parameters are estimated, from the model of the

unknown system we re-estimate the Fourier transform of the function ψ(x), denoted

by
ˆ̄̄
ψ(αm), and from that we re-estimate the measurements τupdm as follows:

τupdm =
τ 0m

ˆ̄̄
ψ(αm)

. (4.37)

We apply the annihilating filter method on the re-estimated τupdm and obtain an

improved estimate of the unknown input signal g(x). Our empirical results show

that by applying the above method recursively, the estimations converge to the
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actual input signal g(x) and the unknown function ψ(x).

(a) (b)

(c) (d)
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Figure 4.9: Simultaneous estimation of an input sparse signal with a first
order E-spline as the unknown function ψ(x). (a) The input signal with 2
Diracs (circle) along with the immediate estimate of the signal (asterisk) with
no iterations. (b) Input signal convolved with the function ψ(x). (c) The real
(blue) and imaginary (red) samples with no iteration. (d) The real (blue) and
imaginary (red) samples after 10 iterations. (e) True vs. estimated values of
the parameter γ after 10 iterations. (f) True vs. estimated version of the input
signal after 10 iterations.
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As an example let us assume that our input signal consists of 2 Diracs with

unknown location. Let us also assume that the unknown system to be identified is

a first order E-spline with γ = 2. Our goal is to simultaneously estimate the input

signal and also the unknown γ parameter. Figure 4.9 shows the results for the above

example after 10 iterations. It can be seen that both the input signal and also the

unknown system are estimated to a very good degree when compared to their true

values.

As another example, let us consider the unknown system to be identified to

be a first order RC circuit with γ = 1/RC = 2 where R = 100kΩ and C = 5µF .

Figure 4.9 shows the results for the above example after 20 iterations. It can be

seen that both the input signal and also the unknown system are estimated to a

very good degree when compared to their true values.

4.4 Summary

In this chapter we proposed our novel algorithms for system identification prob-

lem, based on the finite rate of innovation sampling theories. The novelty of this

chapter was divided into two section, where in the first section, we showed that by

having access to the input signal, system identification problem could be solved at

low sampling rates by employing the multichannel sampling setup and exponential

moments. Then, in the second section, we considered the problem of blind system

identification. We showed that a recursive method could be utilized to estimate

both the input FRI signal and also the unknown system when we only have access

to the output samples.
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Figure 4.10: Simultaneous estimation of an input sparse signal with a first
order RC circuit as the unknown function ψ(x). (a) The input signal with 2
Diracs (circle) along with the immediate estimate of the signal (star) with no
iterations. (b) Input signal convolved with the function ψ(x). (c) The real
(blue) and imaginary (red) samples with no iteration. (d) The real (blue) and
imaginary (red) samples after 20 iterations. (e) True vs. estimated values of
the parameter γ after 20 iterations. (f) True vs. estimated version of the input
signal after 20 iterations.



89

Chapter 5

Multichannel Sampling of

Multidimensional FRI Signals

5.1 Introduction

In Chapter 3, we presented a possible extension of sampling one-dimensional FRI

signals to the case of multichannel acquisition systems. In the multichannel sampling

setup presented, we assumed that the input signal observed by the system and

also the channel parameters introduced within each channel (i.e. delay and gain

parameters), have a 1-D structure. In this chapter, we aim to extend the framework

presented in Chapter 3 to the multidimensional case, where both the input signal

and also the channel parameters have a two-dimensional structure. The motivation

of this extension comes from the fact that in applications such as acquisition of

images in a multi-camera system, the estimation of the 2-D input signal as well as

the 2-D channel parameters is required. Therefore, given the practical importance

of such setups, it is essential to analyse the case of multidimensional FRI signals.

The material of this chapter has been in part published in [4, 2, 3, 1].

The contribution of this chapter is two-fold; first, we present a novel approach

for sampling and perfectly reconstructing 2-D signals with parametric structure or

namely 2-D signals with FRI. The considered signals are bi-level polygons and set of
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2-D Diracs and it will be shown that with the use of ACMP method (Algebraically

Coupled Matrix Pencils), projection-slice theorem, Radon projections and exponen-

tial splines as sampling kernels, such signals can be perfectly reconstructed from

their samples. Then, we consider the multichannel sampling of such 2-D signals and

demonstrate that a simultaneous channel synchronization and signal reconstruction

is possible. For the channel synchronization stage, we assume that the channel pa-

rameters are unknown geometric transformations such as translation, scaling, shear-

ing and rotation.

The organization of this chapter is as follows: In the next section, we will

introduce the multidimensional sampling framework for FRI signals which will in-

clude the definition of 2-D FRI signals, sampling setup used and the properties of

the sampling kernels involved. In Section 5.3 we will introduce our novel algorithms

for sampling and perfectly reconstructing set of 2-D Diracs by employing the ACMP

method and bi-level polygons by utilizing Radon transformation and its relationship

with the Fourier transform. In Section 5.4, we will extend the multichannel sampling

setup presented in Chapter 3, to the case of multichannel sampling of 2-D FRI sig-

nals and present our novel algorithm for signal and channel estimation under simple

2-D translations and also affine transformations. The summary of the chapter will

be given in Section 5.5.

5.2 Multidimensional Sampling Framework

5.2.1 2-D Signals with Finite Rate of Innovation

The definition of 2-D FRI signals is very similar to the 1-D case described in Chapter

2. Let us consider a 2-D signal with the following form:

g(x, y) =

N∑

r=0

∑

j∈Z

∑

k∈Z

γj,k,r φr(x− xj , y − yk). (5.1)
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The degrees of freedom of the signal g(x, y) are the shifts xj , yk and the coefficients

γj,k,r, assuming that the set of functions φr(x, y) are known. If we introduce a

counting function which counts the number of free parameters of the signal g(x, y)

over the window of size (Lx, Ly), then the rate of innovation of the signal g(x, y) is:

ρ = lim
Lx,Ly→∞

1

LxLy

Cg

[
(−Lx

2
, Lx

2
), (−Ly

2
, Ly

2
)
]
. (5.2)

A set of 2-D Diracs, bi-level polygons and classes of algebraic curves (ellipses, car-

dioids and lemniscates) are all examples of 2-D signals with finite rate of innovation.

Also, as in the 1-D case, all two dimensional bandlimited signals could be defined

with the above definition.

5.2.2 Sampling Setup

Figure 5.1 shows a typical sampling setup used for sampling 2-D FRI signals. In

the figure, g(x, y) represents the input FRI signal, h(x, y) the impulse response of

the acquisition device, φ(x, y) the sampling kernel, gs(x, y) the sampled version of

the input signal, sj,k the samples and Tx, Ty are the sampling intervals along the

Cartesian dimensions respectively. For the sampling setup shown in Figure 5.1, the

Figure 5.1: A typical sampling setup for 2-D FRI signals. Here, g(x, y) rep-
resents the input FRI signal, φ(x, y) the sampling kernel, gs(x, y) the sampled
version of the input signal, sj,k the samples and Tx, Ty are the sampling intervals
along the Cartesian dimensions respectively.



5.2 Multidimensional Sampling Framework 92

samples sj,k are given by:

sj,k =

∫ ∞

−∞

∫ ∞

−∞

g(x, y) φ(
x

Tx
− j,

y

Ty
− k) dx dy (5.3)

= 〈g(x, y), φ( x
Tx

− j,
y

Ty
− k)〉, (5.4)

where the kernel φ(x, y) is the time-reversed version of the impulse response of the

acquisition device. Given the samples from the setup described above, we want

to see under what conditions, perfect reconstruction of the signal g(x, y) can be

obtained from the samples sj,k. This includes the type of sampling kernels that can

be employed and the methods of reconstruction.

5.2.3 Multidimensional Sampling Kernels

The sampling kernels that we consider in the setup shown in Figure 5.1 are given by

the tensor product of two 1-D functions, that is: φ(x, y) = φ(x)φ(y). For the case

of multidimensional polynomial reproducing kernels, if two functions φ(x) and φ(y)

can reproduce the polynomials xm and yn along both the Cartesian axes, then the

resulting 2-D kernel can reproduce polynomials along both dimensions, specifically:

∑

j∈Z

∑

k∈Z

cm,n
j,k φ(x− j, y − k) = xmyn, (5.5)

for a proper choice of coefficients cm,n
j,k with m = 0, 1, . . . ,M and n = 0, 1, . . . , N .

Two-dimensional orthogonal Daubechies scaling functions [20, 83] and two-

dimensional biorthogonal B-splines [77, 78, 73], both satisfy the above property.

A function βP,Q(x, y) with Fourier transform:

β̂P,Q(jωx, jωy) =

P∏

m=0

Q∏

n=0

(
1− e−jωx

jωx

)(
1− e−jωy

jωy

)
, (5.6)

is called a B-spline of order (P +1)× (Q+1). The resulting spline has compact sup-

port and can reproduce any polynomial in the subspace spanned by {1, x, . . . , xP yQ}.
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For the case of multidimensional exponential reproducing kernels, if two func-

tions φ(x) and φ(y) can reproduce real or complex exponentials along both the

Cartesian axes, then the resulting 2-D kernel can reproduce exponentials along both

dimensions, specifically:

∑

j∈Z

∑

k∈Z

cm,n
j,k φ(x− j, y − k) = eαmxeβny, (5.7)

for a proper choice of coefficients cm,n
j,k . The choice of the exponents is restricted to

αm = α0 +mλ1 and βn = β0 + nλ2 which is done to allow the use of specific recon-

struction techniques, and are described later on. E-splines [79] satisfy the property

defined in Equation (5.7) where a function β
~α,~β

(x, y) with Fourier transform:

β̂
~α,~β

(jωx, jωy) =

P∏

m=0

Q∏

n=0

(
1− eαm−jωx

jωx − αm

)(
1− eβn−jωy

jωy − βn

)
, (5.8)

is called an E-spline of order (P + 1) × (Q + 1) where ~α = (α0, α1, . . . , αP )

and ~β = (β0, β1, . . . , βQ) can be real or complex. The resulting spline has com-

pact support and can reproduce any exponential in the subspace spanned by

{eα0xeβ0y, eα1xeβ0y, . . . , eαP xeβQy}.

Interestingly, E-splines can be regarded as a generalized version of B-splines.

The reason is that, if we set the αm and βn parameters to zero, that is ~α = ~0 and

~β = ~0, then we obtain a 2-D B-spline of order (P +1)× (Q+1). Moreover, E-splines

can reproduce a combination of polynomials and exponentials. To illustrate this,

let us assume that the set of parameters αm and βn are ~α = (0, 0, 0, α3, α4, . . . , αP )

and ~β = (0, 0, 0, β3, β4, . . . , βQ) respectively. Then the resulting spline can reproduce
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both polynomials and exponentials:

∑

j∈Z

∑

k∈Z

cm,n
j,k φ(x− j, y − k) =





xm yn for m = 0, 1, 2, and n = 0, 1, 2

xm eβny for m = 0, 1, 2, and n = 3, 4, . . . , Q

eαmx yn for m = 3, 4, . . . , P, and n = 0, 1, 2

eαmx eβny for m = 3, 4, . . . , P, and n = 3, 4, . . . , Q.

(5.9)

The use of this feature will be explained later on.

5.2.4 Geometric and Exponential Moments

As in the 1-D case, the geometric or exponential moments can be estimated to

retrieve the degrees of freedom of g(x, y). In order to obtain the geometric or

exponential moments from the samples, let us consider τm,n to be:

τm,n =
∑

j

∑

k

cm,n
j,k sj,k, (5.10)

where cm,n
j,k are the suitable coefficients used in Equation (5.5) or (5.7). By expanding

the samples sj,k we have (we have assumed that Tx = Ty = 1):

τm,n =
∑

j

∑

k

cm,n
j,k 〈g(x, y), φ(x− j, y − k)〉 (5.11)

= 〈g(x, y),
∑

j

∑

k

cm,n
j,k φ(x− j, y − k)〉. (5.12)

Assuming that a polynomial reproducing kernel is used as the sampling kernel

φ(x, y), then by substituting Equation (5.5) into the above equation, the 2-D geo-
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metric moments of the signal are obtained:

τm,n = 〈g(x, y),
∑

j

∑

k

cm,n
j,k φ(x− j, y − k)〉 (5.13)

= 〈g(x, y), xm yn〉 (5.14)

=

∫ ∞

−∞

∫ ∞

−∞

g(x, y) xm yn dx dy. (5.15)

Likewise, if an exponential reproducing kernel is used as the sampling kernel, then

by substituting Equation (5.7), the exponential moments of the signal are obtained:

τm,n = 〈g(x, y),
∑

j

∑

k

cm,n
j,k φ(x− j, y − k)〉 (5.16)

= 〈g(x, y), eαmxeβny〉 (5.17)

=

∫ ∞

−∞

∫ ∞

−∞

g(x, y) eαmxeβny dx dy. (5.18)

In the case of purely imaginary E-splines with αm = jmλ1 and βn = jnλ2, the

Fourier transform of the signal g(x, y) at (αm, βn) are obtained from the exponential

moments, that is:

τm,n = ĝ(αm, βn). (5.19)

Here, ĝ(jωx, jωy) represents the Fourier transform of the signal g(x, y).

5.3 Reconstruction Techniques

The problem of perfectly reconstructing 2-D FRI signals from their samples is more

involved and does not allow direct extension of the 1-D results. Recently, extensions

to the multidimensional case were considered by Maravic et al. [48] and Shukla et al.

[69]. Maravic et al. considered 2-D FRI signals, such as 2-D set of Diracs and bi-level

polygons and used the sinc and Gaussian sampling kernels to sample and perfectly

reconstruct such signals. Shukla et al. proposed algorithms, from the theory of

complex moments [21, 22, 54], for sampling the same 2-D signals but with the use
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of B-splines as the sampling kernel. As we previously mentioned, the sinc and the

Gaussian sampling kernels have infinite support and are not physically realizable.

Moreover, such kernels make the reconstruction algorithm unstable. In the following

sections we present our novel algorithms for sampling and perfectly reconstructing

2-D set of Diracs and bi-level polygons using E-spline sampling kernels.

5.3.1 A Sampling Theorem for 2-D Diracs

Let us assume that a set of 2-D Diracs is sampled with the sampling setup shown

in Figure 5.1. Assuming that there are K Diracs in the signal, such a signal can be

written as:

g(x, y) =

K∑

k=1

ak δ(x− xk, y − yk), (5.20)

where ak are the amplitudes and (xk, yk) are the coordinates of the Diracs respec-

tively. Since each Dirac has an amplitude and two coordinates, the signal has 3K

degrees of freedom. From the samples obtained, we first calculate the exponential

moments as follows:

τm,n =
∑

j

∑

k

cm,n
j,k sj,k (5.21)

=
∑

j

∑

k

cm,n
j,k

∫ ∞

−∞

∫ ∞

−∞

g(x, y) φ(x− j, y − k) dx dy (5.22)

=

∫ ∞

−∞

∫ ∞

−∞

g(x, y) eαmxeβny dx dy (5.23)

=
K∑

k=1

ak

∫ ∞

−∞

∫ ∞

−∞

δ(x− xk, y − yk) e
αmxeβny dx dy (5.24)

=

K∑

k=1

ak e
αmxkeβnyk . (5.25)

We can see that the derived exponential moments τm,n has a 2-D power-sum series

form. Our aim is to estimate the parameters (ak, xk, yk) from τm,n. At first sight,

one might suggest an extension of the annihilating filter method for 1-D signals

described in Chapter 2 to this scenario. However, this extension fails because the
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relation τm,n ∗ hm,n = 0, where hm,n is the annihilating filter, is not unique for the

distinct locations (xk, yk) and thus there exists no unique solution to τm,n ∗hm,n = 0.

Another way to tackle this problem is by setting the indices m and n to zero

one at a time and applying the 1-D annihilating filter method on both sets to find

the values of xk and yk separately. There are two problems with this approach: first,

the estimated locations have to be paired and this is a combinatorial problem and

second, in the case of 2-D Diracs with a common coordinate, the annihilating filter

method is unable to find the multiple poles, because of having non-unique filter

coefficients.

This is indeed a spectral estimation problem and among the earliest tech-

niques that addressed this problem was the matrix enhancement and matrix pencil

(MEMP) algorithm by Hua [36]. For the case of common coordinates problem, Hua

solves the rank deficiency problem by introducing an enhanced matrix of the original

data matrix. In this way, a partitioned and stacked Hankel matrix of the original

data matrix is constructed in a way such that the full-rank property of the original

matrix is restored. For the pairing problem, an unattractive combinatorial approach

is suggested, trying all the possible combinations to find the correct pairing. The

combinatorial approach is computationally expensive and not efficient. The ACMP

(Algebraically Coupled Matrix Pencils) method by F. Vanpoucke et al. [82] however,

introduces a new technique to find the correct pairings by simultaneously solving

two algebraically related generalized eigenvalue equations. As the matrix enhance-

ment approach in [36] is not compatible with the algebraic pairing technique, an

alternative rank restoration technique is introduced. We will now briefly outline the

ACMP algorithm, but more detailed discussions can be found in [82].

Outline of the ACMP Method

Given αm = α0 +mλ1 and βn = β0 + nλ2, the obtained measurements τm,n, which

consists of a sum of K exponentials (complex or real) with unknown coordinate
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pairs xk and yk, and amplitudes ak, can be rewritten as:

τm,n =
K∑

k=1

ak e
αmxk eβnyk =

K∑

k=1

âkϕ
m
k ψn

k , (5.26)

where âk = ake
α0xkeβ0yk , ϕk = eλ1xk and ψk = eλ2yk . Let the K(K + 1)×K(K + 1)

enhanced matrix J be defined as:

J =




H(1,1) H(2,1) . . . H(K,1)

H(1,2) H(2,2) . . . H(K,2)

...
...

. . .
...

H(1,K) H(2,K) . . . H(K,K)



, (5.27)

where each block matrix H(l,k) of size K ×K is given by:

H(l,k) = τl:K+l,k:K+k. (5.28)

For the construction of matrix J, at least 2K × 2K data points are required. If

this condition is met, this new enhanced matrix can be decomposed as follows:

J = X′AY′T , (5.29)

where

X′ =
[
XT

K+1 ΨXT
K+1 Ψ2XT

K+1 . . . ΨK−1XT
K+1

]T
(5.30)

and,

Y′ =
[
YT

K+1 ΦYT
K+1 Φ2YT

K+1 . . . ΦK−1YT
K+1

]T
. (5.31)

Here, the matrices X′ and Y′ are both of sizes K(K + 1) × K. Furthermore,

Φ, Ψ and A are all K × K diagonal matrices with parameters {ϕ1, ϕ2, . . . , ϕK},
{ψ1, ψ2, . . . , ψK} and {â1, â2, . . . , âK} along the diagonals respectively. Finally, the
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matrices XK+1 and YK+1 are given by:

XK+1 =




1 1 . . . 1

ϕ1 ϕ2 . . . ϕK

...
...

. . .
...

ϕK
1 ϕK

2 . . . ϕK
K




YK+1 =




1 1 . . . 1

ψ1 ψ2 . . . ψK

...
...

. . .
...

ψK
1 ψK

2 . . . ψK
K



. (5.32)

The matrices X′ and Y′ have a Vandermonde structure and when the matrix J

is at least of size K(K + 1) × K(K + 1), they are both full-rank . This matrix

enhancement technique restores the full-rank property of the original matrix for the

case of common coordinates problem [82]. Now, the four sub-matrices Jtl, Jtr, Jbl

and Jbr of matrix J are constructed, which correspond to the omission of the first

and last rows and columns on each block of the matrix J:

Jtl = J| = X′AY′T (5.33)

Jtr = |J = X′AY′
T

(5.34)

Jbl = J| = X′AY′T (5.35)

Jbr = |J = X′AY′
T
. (5.36)

Here, over-line indicates the omission of the first row, under-line indicates the omis-

sion of the last row, left-line indicates the omission of the first column and right-line

indicates the omission of the last column of the matrices. Because of the Vander-

monde structure of the matrices X′ and Y′, it follows that:

Jtr = X′AΨY′T (5.37)

Jbl = X′ΦAY′T (5.38)

Jbr = X′ΦAΨY′T . (5.39)

From the matrices described above we can obtain two matrix pencils Jtr − µJtl and

Jbl − λJtl. The ACMP method then operates as follows: First the SVD of Jtl is
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computed:

Jtl = UΣVH, (5.40)

where H is Hermitian operator. By multiplying UH to the left hand side and

multiplying V to the right hand side of the two matrix pencils defined above we

obtain:

UH(Jtr − µJtl)V = UHX′AΨY′TV − µUHX′AY′TV (5.41)

= FΨG− µFG (5.42)

= Ctr − µCtl, (5.43)

and,

UH(Jbl − λJtl)V = UHX′AΦY′TV − λUHX′AY′TV (5.44)

= FΦG− λFG (5.45)

= Cbl − λCtl, (5.46)

where F = UHX′A, G = Y′TV, Ctr = UHJtrV = FΨG, Cbl = UHJblV = FΦG

and Ctl = UHJtlV = FG = Σ. By applying Eigen-value-decomposition (EVD) on

the new matrix pencils Ctr − µCtl and Cbl − λCtl, each of the poles ϕk and ψk are

obtained:

eig(C−1
tl Ctr) = eig(G−1F−1FΨG) = eig(G−1ΨG) = Ψ (5.47)

eig(C−1
tl Cbl) = eig(G−1F−1FΦG) = eig(G−1ΦG) = Φ. (5.48)

The identical transformation G on both equations guarantees that we have the

correct pairing for the estimated ϕk and ψk values. The steps below present a

pseudo code of the algorithm:

1. Construct the enhanced matrix J from the moments.

2. Construct the sub-matrices Jtl, Jtr and Jbl from the matrix J.
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3. Compute the singular value decomposition (SVD) of the sub-matrix Jtl, that

is Jtl = UΣVH.

4. Generate the matrices Ctl, Cbl and Ctr with the following equations: Ctl = Σ,

Ctr = UHJtrV, Cbl = UHJblV.

5. Apply the EVD to C−1
tl Ctr and C−1

tl Cbl. This leads to the unknown poles

since: eig(C−1
tl Ctr) = Ψ and eig(C−1

tl Cbl) = Φ.

As the exact values of the poles ϕk and ψk are found using the above method, the

matrices X′ and Y′ can now be constructed to obtain the parameters âk, using the

following equation:

A = (X′†)J(Y′T )†, (5.49)

where † stands for pseudo-inverse. From the estimated parameters âk and the poles

ϕk and ψk we can easily find the amplitudes ak and coordinates xk and yk as follows:

xk =
ln(ϕk)

λ1
, yk =

ln(ψk)

λ2
, ak =

âk
eα0xkeβ0yk

. (5.50)

As mentioned above, for a set of K 2-D Diracs, at least 2K×2K data points

are required for the construction of the enhanced matrix. This means that the 2-D

E-spline order (P +1)× (Q+1) needs to be at least 2K× 2K in order to reproduce

the 2K exponential moments along both x and y axes. We can now summarize the

above discussion with the following proposition:

Proposition I - A set of K 2-D Diracs is uniquely determined from the

samples sj,k = 〈g(x, y), φ( x
Tx

− j, y

Ty
− k)〉 provided that the sampling kernel φ(x, y),

can reproduce exponentials with an order 2K along both the Cartesian axes.

As an example, let us consider the input signal to be a set of 4 2-D Diracs

in a frame size of 256 × 256, shown in Figure 5.2(a). The signal is passed through

the E-spline sampling kernel of order 2K × 2K = 8× 8 shown in Figure 5.2(b) and

then sampled at the intervals Tx = Ty = 16, as shown in Figure 5.2(c). Given the

samples, the exponential moments are calculated and the ACMP method is applied
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to retrieve the Diracs, which are shown in Figure 5.2(d).
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Figure 5.2: Sampling and reconstructing a set of 2-D Diracs using E-splines
(a) The original input signal consisting of 4 Diracs in a frame size of 256× 256.
(b) The 2-D E-spline sampling kernel of order 8 along both dimensions. (c)
The 16× 16 samples of the input signal. (d) The reconstructed signal with the
use of ACMP method.

Having presented a sampling theorem for set of 2-D Diracs, we now move on

to our next considered signal, bi-level polygons.

5.3.2 A Sampling Theorem for Bi-level Polygons

Consider a non-intersecting, convex and bi-level K-sided polygon with vertices at

points (xk, yk), k = 1, 2, . . . , K. The described polygon can be uniquely specified by

its K vertices and therefore has degrees of freedom equal to 2K. Lee and Mittra [44]
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derived a general formula for the Fourier transform of any K-sided bi-level polygon,

where they showed that the Fourier transform is directly related to the location of

the polygon’s vertices (xk, yk):

ĝ(jωx, jωy) =
K∑

k=1

ej(ωxxk+ωyyk)
pk−1 − pk

(ωx + pk−1ωy)(ωx + pkωy)
. (5.51)

Here, pk represent the gradients of the polygonal lines. The reader can refer to [44]

for the derivation of this result. As τm,n are the exponential moments of the input

signal and given αm = jmλ and βn = jnλ for the case of purely imaginary E-splines

(we have assumed that α0 = β0 = 0 and λ1 = λ2 = λ), we can deduce the following:

τm,n = ĝ(αm, βn) (5.52)

=

K∑

k=1

e(αmxk+βnyk)
pk−1 − pk

(mλ+ pk−1nλ)(mλ+ pknλ)
(5.53)

=

K∑

k=1

ak,m,n e
αmxk eβnyk (5.54)

=
K∑

k=1

ak,m,nϕ
m
k ψn

k , (5.55)

where ak,m,n =
pk−1−pk

(mλ+pk−1nλ)(mλ+pknλ)
, ϕk = ejλxk and ψk = ejλyk . The above equation

closely follows the data model shown in the ACMP method, however, since the result

for the Fourier transform has a frequency-varying amplitude, the ACMP method

cannot be applied to find the locations (xk, yk). Having said that, by setting m

and n indices to zero separately, we will end up with two equations in power-sum

series form, which means that annihilating filter method can be applied to retrieve

the parameters xk and yk separately. We already know that such a method has the

problem of finding the correct pairings between the xk and yk coordinates, however,

with the use of Radon transform [24] and the projection-slice theorem [32, 54] we

can retrieve the locations of the vertices of bi-level polygons from their moments.

Projection-slice theorem states that the Fourier transform function

ĝ(jωx, jωy) evaluated along a line passing through the origin at an angle θ, is iden-
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tical to the one dimensional Fourier transform of the Radon projection Rg(x, θ). In

mathematical form:

ĝ(jω cos(θ), jω sin(θ)) = R̂g(jω, θ). (5.56)

In our setup, θ = tan−1( n
m
) with m and n being the indices of the moments and

ω =
√
(m2 + n2). With the help of this mapping, we can transform the Fourier

coefficients of bi-level polygons, obtained from purely imaginary E-spline sampling

kernel, to the Radon domain as follows:

R̂g(jω, θ) = τωcos(θ), ωsin(θ)

=

K∑

k=1

pk−1 − pk
(ωcos(θ) + pk−1ωsin(θ))(ωcos(θ) + pkωsin(θ))

eαωcos(θ)xk+βωsin(θ)yk

= ω−2
K∑

k=1

ak,θ e
αωcos(θ)xk+βωsin(θ) ,

where ak,θ = pk−1−pk
(cos(θ)+pk−1sin(θ))(cos(θ)+pksin(θ))

. Let us introduce S(ω, θ) =

τωcos(θ), ωsin(θ) × ω2. The above equation can now be rewritten as:

S(ω, θ) =

K∑

k=1

ak,θ e
αωcos(θ)xk+βωsin(θ)yk . (5.57)

At ω = 0, S(ω, θ) = 0 so the minimum required spline order can be decreased by 1 as

the first data sample is always zero. Since the angle θ is fixed for a given projection,

then the mapped equation at different projections has a power-sum series form:

Sθ(ω) =

K∑

k=1

âke
jωλzk =

K∑

k=1

âku
ω
k , ω 6= 0, (5.58)

where âk = ak,θ, zk = xkcos(θ) + yksin(θ) and uk = ejλzk . By using the annihilating

filter method we can retrieve the parameters zk for each projection. For example,

by setting m = 0 and n = 0 we have the projections at θ = 0 and θ = 90 degrees

respectively, likewise if m = n then we have the projection at 45 degrees. Further

angles can be obtained by choosing different patterns such as m = 2n or n = 2m.
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Each projection, as explained above, will result in a power-sum series form and

annihilating filter method can be used to retrieve the parameters zk which correspond

to the sums of the vertices of the polygon in different directions. By back-projecting

the parameters zk according to their projection angle θ we are able to retrieve

some information about the polygon’s vertices. As any K-sided convex and bi-level

polygon is completely specified by the location of its K vertices, it is known [47]

that K +1 projections will entirely specify the vertices of the bi-level polygon, that

is, points that have K + 1 line intersections from the back-projections correspond

to the K vertices.

To reconstruct a set of K 1-D Diracs from its samples, we need at least

2K data points, which means a minimum spline order of 2K is required. For bi-

level polygons however, as the first data sample is always zero, a minimum number

of 2K − 1 exponential moments at each projection angle is required. Thus, the

minimum spline order required for a perfect reconstruction of a given K-sided bi-

level polygon is p.(2K − 1) − (p − 1) where p is the number needed in order to

produce at least K + 1 projections. For example for K = 3 or 4 the correct value

of is p = 2 and for K = 5, 6, 7, 8 the value is p = 3. The value of p can be found

by inspection but it can be shown that p is O(K), thus, the order of the spline is

O(K2) along both dimensions. We can now summarize the above discussion with

the following proposition:

Proposition II - A K-sided bi-level polygon is perfectly reconstructed from

the samples sj,k = 〈g(x, y), φ( x
Tx

− j, y

Ty
− k)〉 provided that the sampling kernel

φ(x, y), can reproduce exponentials with an order p(2K − 1) − (p − 1) along both

dimensions, where p is the number required in order to produce at least K + 1

projections.

As an example, let us consider our input signal to be a bi-level triangle in

a frame size of 256 × 256, shown in Figure 5.3(a). The signal is passed through

the E-spline sampling kernel of order 9 × 9 and then sampled at intervals Tx =

Ty = 8, as shown in Figure 5.3(b). Given the samples, the exponential moments are
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calculated and 3+1 = 4 projections are taken at the angles 0, 90, 45 and tan−1(2).

From the projections, all the zn parameters are calculated and then normalized with
√

(m2 + n2) and finally back-projected. Figure 5.3(c) shows the reconstructed signal

where the crosses are the actual vertices of the original signal. It can be seen that

the locations of the vertices of the triangle have been perfectly recovered.

(a) (b) (c)

Figure 5.3: Sampling and reconstructing a bi-level polygon using E-splines (a)
The original input bi-level triangle (b) The 32× 32 samples of the input signal
[not to scale] (c) The reconstructed vertices of the polygon where the crosses
are the actual vertices of the original signal.

The 2-D order of the spline required is O(K2)×O(K2) and this suggests that

as the complexity of the signal increases, a higher sampling rate will be required. In

the next section we show how this can be avoided by using a multichannel acquisition

system.

5.4 Multichannel Sampling Framework

In this section we investigate the problem of multichannel sampling of 2-D FRI

signals. A model of the multichannel system observing multidimensional signals

is shown in Figure 5.4 where the sampling kernels φ1(x), φ2(x), . . . , φM(x) receive

different geometrically transformed versions of the original signal g(x, y). Here, the

unknown transformation parameters are denoted by T2, . . . , TM .

For the sake of clarity, we will first assume that the transformations or rather
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Figure 5.4: The proposed multichannel sampling setup for 2-D FRI sig-
nals. The sampling kernels φ1(x), φ2(x), . . . , φM (x) receive different geometri-
cally transformed versions of the original signal g(x, y). Here, the unknown
transformation parameters are denoted by T2, . . . ,TM .

the channel parameters T2, . . . , TM are 2-D translations (∆xi,∆yi), i = 2, 3, . . . ,M

and present an extension of the algorithm presented in Chapter 3 to this scenario.

Then we consider the channel parameters to be affine transformations which in-

clude scaling, rotation, shearing and translations and present a novel algorithm for

simultaneous estimation of the channel parameters as well as the input signal.

5.4.1 Channel Synchronization and Signal Reconstruction

under 2-D Translations

In this section, we consider the geometric transformations in each channel to be 2-D

translations (∆xi,∆yi), only. For simplicity, we assume that the signal g(x, y) is

observed by a multichannel sampling system shown in Figure 5.4 with 2 channels

and the sampling kernel in each channel is an E-spline of equal order P ×Q:

φ̂1(jωx, jωy) =
P∏

m=0

2Q−1∏

n=0

(
1− eαm−jωx

jωx − αm

)(
1− eβn−jωy

jωy − βn

)
(5.59)

φ̂2(jωx, jωy) =

2P−1∏

m=P

2Q−1∏

n=0

(
1− eαm−jωx

jωx − αm

)(
1− eβn−jωy

jωy − βn

)
. (5.60)
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As shown above, we have set one parameter to be common between the exponents of

E-spline in one dimensions, specifically, both kernels can reproduce the exponentials

eαP xeβny for n = 0, 1, . . . , 2Q− 1. The samples of the i-th channel, with i = 1, 2, are

given by:

sij,k = 〈g(x−∆xi, y −∆yi), φ(x− j, y − k)〉, (5.61)

where (∆x1,∆y1) = (0, 0). Our goal is to have a reconstruction technique that can

perfectly retrieve the unknown translation parameters as well as the input signal.

Give the samples, we can obtain the exponential moments τ im,n for both channels:

τ 1m,n =

∫ ∞

−∞

∫ ∞

−∞

g(x, y) eαmxeβnydx dy, (5.62)

where m = 0, 1, . . . , P and n = 0, 1, . . . , 2Q− 1 and,

τ 2m,n =

∫ ∞

−∞

∫ ∞

−∞

g(x−∆x2, y −∆y2) e
αmxeβnydx dy = τ 1m,ne

αm∆x2eβn∆y2, (5.63)

where m = P, P + 1, . . . , 2P − 1 and n = 0, 1, . . . , 2Q− 1. We can see that there is

a direct relationship between the exponential moments of the two signals. Now, by

taking logarithms on both sides of Equation (5.63), we obtain a system of simple

linear equations which we can solve for the translation parameters ∆x2 and ∆y2,

that is: 
∆x2

∆y2


 =


αP β0

αP β1




−1
ln(

τ2
P,0

τ1
P,0

)

ln(
τ2
P,1

τ1
P,1

)


 . (5.64)

Given the exact translation parameters, we can now estimate the exponential mo-

ments τ 1m,n, with m = P, P + 1, ..., 2P − 1 from τ 2m,n as follows:

τ 1m,n = τ 2m,ne
−αm∆x2e−βn∆y2, (5.65)

where m = P, P + 1, ..., 2P − 1 and n = 0, 1, . . . , 2Q− 1.

The result above, reveals that independently of g(x, y) it is possible to esti-

mate the channel parameters and synchronize the channels exactly from the obtained
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measurements. Therefore, once the channels are synchronized and the entire expo-

nential moments of the input signal are estimated, the corresponding reconstruction

algorithm, as described in Section 5.3.1 and 5.3.2, is applied to perfectly recover the

input signal. We now move on to the case where the transformation parameters are

affine transformations.

5.4.2 Channel Synchronization and Signal Reconstruction

under Affine Transformation

The above discussed method can be applied to any 2-D FRI signal as long as the

transformation parameters are restricted to 2-D translations. This is because intro-

ducing more complicated geometric transformations such as rotation, would result

in a non-linear relationship between the exponential moments of the different signals

and therefore our introduced method cannot be applied. However, we will show that

by employing a modified E-spline sampling kernel, the channel parameters and the

input signal can still be perfectly estimated.

Let us assume that we have a two-channel sampling system and the input

signal is a K-sided bi-level polygon (this method would also work for 2-D Diracs)

with affine transformation introduced in the second channel. Affine transformation

for 2-D signals is defined by a 6 degree parameter transformation and is defined as:

[x′ y′]T = A · [x y]T + [∆x ∆y]
T , (5.66)

where [x y] represent the coordinates of the original signal, [x′ y′] represent the affine

transformed coordinates, [∆x ∆y] represents a 2-D translation and A is a 2 × 2

matrix. Matrix A is composed of a rotation parameter θ, 2-D scaling (Xscale, Yscale

and 2-D shearing (Xshear, Yshear), and is given as follows:

A =


A11 A12

A21 A22


 =


cos(θ) − sin(θ)

sin(θ) cos(θ)


 ·


Xscale Xshear

Yshear Yscale


 . (5.67)
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The unknown parameters of the affine transformation, can be estimated with the

use of geometric moments up to order 4 which can be obtained by a polynomial

reproducing kernel [29, 45, 86]. As we mentioned earlier, E-splines are a generalized

version of B-splines, thus, a combination of polynomials and exponentials from E-

splines can be reproduced. The Fourier transform of the corresponding modified

E-spline sampling kernel will then be as follows:

β̂
~α,~β

(ωx, ωy) =

(
1− e−jωx

jωx

)3(
1− e−jωy

jωy

)3 P∏

m=0

Q∏

n=0

(
1− eαm−jωx

jωx − αm

)(
1− eβn−jωy

jωy − βn

)
.(5.68)

The produced spline is of order (P +1+ 4)× (Q+1+ 4), has compact support and

can reproduce polynomials up to order 4 along both dimensions and can reproduce

exponentials up to order (P +1)×(Q+1) (see Equation (5.9)). Therefore, the affine

parameters can be estimated from the modified sampling kernel. Given the channel

parameters, the next move is to recover the input signal.

As mentioned earlier, there is a non-linear relationship between the expo-

nential moments of the different signals. However, as affine transformation is an

invertible geometric transform, the following equation will also hold true:

[x y]T = A−1 ([x′ y′]T − [∆x ∆y]
T ). (5.69)

Given the equation above, we propose our algorithm for signal estimation as follows:

First, we take two projections from the samples of the reference signal (i.e. first

channel) and then calculate its corresponding back-projections. This will lead to

K2 solutions. Then, at the same angles, we take two projections from the samples

of affine transformed signal and calculate its corresponding back-projections. This

will also lead to K2 solutions. We estimate the affine parameters from the geometric

moments of the two signals and then apply the inverted affine parameters, as was

shown in Equation (5.69), on each of the K2 solutions of the affine transformed

signal. We then map those points to the K2 solutions of the reference signal. The

mapped points that intersect with the K2 solutions of the reference signal, will be
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exactly K points and correspond to the vertices of the input bi-level polygon signal,

as long as A12 6= 0 and A21 6= 0.

To show that there are exactly K intersected points, let us consider g(x, y)

to have 2 Diracs at the positions (x1, y1) and (x2, y2) and let g
′

(x, y) be an affine

transformed version of g(x, y). With 2 projections taken from the samples of each

signal at the angles 0 and 90 degrees, we will end up with K2 = 4 solutions for the

signal g(x, y) at the positions (x1, y1), (x1, y2), (x2, y1), (x2, y2) and K
2 = 4 solutions

for the transformed signal g
′

(x, y) at the positions (x
′

1, y
′

1), (x
′

1, y
′

2), (x
′

2, y
′

1), (x
′

2, y
′

2).

Given that the signal g
′

(x, y) is an affine transformed version of the signal g(x, y),

we have:




x

′

1 = A11x1 + A12y1 +∆x

y
′

1 = A21x1 + A22y1 +∆y

and




x

′

2 = A11x2 + A12y2 +∆x

y
′

2 = A21x2 + A22y2 +∆y.

(5.70)

From the set of equations given above, we know that at least K = 2 points will

match to the correct points. Now, by considering the above equations, and applying

the affine transformation parameters on the rest of the solutions, that is at (x1, y2)

and (x2, y1), we have:




x

′

1 6= x
′

2 6= A11x1 + A12y2 +∆x

y
′

1 6= y
′

2 6= A21x1 + A22y2 +∆y

and




x

′

2 6= x
′

1 6= A11x2 + A12y1 +∆x

y
′

2 6= y
′

1 6= A21x2 + A22y1 +∆y,

(5.71)

where A12 6= 0 and A21 6= 0. Therefore, exactly K = 2 points will match, which are

the correct solutions. This will be true for any K as long as A12, A21 6= 0.

For the sake of clarity, the steps given below shows the procedures required

to sample bi-level polygons in our proposed multichannel framework with M = 2,

with affine transformation introduced on the second channel:

1. Choose the sampling kernel on both channels to be of equal order (2K − 1 +

4)× (2K − 1 + 4) where the number 4 corresponds to the spline order which

is required for estimating the affine transformation parameters and the order
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(2K − 1) × (2K − 1) corresponds to the minimum spline order required to

produce at least 2 projections for each signal (normally at 0 and 90 degree).

2. Estimate the affine transformation parameters between the two-channels from

their corresponding geometric moments.

3. Take two projections from the samples of both channels at the same angles and

compute their corresponding back-projections. This will lead to K2 solutions

for each of the signals.

4. Invert the estimated affine parameters and apply them (see Equation (5.69))

on each of the K2 solutions obtained from the second channel. Map those

points to the reference signal.

5. The mapped points that intersect with the K2 solutions of the reference signal

correspond to the K vertices of the input bi-level polygon signal.

As an example, let us consider the input signal to be a 4-sided bi-level polygon

shown in Figure 5.5(a), which is observed by a two-channel sampling system. The

second channel observes an affine transformed version of the input signal with the

following parameters: (∆x,∆y) = (90,−90)1, θ = 50, (Xscale, Yscale) = (1.05, 1.05)

and (Xshear, Yshear) = (0.5, 0.2), shown in Figure 5.5(b). Both signals are sampled

with an E-spline sampling kernel of order 2K − 1 + 4 = 11, shown in Figures

5.5(c)(d)(e). Two projections are taken at the angles 0 and 90 degrees for both

channels and this will lead to K2 = 16 solutions, as shown in Figure 5.5(f)(g). The

affine parameters, calculated from the geometric moments, are inverted and applied

to each of the K2 = 16 solutions of the affine transformed signal and then mapped

to the solutions of the reference signal, as shown in Figure 5.5(h). As can be seen,

only K = 4 points match with the K2 = 16 solutions, which correspond to the true

vertices of the input bi-level polygon.

1In pixels.
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(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 5.5: Multichannel sampling of bi-level polygons under affine transfor-
mation. (a) The reference signal in a frame data size of 256×256. (b) The affine
transformed signal with (∆x,∆y) = (90,−90), θ = 50, (Xscale, Yscale) = (1.05, 1.05)
and (Xshear, Yshear) = (0.5, 0.2). (c) 2-D modified E-spline sampling kernel of
order 2K − 1 + 4 = 11. (d) & (e) The 16× 16 samples of both signals. (f) & (g)
K2 solutions of both signals. (h) The reconstructed vertices of the reference
signal. The green circles are the true vertices and the white asterisks are the
mapped solutions.

5.5 Summary

In this chapter we showed that with the use of ACMP method, projection-slice

theorem and Radon projections, multidimensional parametric signals such as set of

2-D Diracs and bi-level polygons can be sampled and perfectly reconstructed using

E-splines as the sampling kernel. For the case of multichannel sampling scenario,
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assuming that the geometric transformations are restricted to 2-D translations only,

we showed that the different channels can be synchronized regardless of the input

FRI signal. For the case of affine transformations however, we illustrated that,

with the use of modified E-splines and also taking affine transforms’ invertibility

into account, we can simultaneously estimate the channel parameters and the input

signal.
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Chapter 6

Conclusion

In this thesis we presented a possible extension of the theory of sampling non-

bandlimited 1-D and 2-D signals with finite rate of innovation to the case of multi-

channel acquisition systems. What distinguishes our considered multichannel setup

to other setups is that, we assume each channel receives a disrupted version of the

observed input signal with some unknown parameters which could be delays and

gains in the 1-D case or affine transformations in the 2-D case. We posed both

the channel parameters estimation stage and the signal reconstruction stage as a

parametric estimation problem and demonstrated that a simultaneous exact syn-

chronization of the channels and reconstruction of the input 1-D and 2-D FRI signal

is possible. Furthermore, for the case of noisy measurements, we showed in this the-

sis that by considering the Cramér-Rao bounds as well as the numerical simulations,

the multichannel systems are more resilient to noise than the single-channel ones.

In the following section, we briefly summarize the contents of each chapter

of this thesis.

6.1 Thesis Summary

In Chapter 2, we presented a background on the 1-D sampling framework of FRI

signals. We described the different elements of the sampling setup used for sampling



6.1 Thesis Summary 116

FRI signals and showed how a set of 1-D Diracs can be sampled and perfectly

reconstructed using both polynomial and exponential reproducing kernels. Then

we considered the case of noisy scenario and presented some denoising techniques

such as matrix pencil method and Cadzow’s algorithm for the reconstruction of the

innovation parameters from the noisy samples.

In Chapter 3, we presented a possible extension of the theory of sampling

FRI signals to the case of multichannel acquisition systems. We showed that by

synchronizing the different channels of the proposed multichannel sampling setup,

one can estimate the unknown delays and gains introduced within the channels,

regardless of the input FRI signal. For the case of noisy measurements, we showed by

evaluating the CRB that, despite the fact that the unknown delays are required to be

estimated for synchronization, the number of samples required can be reduced by the

multichannel setup. Moreover, our numerical results with the multichannel sampling

setup revealed that the performance of the reconstruction algorithm improves over

the single-channel ones.

In Chapter 4, we proposed our novel algorithms for system identification

problem, based on the finite rate of innovation sampling theory. The novelty of this

chapter was divided into two section, where in the first section, we showed that by

having access to the input signal, system identification problem could be solved at

low sampling rates by employing the multichannel sampling setup and exponential

moments. Then, in the second section, we considered the problem of blind system

identification where we showed that a recursive method could be utilized to estimate

both the input FRI signal and also the unknown system when we only have access

to the output samples.

In Chapter 5, we first presented and discussed the sampling theory of multidi-

mensional FRI signals. We showed that with the use of ACMP method, projection-

slice theorem and Radon projections, multidimensional parametric signals such as

set of 2-D Diracs and bi-level polygons can be sampled and perfectly reconstructed

using exponential splines. For the case of multichannel sampling scenario, we first
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assumed that the geometric transformations are restricted to 2-D translations only

and showed that the different channels can be synchronized regardless of the input

FRI signal. Then we considered the case of affine transformations as the channel

parameters and illustrated that, with the use of modified E-splines we can simulta-

neously estimate the channel parameters as well as the input signal.

6.2 Future Research

There are many interesting while challenging open problems to look at in our re-

search work and some of them are given below:

Numerical Simulations versus Cramér-Rao Bounds

In Chapter 3, we theoretically showed that the described multichannel sampling sys-

tem is more resilient to noise than the single-channel ones. This was also confirmed

with our numerical simulations. However, none of the denoising methods employed

achieve the CRB and the gap between the CRB and the performance of the nu-

merical simulations is quite significant. Although sampling FRI signals under the

presence of noise has been extensively considered in [14], but we think that it will be

interesting to see if more robust and reliable algorithms for sampling complex FRI

signals under noisy conditions, such as adaptive hard-thresholding methods, can be

introduced.

Convergence of the Proposed Blind System Identification

Method

In Chapter 4, we mentioned that our empirical results show that by applying the

proposed method for blind system identification recursively, the estimations converge

to the actual input signal g(x) and the unknown function ψ(x). This was revealed

to us by taking a number of simulations with different parameters. However, a more
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subtle way to approach the convergence problem would be to provide a mathematical

evidence that the proposed method is convergent.

Proposed Sampling Theorem for Bi-level Polygons

In Chapter 5, we presented a novel algorithm for sampling and perfectly reconstruct-

ing bi-level polygons using E-splines, where we showed that by using the projection-

slice theorem, we can recover the vertices of bi-level polygons. Since for perfect

reconstruction K + 1 projections are needed for a K-sided bi-level polygon, the

order of E-spline used is O(N2) which is quite redundant when compared to the de-

grees of freedom of the signal O(2K). It would be interesting to find more efficient

ways of sampling and perfectly reconstructing bi-level polygons using E-splines.

The Potentials of E-splines

We have already mentioned that, E-splines are compact support splines that are

practically implementable and tend to be more stable than other kernels. Moreover,

from purely imaginary E-spline sampling kernels, the Fourier transform coefficients

of an input signal can be obtained. Therefore, they have a great potential to be

used as sampling kernels in various applications. For example, the model of neu-

ral signals are very similar to the model of E-splines convolved with Diracs and

therefore E-splines can have vast number of applications in neuroscience. We have

already considered E-splines for the problem of system identification in this thesis,

however, we think that more and more applications could benefit from these stable

and practically implementable sampling kernels.
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Appendix A

Cramér-Rao Bound Derivation

Let us assume that we have an unbiased estimator Θ̂ that is required to estimate a

vector of K unknown parameters from noisy samples ŝk. We denote the vector of

parameters by Θ as follows:

Θ = (Θ1,Θ2, . . . ,ΘK)
T .

The measured noisy samples ŝk depend on the unknown parameters Θ and the

added noise ǫk, that is:

ŝk = f(Θ, k) + ǫk,

where we have assumed ǫk to be additive white Gaussian noise, independent of the

samples sk and the function f(Θ, k) is a function that depends on the vector Θ and

the sample index k. Since we have an unbiased estimator, we have:

E(Θ̂) = Θ.

The Cramér-Rao bound for any unbiased estimator Θ̂ of the parameters Θ gives

the lowest achievable bound at a given noise level, and is given by the following

expression:

var(Θ̂) ≥ I−1(Θ),
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where I(Θ) is the Fisher information matrix defined as:

I(Θ) = E(∇l(Θ) · ∇l(Θ)T ).

Here, l(Θ) is the log-likelihood function of Θ. The log-likelihood function of a set

of parameters Θ given the samples ŝk is defined by the probability of the samples

given the parameters Θ. Therefore, the log-likelihood function is given as follows:

l(Θ) = ln P (ŝ0, ŝ1, . . . , ŝN−1|Θ),

where P is the probability distribution of the samples conditioned on the parameters

Θ. Since ǫk is assumed to be white Gaussian with zero mean and variance σ2, the

probability distribution of ǫk is therefore given by [14, 26]:

pǫ(ǫk) =
1√
2πσ2

exp

(
− ǫ2k
2σ2

)
.

Given the probability distribution of the noise, we can deduce that:

pŝ(ŝk|Θ) = pǫ(g
−1(ŝk))

∣∣∣∣
∂g−1(ŝk)

∂ŝk

∣∣∣∣

=
1√
2πσ2

exp

(
−(ŝk − f(Θ, k))2

2σ2

)

= pǫ(ŝk − f(Θ, k)),
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where g(ǫk) = ŝk = f(Θ, k) + ǫk. Since the noise samples are independent, the

following can be deduced for the log-likelihood function:

l(Θ) = ln P (ŝ0, ŝ1, . . . , ŝN−1|Θ)

= ln

N−1∏

k=0

pŝ(ŝk|Θ)

=

N−1∑

k=0

ln pŝ(ŝk|Θ)

=
N−1∑

k=0

ln pǫ(ŝk − f(Θ, k)).

To calculate the Fisher information matrix, we need to apply the divergence operator

on the log-likelihood function. Therefore we compute the partial derivatives of l(Θ)

with respect to the parameters Θ as follows:

∂l(Θ)

∂Θi

=
∂l(Θ)

∂ŝk − f(Θ, k)

∂ŝk − f(Θ, k)

∂f(Θ, k)

∂f(Θ, k)

∂Θi

= −
N−1∑

k=0

p̂ǫ
pǫ
(ŝk − f(Θ, k))

∂f(Θ, k)

∂Θi

=

N−1∑

k=0

ŝk − f(Θ, k)

σ2

∂f(Θ, k)

∂Θi

=
1

σ2

N−1∑

k=0

ǫk
∂f(Θ, k)

∂Θi

.

Thus,

∇l(Θ) =
1

σ2

N−1∑

k=0

ǫk∇f(Θ, k).
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Since the noise samples are independents and uncorrelated, the Fisher information

matrix can now be calculated as follows:

I(Θ) = E(∇l(Θ) · ∇l(Θ)T )

= E

(
1

σ4

N−1∑

k=0

N−1∑

j=0

ǫkǫj∇f(Θ, k)∇f(Θ, k)T
)

=
1

σ4

N−1∑

k=0

N−1∑

j=0

δk,j∇f(Θ, k)∇f(Θ, k)T

=
1

σ2

N−1∑

k=0

∇f(Θ, k)∇f(Θ, k)T .

Having obtained the Fisher information matrix, the Cramér-Rao bound, as men-

tioned previously, is given by the inverse of the Fisher information matrix:

CRB(Θ) = σ2

(
N−1∑

k=0

∇f(Θ, k) · ∇f(Θ, k)T
)−1

.

The CRB equation derived above only holds true for real-valued functions.

For the case of complex-valued E-spline sampling kernels, the samples are complex

valued and the noisy samples are assumed to be corrupted by complex AWGN,

defined as ǫk = uk + jvk where u and v are both real and independent random

variables with zero mean and σ2

2
variance. The joint probability distribution of u

and v is given by:

pu,v(uk, vk) =
1√
2π σ2

2

exp

(
− u2k
2σ2

2

)
· 1√

2π σ2

2

exp

(
− v2k
2σ2

2

)

=
1

πσ2
exp

(
−u

2
k + v2k
σ2

)

=
1

πσ2
exp

(
−|ǫ̃n|2

σ2

)

= pǫ̃(ǫ̃n),

where ǫ̃n =
√
u2k + v2k. Given the probability distribution of the noise, the log-
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likelihood function l(Θ) will be:

l(Θ) =

N−1∑

k=0

ln pǫ̃(ŝk − f(Θ, k)).

To calculate the Fisher information matrix, we need to apply the divergence operator

on the log-likelihood function like before. Applying a similar procedure will yield:

I(Θ) =
2

σ2
Re

(
N−1∑

k=0

∇f(Θ, k) · ∇f ∗(Θ, k)

)
,

where ∗ stands for conjugate. The Cramér-Rao bound will therefore be as follows:

CRB(Θ) =
σ2

2
Re

(
N−1∑

k=0

∇f(Θ, k) · ∇f ∗(Θ, k)

)−1

.
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