Imperial College London

Department of Electrical and Electronic Engineering
Final Year Project Report 2007

Title: Distributed Image Compression
Name: Hojjat Akhondi Asl
Course: 4T

Original Imagel Compressed Imagel Noisy Imagel

Motion Vector Residual Image Compressed Residual Image

5 2 F-3 a k-3

Project Supervisor: Dr. Pier Luigi Dragotti
Second Marker: Mr. Mike Brookes

Abstract

The emerging wireless camera networks have restrictions on battery life, memory and
computational power. The wireless cameras cannot communicate with each other due to
power constraints and inter-source communication costs. The problem of resource
constraint wireless camera network can be alleviated with the use of distributed image
coding. The idea of distributed image coding is used to compress images acquired from the
camera network by exploiting the statistical properties between the captured images. The
aim of this project is to see how the distributed coding system performs when compared to
Joint source coding and Independent coding with the use of wavelet transform. We model
our camera network with a pair of stereo pictures. For side information, we allow the
cameras to overhear a coded and noisy version of what the first camera is sending to the

decoder.

Several design issues and implementations of the algorithm are discussed. The bit-rate that
the reference image is compressed at, the variance of the channel noise and the bit
allocation process, play an important part on how our algorithm performs. It can be said that
although being as efficient as joint source coding with distributed coding is practically

impossible, but it is possible to get very close to it.

Table of Contents

ABSTRACT ... iiiiiiiiiriieetteateetreneeeteneseetensssessensssssssnsssssesnsssssensssssesnssssseensssssesnsssssssnssesssnnssesssnssessnns 3
TABLE OF FIGURES.........cittuiiiiiieiciitiecieetenesiestenessesssnssessennsssssennssssesnsssssesnsssssesnsssssssnssssssnnssesssnsssssaen 5
ACKNOWLEDGEMENTS......cccuiiitieieiitieietteneeeetenessestsnssessennsssssensssssssnsssssssnsssssssnssesssnnssesssnnssesssnsssssaen 9
(0 7Y 2 P 11
INTRODUCTION AND BACKGROUNDcccuuiiitimniiiienncitennniettennsiersennssessennssessenssssssenssessssnssessasnssanss 11
1.1 DISTRIBUTED SOURCE CODING ..eceeeuutrtrreeeeeeseuerireeeeseessnssseeseessasssssenssesssssmnssssessssssssssssssssesssssnssssneees 12
CHAPTER 2 ... iiiiiiiiiteiiiitneeinienesisienesssstenssssssensssssesnsssssesnsssssasnsssssesnsssssesnsssssssnsssssennssssssnnsssssnnns 15
OVERVIEW OF THE ALGORITHIMciiiieiiiiieniiiienniiiiiensiieieensiesssnnssesssnsssesssnsssssssnsssssssnssssssnnssssssnnnes 15
2.1 PROPOSED SOLUTION ceeieiiiutttteeeeeeeeiuuttreeeesssasssseeeeesssssansssnesssssasansssssessssssnssssnsssessssssssessssesssannnnes 16
CHAPTER 3 ...ciiiiiiiireiiiitneeisienesisienesssstenssssssensssssesnsssssesnsssssesnsssssesnsssssesnssssssnnssssssnnssssssnnsssssnnns 18
SPECIFICATIONS OF THE ENCODERS AND THE DECODER.....cccccitttueiiiinnnniiinnnnsiiieasssssienssssssssssssssenes 18
3.1 THE ENCODERS...uuttttteeettsiittteeeeeeesseuuttreeeeesssssussreeessssssssssseesessssssssseeseesssssssssneesssssssssssnneesesssnsnsenne 18
3.1.1 Discrete WaVelet TrANSFOIMoueeecuveeeeeiiieeeeiieeecieeeestteeeesisesessisseassssesasssssesesssseaeas 19
3.1.2 COMPATISON Of IMAGES ...cceeveeeeeiieeeeeeeetee e ettt e e sttea e e st e e e sateesasssesaeassesaessssasasssesanas 22
3.1.3 WAVEICT FltEIS ..uuveeeeeereeeeeeeeeeeeeeetee et ettt e e e e ettt e e e e et et baaas e e e eesstsssassaeeeessssssesaaaenn 22
3.1.4 Quantization and Inverse QUANTIZATION.ceeeeevuveereeeeesiiiieireseeeisiiiseeeseeeeessiisssraaeenns 23

I BT 2 11 1Y Lo Yole [1 o] BSOS PSRRI 24
3.1.6 Encoderl - The REference IMOQEecccucueeeeecuueeeeiiiisessiiieesisesessisesesssssasssssesesssssesens 27
3.1.7 Encoder 2 - The AQJOCENT CAMEIQ.........oeeeecuieeeesiiieeesiiisessiiaeesisesessiseaesssssasssssesessssseseas 28
T T B -7 ¢ o] 1Y o SRR 28
3.1.9 Block Matching and Motion VECLOr [16]cceeeeeeeeeeiaaeeeesciiiieeaeeeeeccieeea e e e essciaveaaae e 32

3.2 THE DECODER ..uuutttttieeeeieeittteeeeeeeeseuttteesaesesaatttaseeaassaasstssaeaaasaaaasssasseasasasassssssseesssasassrasaeeeessnanssnes 37
CHAPTER 4 ... ceeeceitiecettieeceteneeestenassestenssssseenssssseensssssesnsssssesnsssssesnsssssesnsssssennsssssennssssssnnsssannns 38
RESULTS AND ANALYSIS ...cuuiiiiiiiiiieneiiiteneieteenseereensessennssessennssesssnnssssssnsssssssnsssssssnssessssnssassasnssanes 38
4.1 STEREO PAIR 1 = ROOM .ceiiiiiiciiiiiiiieeessiciitieeeeeeeesitteteeeeessssaantaeeeessesasnstseneaeessasnsssanesesessnnnsssnnneeseenns 39
4.2 STEREO PAIR 2 = BLOCKS .eeeeeeuettieeeeeeeeeittteeeeeseeseunteseeeeessssunsenneessssassssssnssssssssssssesnsssessnnsssssnneesesans 43
4.3 STEREO PAIR 3 = BOOK....iiiiieecutiiieeeeeesiiittteeeeeeeesiutteteeeeesssnestaeeeeseesansesenesessssasssnnneesessanssssnnseesenans 46
4.4 STEREO PAIR 4 = SPIDER ...cceeecuuitreeeeessieiuttteeeeeseesaustnseeeeessasssssseeesssssssssnnssesssssnsssesssesessansssssnneesennns 48
4.5 STEREO PAIR5 = TENNIS_ BALL..utttreeeeeieeiiurieneeeseesiitttreeeeesessssenneessessnsnsnsneeessssssssssssssesssanssssnneeesens 50
CHAPTER S ...cciiiiiiiiiineiiiitneeiiieneeisienessisienssssssensssssaenssssssensssssssnsssssasnsssssssnssssssnnsssssannsssssannsssssnnes 52
FURTHER IMPROVEMENTS AND FUTURE WORK.....ccccoitttmuiiiinnnniiiienniciiensniciiensscimsnsmsssssnssssssnsssnns 52
5.1 DENOISING e eeutttteeeeeeesiuttreeeeeeeesstateeeeessassusstaeeeessssssssnaesessssssssseseessssssssssnneeesssssssssseesessssssnnseness 52
5.2 BLOCK IMIATCHING t.tvteeeiiiiiurteeeeeesssiittreeeeesssssusseaeesssssssssssssesesssassssessesessssssssssnesesssssssseneesesssnsnnnns 56
5.3 BIT ALLOCATION ceutttteeeeeiieiutrttteeeeessiurtseeeeesssssussreeesssssssssssseesesssasssssessesssssssssssseesssssssssseneesesssnsnsenne 56
5.4 RESIDUAL CODING .1vvteeeeeiiiitureeeeeeeeeiiitsreeesesesasissseseseeessssssssssesessssssssssssesesesassssssssesseesssssssssesessssnsnes 59
SUMMARY AND CONCLUSION......ccctttmueeiieiiiiiieennnesseesstimesnnssssssssssssssnnnssssssssssssssnnsssssssssssssannnssssnss 60
BIBLIOGRAPHYciiiieeeiiiiiiiiiiinienneiieeeiitsesnssssssseesssessnnssssssssssesssnnssssssssssssssnnssssssssssssssnnnsssssssssssssnnne 61

APPENDIX ..t e e s e e s s e e s s e e s s e e e e e e 63

Table of Figures

FIGURE 1 — A COMMUNICATION SYSTEM WITH N SOURCESvvvvreeeeeeieinrrrreeeeessesinrenreseessessnnsssneesesssesanns 12
FIGURE 2 — JOINT SOURCE CODING BLOCK DIAGRAMcuvvvvrirrrererererererererereeeeeeeeeereeeeeseeeeeeeeeesererererereees 13
FIGURE 3 — DISTRIBUTED SOURCE CODING BLOCK DIAGRAMuviiiiiiiiiiiiiiiieneeeeeetreiiiiienseeeeeeennnsnnnnssees 14
FIGURE 4 - BLOCK DIAGRAM OF DISTRIBUTED SENSORS WITH OVERLAPPING FIELDS OF VIEWuvvvvvvrvrernnnnnnns 17
FIGURE 5 — THE BLOCK DIAGRAM OF THE TWO ENCODERS t1vvvuuuueeeeeereeurernnnnseseeeeereemmmmmnsssessesssesssmnnnseess 18
FIGURE 6 — 2-D FORWARD WAVELET TRANSFORM, ALSO KNOWN AS THE ANALYSIS SECTION ...uvvvvvvvvrernnnnnnns 19
FIGURE 7 — 2-D INVERSE WAVELET TRANSFORM, ALSO KNOWN AS THE SYNTHESIS SECTION ...cvvuuneeerrnnnnnnn. 20
FIGURE 8 — THE ORIGINAL IMAGE “ROOM” OF SIZE 512X512....cciiiiiiieeeeiiieeeeeiteeeeesieeeeeevveee e eneeee e 20
FIGURE 9 - FIRST LEVEL WAVELET TRANSFORM DECOMPOSITION ...ccevviviiiiiiieeereeeeerniiiiiaeseeeeeeennnssnnnnessees 20
FIGURE 10 - SECOND LEVEL WAVELET TRANSFORM DECOMPOSITION ..uvuvvvriereeeeeerernrereeeesessnnnnnneseseennans 21
FIGURE 11 — 5" LEVEL WAVELET TRANSFORM DECOMPOSITIONevevievieverreseeseeseseeseessesesessssessesesresnas 21

FIGURE 12 — THE ORIGINAL IMAGE OF “ROOM” OF SIZE 512X512 AND ITS COMPRESSED VERSION. 94% OF THE

WAVELET COEFFICIENTS ARE NEGLECTED ...uuuuuterteeteresesainrreeteeesssemnrereeeeesssenmneneeeeesssesannneneneeesenns 21
FIGURE 13 — THE ORIGINAL “ROOM” PICTURE WITH SIZE 512X512 WITH 8BPPeevvuvieiiiieriieenieeenieeeans 25
FIGURE 14 — THE COMPRESSED PICTURE AT THE RATE 1BPP, PSNR =27.98DBivveeiiieiiieiiiieeee e 25
FIGURE 15 - THE COMPRESSED PICTURE AT THE RATE 0.5BPP, PSNR =25.42DB.....ccoviriiiiiiiiiiiiniiiceenns 26
FIGURE 16 - THE COMPRESSED PICTURE AT THE RATE 0.1BPP, PSNR = 18.11DB......coevvvriieiirviiieeereiieeee, 26
FIGURE 17 — THE BLOCK DIAGRAM OF THE ENCODER1 AND ENCODER2cceveiiiiiiiiiriieeeiiiiiiiiceeee s 27
FIGURE 18 — THE NOISY IMAGE, G =20, PSNR = 22.10DBccttieiiiiiieiieeiiee et eeeeerieneeeeann e 30
FIGURE 19 — THE DENOISE IMAGE USING WAVELET, THRESHOLDING, PSNR =27.69DBccvuerevvrnn. 30
FIGURE 20 — THE NOISY IMAGE, 0 =30, PSNR = 18.58DBcvtiiiiiiiiiiiiiiic et 30
FIGURE 21 - THE DENOISE IMAGE USING WAVELET, THRESHOLDING, PSNR =25.07DBevvvviiieeiiiiiennns 30
FIGURE 22 — THE NOISY IMAGE, 0 =40, PSNR = 16.09DBcevviiiiiiiiiiiieie et 30
FIGURE 23 - THE DENOISE IMAGE USING WAVELET, THRESHOLDING, PSNR =23.25DBeevviiiiiiiiiiennns 30
FIGURE 24 — THE ORIGINAL NOISY IMAGE, 0 =40, PSNR = 16.09DB.......ccccviviriiiiiiiiiiiinieiie et 31
FIGURE 25 - THE NOISY IMAGE AT 1BPP, PSNR = 19.20DBccuueiiiiiiiiiiiiiice ettt eeevnn s 31
FIGURE 26 — THE DENOISED IMAGE AT 1BPP, PSNR = 21.55DB......ccoiiiiiiiieieeeee e 31
FIGURE 27 - THE NOISY IMAGE AT 0.2BPP, PSNR =21.00DBciivviiiiiiiiiiiieeiicneeeeiiieceeeerie e eeevnnneeens 32

FIGURE 28 - THE DENOISED IMAGE AT 1BPP, PSNR =21.28DBccovriieeiiee e 32

FIGURE 29 — ORIGINAL “ROOM LEFT caeeeieieeetttieee ettt teteteeee e s ettt eteeaaasaessseeeeesesessnnasssseeesenessnnnnns 34

FIGURE 30 - ORIGINAL “ROOM RIGHT” ..iiiieiiiiiieee e e eecciittee e e e e e e sentreeeeeeeeesensaaeeeesesesennsaeseeaseesennnnes 34
FIGURE 31 — ESTIMATED IMAGE OF “ROOM RIGHT” ..ciitiieeeeitee ettt ettt ette e e et e e e et e e e s eanneeeeenes 34
FIGURE 32 — THE RESIDUAL IMAGEvvvvivviiiiiiieieieierereiereeeeeeeeeeseseeeeeseeseeeseseseseseseseseteseesesesesesssessesnes 34
FIGURE 33 — THE MOTION VECTOR t1tuuueieeeeettetuuuunasaeeeeeeeerssmnnnssseeseessessssnnssnssessessessmsnnsssesessssssssnnnsnnss 35
FIGURE 34 - ESTIMATED IMAGE OF “ROOM RIGHT”, WITH BLOCK SIZE OF 8X8vvvveeeirreeeerrreeeesiieneeeenns 35
FIGURE 35 - ESTIMATED IMAGE OF “ROOM RIGHT”, WITH BLOCK SIZE OF 32X32 ..evvvvuieieeeieieeeviiieeeeeeeees 35
FIGURE 36 — ORIGINAL “PENTAGON LEFT” ..oiiiiiiiiee i et e et e e settee e et e e e et e e e s sta e e e s snnaee e s sanaeesennns 36
FIGURE 37 - ORIGINAL “PENTAGON RIGHT”itiiiieieeeiecciiitieeeeeeeeecttreeee e e e e s anereseeeeeesennssaseeeeeeseennes 36
FIGURE 38 — ESTIMATED IMAGE OF “PENTAGON RIGHT” WITH BLOCK SIZE OF 8X8ccccvveeeeenrreeesiineeennns 36
FIGURE 39 — ESTIMATED IMAGE OF “PENTAGON RIGHT” WITH BLOCK SIZE OF 16X16ceevvveeeeecirriieeeennn. 36
FIGURE 40 — BLOCK DIAGRAM OF THE DECODERevveiiieieeeriieeeeeeeescintrereesesessnanseneesesssssnnnnnneesesssnnnes 37
FIGURE 41 — ORIGINAL “ROOM LEFT” IMAGE .. .uvvvereeeeeeieiirreeeeeeeeseeiisrrereeeeeesesinsseseesesssessssssssesssssnnnns 39
FIGURE 42 — ORIGINAL “ROOM RIGHT” IMAGEeetteieieieiniiiieeeeeeeeeintrereeseeesesnsseseessssssssnssssssssessensnnes 39
FIGURE 43 — COMPARISON OF RATE-DISTORTION GRAPHS 2 =10, IMAGEL AT 4BPP....uivveeieenieiieeevneeennnes 39
FIGURE 44 — COMPARISON OF RATE-DISTORTION GRAPHS, 2 =10, IMAGEL AT 2BPP...uirieniriiieeinnerinerenenes 40
FIGURE 45 — COMPARISON OF RATE-DISTORTION GRAPHS, £ =10, IMAGEL AT 1BPP....ieveniiiniiiieievieeennnes 40
FIGURE 46 — COMPARISON OF RATE-DISTORTION GRAPHS, 2 =20, IMAGEL ATABPP....cccvueeeeirieeeeirneeee, 41
FIGURE 47 - COMPARISON OF RATE-DISTORTION GRAPHS, 2 = 20, IMAGEL AT 2BPPuvvvvvvrervvevererererennnnnns 41
FIGURE 48 - COMPARISON OF RATE-DISTORTION GRAPHS, 5 = 20, IMAGEL AT 1BPPccvvuueieiiriieeeeeiieeee, 41
FIGURE 49 - COMPARISON OF RATE-DISTORTION GRAPHS, 2 = 30, IMAGEL AT 4BPPevvvvverererernrnrnrernnnnenns 42
FIGURE 50 - COMPARISON OF RATE-DISTORTION GRAPHS, 5 = 30, IMAGEL AT 2BPPccvvuneeeiirieeeeenneeene, 42
FIGURE 51 - COMPARISON OF RATE-DISTORTION GRAPHS, 5 = 30, IMAGEL AT 1BPP ..uivvniiiiieiinceiicrenenes 42
FIGURE 52 — ORIGINAL “BLOCK LEFT” IMAGE ..cecuvtveeeeietiieeesiteeessiteeeesvseeessaseeessssaeesssnseessssssneessnnns 43
FIGURE 53 — ORIGINAL “BLOCK RIGHT” IMAGE.....eteteeeieieieriieeeeeeeeeeintreeeesesesesnsseseesssssesnssnsnsessssennnes 43
FIGURE 54 - COMPARISON OF RATE-DISTORTION GRAPHS, £ =10, IMAGEL AT 4BPP ...uvvvveniienieiieeevneeennnes 43
FIGURE 56 - COMPARISON OF RATE-DISTORTION GRAPHS, 5= 10, IMAGEL AT 1BPP ..ceuvivvririnieiineeiiceenenes 44
FIGURE 55 - COMPARISON OF RATE-DISTORTION GRAPHS, 2 = 10, IMAGEL AT 2BPPuvvveeeeeeeeicnerieeeeeenn, 44
FIGURE 57 - COMPARISON OF RATE-DISTORTION GRAPHS, 5 = 20, IMAGEL AT 4BPPccevuueeeeiriieeeeinieeeen, 45
FIGURE 58 - COMPARISON OF RATE-DISTORTION GRAPHS, 2 =20, IMAGEL AT 2BPPevvvvvvvereverererererennnnnns 45
FIGURE 59 - COMPARISON OF RATE-DISTORTION GRAPHS, 5 = 20, IMAGEL AT 1BPPccvvuuieiiriceeeeiiieeeee, 45

FIGURE 60 - COMPARISON OF RATE-DISTORTION GRAPHS, 5 = 30, IMAGEL AT 4BPPccvvvnirinieiineriierennnes 45

FIGURE 61 - COMPARISON OF RATE-DISTORTION GRAPHS, 5 = 30, IMAGEL AT 2BPP ...covvvenerrernneerernnnennnns 45

FIGURE 62 - COMPARISON OF RATE-DISTORTION GRAPHS, 5 = 30, IMAGEL AT 1BPPccvvunieiiiiieeeeeiieeeee, 45
FIGURE 63 — ORIGINAL “BOOK LEFT” IMAGE ...ceecuvteeeeeietiieeesiteeeeeitteeeestaeeeesnseeesesssaeeessnsseeessnssseesannns 46
FIGURE 64 — ORIGINAL “BOOK RIGHT” IMAGEevvvieieiiiieeeesiieeeeeeiteeeesieeeeessseeesssnsaeesssnseesssnssnesssnnns 46
FIGURE 65 - COMPARISON OF RATE-DISTORTION GRAPHS, = = 10, IMAGEL AT 4BPPevvvnirinieiineriierennnes 46
FIGURE 66 - COMPARISON OF RATE-DISTORTION GRAPHS, £ =20, IMAGEL AT 4BPP ...uvvvveiienieiieeevneeennnes 47
FIGURE 67 - COMPARISON OF RATE-DISTORTION GRAPHS, = = 20, IMAGEL AT 2BPP ..uvivvenirinieirnnerinnerenanes 47
FIGURE 68 - COMPARISON OF RATE-DISTORTION GRAPHS, £ = 30, IMAGEL AT 4BPP ...uvvvveniienieiieeevieeennnes 47
FIGURE 69 - COMPARISON OF RATE-DISTORTION GRAPHS, 5 = 30, IMAGEL AT 2BPPccvvuneeeiinieeeeeineeene, 47
FIGURE 70 — ORIGINAL “SPIDER LEFT” IMAGEuuvtieeeeitieeeesiteeeseitreeeeseeeeeesnseeeessasaeeeesnnseeessnssneesennns 48
FIGURE 71 — ORIGINAL “SPIDER RIGHT” IMAGE ...vvveiieeieieiiiiieeeeeeeeeettreeeeeeeesecnareseeeeesseennssaeseaeesseennnes 48
FIGURE 72 - COMPARISON OF RATE-DISTORTION GRAPHS, 2 = 10, IMAGEL AT 4BPPevvvvvvrererernrernrernnnnnnns 48
FIGURE 73 - COMPARISON OF RATE-DISTORTION GRAPHS, £ =10, IMAGEL AT 2BPP ceuvirveniienniereneevnneennnnes 49
FIGURE 74 — ORIGINAL “TENNIS_BALL” LEFT ..uuttiiieieeeieieiiiiteeeeeeeeecintreeeeeesesennsnessessessennnssnnnesssssennnnes 50
FIGURE 75 — ORIGINAL “TENNIS_BALL” RIGHT ...uuvtiiiieiiiieeesiieeeeeiteeeesireeeesaeeessesneeessnseesssnssneesennns 50
FIGURE 76 - COMPARISON OF RATE-DISTORTION GRAPHS, = = 10, IMAGEL AT 4BPPoevvviriiieiineriierinnnes 50
FIGURE 77 - COMPARISON OF RATE-DISTORTION GRAPHS, £ = 10, IMAGEL AT 2BPP .euvivveniienniiiineevnneeennnes 51
FIGURE 78 - COMPARISON OF RATE-DISTORTION GRAPHS, 5 = 20, IMAGEL AT 4BPPccevuueeeeirieeeeinieeee, 51
FIGURE 79 - COMPARISON OF RATE-DISTORTION GRAPHS, 2 = 30, IMAGEL AT 4BPPevvvvverernrnrernrnrernnnnnnns 51
FIGURE 80 — DENOISE IMAGE USING HAAR FILTERSciieeetviiiiieneeeeeeeeeeniianseseseeesennsssnnnsesesessssnsssnnnneses 54
FIGURE 81 — DENOISED IMAGE USING ‘DB8’ FILTERS veeeeuuvvreeesurreeessurreeeessssreeessnssneesssssseesasssssssssssseessnnns 54
FIGURE 82 - DENOISE IMAGE USING HAAR FILTERS...uetttttttuiuuiiineeeeeeeeerersanneseseseseensssmnnnnesssessnsnsmsnnnnsses 54
FIGURE 83 - DENOISED IMAGE USING ‘DB8’ FILTERS ..eeeeeeeeurrriereeeesesaiunsrereesesssesinsssnsesesssenssssensesesssnnnnes 54
FIGURE 85 - RATE-DISTORTION GRAPHS, 5 = 10, IMAGEL AT 4BPP, ‘DB8’ FILTERS....uvvvvrererererrrerererererenenenes 55
FIGURE 87 - RATE-DISTORTION GRAPHS, £ = 10, IMAGEL AT 4BPP, ‘DB8” FILTERS...evvuueeereeeerrererrnrniieseeeeenns 55
FIGURE 84 - RATE-DISTORTION GRAPHS, 3 =10, IMAGEL AT 4BPP, HAAR FILTERS ..vuueererrnneerrrnneerernnneennnns 55
FIGURE 86 - RATE-DISTORTION GRAPHS, 2 = 10, IMAGEL AT 4BPP, HAAR FILTERS ...vvvurerinnerinnrerrnnerrnneennanes 55
FIGURE 88 — POSSIBLE WEIGHTING TABLE FOR BIT ALLOCATION .eeeeeeeieiuerereeeeeseeesnennreeeesssssansnsneeseeseennnns 57

FIGURE 89 — RATE-DISTORTION GRAPHS, £ = 10, IMAGE1 AT 4BPP, ‘DB8’ FILTER, NON-WEIGHTED BIT

F YN0 107N T 57

FIGURE 92 - RATE-DISTORTION GRAPHS, 5 = 30, IMAGE1 AT 4BPP, ‘DB8’ FILTER, WEIGHTED BIT ALLOCATION 58
FIGURE 94 - RATE-DISTORTION GRAPHS, 5 = 10, IMAGE1 AT 4BPP, ‘DB8’ FILTER, WEIGHTED BIT ALLOCATION 58
FIGURE 91 - RATE-DISTORTION GRAPHS, = 10, IMAGE1 AT 48pPP, ‘DB8’ FILTER, NON-WEIGHTED BIT

ALLOCATION ..evvvvtevererereeeeeeeeeeeeeeeeeeeeereresesereeeeeeeeeeretereteteeeteteteeeeessaeseeseessesssessssssesssssssesssssssanes 58
FIGURE 93 - RATE-DISTORTION GRAPHS, £ = 10, IMAGE1 AT 48pPP, ‘DB8’ FILTER, NON-WEIGHTED BIT

YN H o o T R 58

Acknowledgements

First of all, I want to thank my parents and my brothers Alireza and Hossein for their

support, encouragement and understanding.

I would also like to thank my project supervisor Dr. Luigi Dragotti for his guidance.

Chapter 1

Introduction and Background

Transmission of uncompressed audio, graphics and video data requires considerable amount
of transmission bandwidth, data storage, power, processing speed and transmission time. It
is possible to reduce the size of the multimedia signals by removing the redundancies and
irrelevancies. Redundancy reduction aims at removing duplication from the signal and
irrelevancy reduction aims at omitting parts of signal that will not be noticed by the human

visual system.

Advances in camera technology and wireless communication have enabled the development
of low-cost and low-power wireless camera networks which have emerged for variety of
reasons including environmental and habitant monitoring, target tracking and surveillance.
The main characteristic of such networks is the constraints on resources in terms of energy
(battery life), memory and computational power. These resource constraints make the
design of wireless camera networks very difficult. The problem of resource constraint

wireless camera network can be alleviated with the use of distributed image coding.

Distributed image coding refers to the compression of two or more physically separated
sources. These sources, although statistically dependent, cannot communicate with each
other due to power constraints and inter-source communication costs. By statistically

dependent we mean that the cameras have overlapping fields of view.

In this project we want to use the idea of distributed image coding to compress images
acquired from the camera network. The aim of this project is to see how the distributed
coding system performs when compared to Joint source coding and Independent coding. We
will use wavelet transform to do compression on images captured from the cameras. After
distributed compression, these sources send their compressed images to a central point for

joint decoding.

1.1 Distributed Source Coding

In order to understand the idea of Distributed source coding, we first need to describe what

the terms Joint source coding and Independent coding exactly mean.

Consider a communication system with N sources 1,...,N (see figure 1). The idea is to

compress the data from the sources as efficiently as possible at a given bit-rate.

S1 — Encoder —» Decoder —»
S$2 — Encoder —» Decoder —»

SN *- Encoder —» Decoder —»

Figure 1 — A communication system with N sources

The simplest approach for encoding the sources is to code them independently of each other
in the transmitter and at the receiver we independently decode all the information received
from all the sources. Therefore each source has one encoder and one decoder associated
with it. This is called Independent Coding and is used when the sources are not correlated

with each other.

Now let’s assume that the sources are correlated with each other. Since the sources are
correlated, we can efficiently code the information from all sources given that any source
has direct access to its previous source(s). This is because “source n” needs to send only
some of its data to the receiver by knowing the fact that most of its data is in "source n-1".
Therefore we can achieve a better image quality or a higher compression rate when
compared to the Independent Coding case. This is due to the fact that we only send the
residual information from “source n” to the decoder and due to similarities between the
adjacent sources the resulting residual image will be small in terms of pixel intensities.
Therefore fewer bits is needed for lossless/lossy reconstruction in the decoder than the
Independent Coding case, resulting in better qualities at the same bit-rates or smaller bit-

rates at the same image qualities. We have to bear in mind that for residual decoding, the

decoder needs to have full access to at least one of the sources. This is called Joint Source
Coding or JSC for short (see figure 2). For this kind of coding system we only have one
encoder and one decoder for all the sources. The Motion-Pictures-Experts-Group (MPEG)
uses this kind of compression standard with sources being frames and N being the number

of frames from one key frame to another (normally 25).

Sourcel —» —
Joint Joint
Source 2 —» —_— —>
Encoder Decoder
Source N ——» —>

Figure 2 — Joint Source Coding Block Diagram

One disadvantage of this kind of setup is that the sources need to communicate with each
other for joint encoding, which in terms of bandwidth and power is costly. This is particularly
true for wireless systems. This kind of setup is mainly used for broadcasting or streaming

video-on-demand systems where video is compressed once and decoded many times.

Now let’s again assume that the source are correlated with each other. Also let’s assume
that the sources cannot communicate to each other due to power and bandwidth costs.
Consider sources 1 and 2 with entropies H(1) and H(2) to be encoded at the rates R; and R,.
For the joint source coding case a rate of Ry + R, = H(1,2) is sufficient for lossless
encoding, where H(1,2) is the joint entropy between the sources 1 and 2. In 1973 Slepian-
Wolf [1] proved the surprising result that separate lossless encoding of N correlated discrete
sources can be as efficient as joint encoding of the sources assuming that the N compressed
sources can be jointly decoded. The theory states that the lossless compression of sources 1

and 2 (separate encoders) is still achievable if:

R, = H(1|2)

R, > H(2|1) and

R, + R, = H(1,2)

Here H(1|2) is the conditional entropy of source 1 given source 2. Thus a combined rate of
H(1,2) is sufficient even if the correlated sources are encoded separately as long as they are
decoded jointly. However this result assumes that the correlation between the sources is a

priori known at each individual encoder.

In 1976, shortly after the Slepian and Wolf’s work, Wyner and Ziv [2], [3], [4] extended this
work to establish theoretic rate-distortion bounds for lossy compression with the
assumption of side information being available at the decoder. Wyner and Ziv said that lossy
compression of sources 1 and 2 with independent encoders but joint decoders is as efficient
as the lossy compression with joint source coding. Therefore the Wyner- Ziv distributed
source coding or Wyner-Ziv coder for short can be thought of quantization (lossy process)

followed by a Slepian-Wolf Coder (lossless coder).

This kind of set-up, i.e. distributed source coding system (see figure 3), is mainly used for
applications which require low-complexity encoders at the expense of high-complexity
decoders Examples are wireless video sensors for surveillance, wireless pc cameras, mobile

camera phones and networked cameras [5].

Sourcel ——» Encoderl —» —»
Joint
Source 2 —»{._Encoder 2 —» —
Decoder
Source N —» EncoderN —» —p

Figure 3 — Distributed Source Coding Block Diagram

Chapter 2

Overview of the algorithm

Consider we have N wireless spatially distributed cameras and we want to compress the
images taken from the cameras as efficiently as possible. Due to bandwidth and power costs
the cameras are not allowed to communicate to each other therefore each camera has its
own encoder. Since all the captured and coded images are sent to the server side we allow
joint decoding of the coded images. This is basically the problem of distributed image coding

in camera network system.

As mentioned before Slepian-Wolf and Wyner-Ziv proved that compression in a distributed
fashion is as efficient as joint coding as long as we have joint decoding in the receiver side.
The assumption here is that the statistical properties of each encoder (or the reference

encoder) is known to the rest of the encoders.

The aim here is to implement both the distributed image coding and joint image coding
systems and see how close the distributed system can get to the joint image coding case. We
will also implement the independent coding system so that we can tell how our distributed
system is performing overall. The problem that we face here is that how do we make the
encoders to know about the statistical properties of the reference encoder? This is a critical

assumption to the result of Slepian-Wolf and Wyner-Ziv coders.

2.1 Proposed Solution

First of all we need to make some assumptions about our wireless camera network. We
assume that the cameras are identical and spatially distributed. We also assume that the
viewed scene by the cameras is static. The scene could also be dynamic but this makes the
exploitation of the statistical properties more difficult. All the cameras have the same angle
towards the scene therefore we have only horizontal or only vertical shifts for the positions
of the cameras. We set the central camera to be the reference source for all the encoders.
We let the central encoder to send a complete coded image to the decoder side. This is
needed since the central camera is the reference source for all encoders and the decoder
needs to have full access to the reference image so that it can reconstruct the rest of the

images.

So far whatever we have talked about is really Slepian-Wolf coding. We can do further
compression in the encoders by using transform coding. This includes transforming the
image to another domain, quantizing (lossy) and Huffman coding which leaves us with a
Wyner-Ziv coder. In this project we will use wavelet transform followed by quantization to
do compression on the images. Therefore our compression algorithm will be similar to the

JPEG2000 codec [6], [7].

Now we need to decide on how to let the cameras to know about the statistical properties
of the reference camera. The reference encoder wirelessly sends the coded version of
Imagel to the decoder. We can assume that other encoders overhear what the central
encoder is sending to the decoder side. By overhearing we mean they can receive a noisy
and coded version of Imagel. Therefore the encoders need to first denoise and then decode
what they are overhearing and then somehow use that to exploit some statistical properties
of Imagel. By statistical properties we mean the correlation or the similarities among the

captured images.

Now the next question is that how do we find the similarities between Imagel and the rest
of the captured images [8], [9], [10]? We can use the idea of motion compensation to find an
estimated version of the captured image from the reference image (Imagel). By doing this

we can find the motion vector of the captured Image relative to Image 1. Also the residual

image, which is the difference between the captured ImageN and its estimated version, is
recorded. The residual image is also transform coded and is sent to the decoder side with

the motion vector. Block matching algorithm will be explained in detail in Chapter 3.

In this project, we assume that sensors are two grey-scale stereo image pairs of size 512x512
and we try to develop a distributed image compression algorithm based on the assumptions
made and the use of the wavelet transform. Figure 4 shows a rough sketch of the wireless
camera network scenario with the implementation of distributed coding technique for

images captured with overlapping fields of view.

/ Scene

\ / » Overlap

7 dopooty] 1—()

| 49pooui] le

() Aapoaug] 4—@

O O 4 Sensors
g =
a =
£ Z
= =
- -

Decoder

Figure 4 - Block diagram of distributed sensors with overlapping fields of view

Chapter 3

Specifications of the encoders and the decoder

3.1 The Encoders

In the previous section we showed an overview of how we are going to implement the
distributed coding system. In this section we will go through every section of the algorithm

in detail and describe all the procedures. First we start by showing some figures on how our

(({)

two encoders will look like:

Image 1 S5-Level ~_ Bit Allocation Quantization
DWT

Channel Noise (Between Sourcel and Source2)

5-Level Denoise Image 1
IDWT

Motion
Block /‘ Vector
Image 2 » Matching

\ Residual

(@)

5-Level Bit Allocation Quantization
DWT

Figure 5 — The Block diagram of the two encoders

3.1.1 Discrete Wavelet Transform

Before describing each block in detail, we need to explain why we have chosen Discrete
Wavelet Transform for image compression [11], [12]. The choice of transform can be made
in many ways with the objective of optimizing some property such as signal-to-noise ratio of
the image, edge enhancement, image coding or compression. Wavelet transform is of
interest for the analysis of non-stationary signals because it provides an alternative to
classical short-time Fourier transform or Gabor transform. For periodic signals Fourier
analysis is ideal. However with wavelet transforms we are not restricted to only the periodic

functions but any function.

Unlike the Fourier transform which maps a 1-D signal to a 1-D transform domain, wavelet
transform maps a 1-D signal to a 2-D transform domain. A wavelet transform thus has a
highly redundant number of basis functions. In many cases of signal processing, one can
choose the right signal or a theoretical model as the mother wavelet. The advantage of
doing is that only a few wavelet transform coefficients are then required to represent the

signal i.e. signal compression.

The proof of the maths behind wavelet transform is not the objective of this project and only
properties of wavelet transforms in image processing are stated. Figure 6 shows a block
diagram of a single-level wavelet transform decomposition of two dimensional signals and

Figure 7 shows its inverse wavelet transform (reconstruction of the signal).

HO s v
- C LL LH
(x
'> HO 4>©—>——> HL HH
y
H1
H1 _.Q_.

Figure 6 — 2-D Forward Wavelet Transform, also known as the Analysis section

—»O—_p HO
HO
e | H1
G— X
—D@—b HO
—» HI
"O_’ H1

Figure 7 — 2-D Inverse Wavelet Transform, also known as the Synthesis section

Here Hq represents a low-pass filter and H; represents a high-pass filter. This will decompose
a two dimensional signal, for example an image, into four sub-images of equal size. The top-
hand left image is the low resolution of the original image and the rest of the images being
the vertical, horizontal and diagonal components of the original image. Usually the low
resolution part has over 90% of the energy of the image. Now we can extend this
decomposition on the low resolution part and get another 4 sub-images. This is called the
second-level decomposition. Examples of single-level and second-level wavelet
decompositions on the original image in figure 8 are shown in figures 9 and 10 respectively.
We can even go further and do 5-level decomposition. Figure 11 shows the 5" level wavelet

decomposition of the original image.

Figure 8 — The Original Image “Room” of size Figure 9 - First Level Wavelet Transform
S12x512 Decomposition

Figure 10 - Second Level Wavelet Figure 11 - 5" Level Wavelet Transform
Transform Decomposition Decomposition

We can run a simple test to show how easy it is to do compression on images using wavelet
transform. First we do a two-level wavelet transform decomposition of the image shown in
Figure 8. Then we disregard all the vertical, horizontal and diagonal parts of the transform
i.e. we ignore 94% of the wavelet coefficients assuming that the image is 512x512. Then we
take the inverse wavelet transform. The resulting image is shown next to the original image
in Figure 12. As can be seen from the figure, the compressed image is not that different from
the original image with 94% of the coefficients being disregarded. The reader should bear in
mind that we are not using any other kind of compression scheme such as Quantizing, Run-
length coding, Entropy coding etc. This shows why wavelet transforms are so powerful in

terms of energy compaction.

Figure 12 — The Original image of “Room” of size 512x512 and its compressed version. 94% of the wavelet
coefficients are neglected

3.1.2 Comparison of Images

One way of comparing the original image with its compressed version is to find the Peak
signal-to-noise ratio (PSNR). PSNR is the most common used measurement tool for

comparing images. It is calculated as follows:
Distortion' = (Original Image .— Compressed Image)?

Where ". —" is the sign for element by element subtraction

Sum of all the elements of the Distortion natrix

Mean Squared Error (MSE) =

Total number of pixels

PSNR =20 X log (255/sqrt(MSE)) dB

Where 255 is the peak value of any 8-bit image.

For example, the PSNR of the compressed image in figure 12 is 22.53dB

3.1.3 Wavelet Filters

The choice of filters used is quite important in wavelet processing. For example, for the
wavelet decompositions shown above, we used Haar filters. Haar filters or “sum and
difference” filters are the most elementary but at the same time the most popular filters
because of their simplicity. The Haar filters are defined as follows (in z-domain):

1+z71 1-z71 1

Ho(2) =% Hi(2) =% Go(2) =% Gi(2) =2

Some other famous filters used in wavelet theory are Daubechies, B-Spline, Symlets, and
Coiflets. The filters are chosen depending on where we want to use them. For image

compression and denoising, Haar and Daubechies filters are the most popular.

! Distortion could also be calculated as |Imagel . — Image2| where |argument| is the absolute value of the
argument

3.1.4 Quantization and Inverse Quantization

After finding the N-th level wavelet transform of the image, we need to quantize the wavelet
coefficients due to the limited channel bandwidth. In this project we will use a simple
uniform quantizer. As we already know, quantization is a lossy process. By transforming an
image to its wavelet domain we will have different classes of wavelet coefficients. The
guantization process is done on each class of the wavelet coefficients, that is, from the first
until the N-th level vertical, horizontal and diagonal components. The approximation

subband will also be quantized. The quantization is done as follows:

1) First we find the maximum and minimum of a given class (say the first level vertical
component)

2) Then we add the absolute value of the minimum to all the coefficients of that class.
This is done so that we won’t worry about negative coefficients in terms of assigning
bits.

3) After that, we find the step size at the given number of bits or we find the number of
bits at a given step size. We decided to assign the bit number instead of the step size
as it is easier to compare results at an exact bit number. The formula for uniform
quantization is Max = 2¥ X A where Q =2Y is the number of quantization levels, y is
the number of bits and A is the step size. By knowing gamma we can find the step
size from the formula above.

4) Now we divide all the coefficients of the considered class by the step size.

5) Finally we round up all the quantized coefficients. This step is lossy and we get the

guantization noise from here.

At the decoder side we need to inverse quantize or “dequantize” our quantized data. This is
done by reversing whatever that has been in the quantizer. One thing that is quite important
to mention here is that we need to store the values of minima and maxima in the
guantization process. These data will be sent to decoder side with the quantized data for
inverse quantization. The number of bits assigned to the maxima and minima values is in the
order of 0.001-0.002bpp (for a 512x512 image with 5-level wavelet decomposition).
Therefore for sending the maxima and minima values to the decoder side, very small

number of bits is needed.

Now the question that arises here is that how do we assign the number of bits to each class

of the wavelet coefficients?

3.1.5 Bit Allocation

We need to decide on how to assign the number of bits to different blocks (classes) of the
transformed image at a given bit-rate. The idea of bit allocation is to optimally assign the
number of required bits for a given class of wavelet coefficients which will result in the least
amount of distortion. One way to optimally assign bits to different classes of wavelet

coefficients is defined as follows [13], [14]:

1) Initially all the classes are allocated with a predefined maximum number of bits.

2) For each class we reduce one bit from it and we find the distortion due to reduction
of that 1 bit. This is done by quantizing and inverse quantizing every single class and
finding the MSE with the original class data.

3) The number of bits of the class that has the least distortion will be reduced by 1 bit.

4) The total rate R is calculated as total sum of p * b for each class where p is the
probability of that class and b is the number of allocated bits to that class. The
probability here means the total number of pixels of the class over the total number
of pixels of the image which in our case is 512x512.

5) Finally we compare the calculated R with the required bit-rate. If R is higher we go

back to step2.

The bit allocation process defined above is quite complex in terms of computation especially
if the target bit-rates are very small. When the target bit-rates are small we can use an
alternative approach. In this approach, which is also mentioned in [14], we work backwards

and we assign 0 bits to all classes. The procedure is as follows:

1) First we assign 0 bits to all classes

2) Then we add one bit to each class and the deduction in distortion due to that 1 bit is
calculated.

3) The number of bits of the class that has the highest deduction in distortion will be

added by one.

4) We calculate the total rate R as before. If R is smaller we go back to step2.

As can be seen, the second approach will be much faster if we are dealing with small bit-
rates. Now, quantization is very easy after finding the allocated number of bits for each class
of wavelet coefficients. For example for 5-level wavelet decomposition our gamma matrix
will look like: [H1 V1 D1 H2 V2 D2 H3 V3 D3 H4 V4 D4 H5 V5 D5 A] where H, V, D and A stand

for Horizontal, Vertical, Diagonal and Approximation (low resolution part) respectively.

Now having talked about the bit allocation problem we can show some examples of images
compressed with our codec system. Figure 13 shows the original “Room” image. Figures 14,
15 and 16 show the image at the compression rates of 1bpp, 0.5bpp and 0.1bpp i.e. 88%,
94% and 99% compression respectively (the original image is 8bpp). We used 5-level wavelet
decomposition with Haar filters for compressing the original image. The corresponding

allocated bit-rates for all the classes are as follows:

At 1bpp: [0103405647778878]

At 0.5bpp: [00022045376677638]

At 0.1bpp: [0000000133314445]

Figure 13 — The original “Room” picture with ~ Figure 14 — The compressed picture at the rate
size 512x512 with 8bpp 1bpp, PSNR =27.98dB

Figure 15 - The compressed picture at the rate Figure 16 - The compressed picture at the rate
0.5bpp, PSNR = 25.42dB 0.1bpp, PSNR = 18.11dB

What we have talked about so far is quite similar to what the JPEG2000 codec system does.
The reader has to bear in mind that JPEG2000 has so many other features that are outside
the scope of this project. One important thing to mention here is that the encoders need
also to send the bit numbers for the all classes. The number of bits assigned in the gamma
matrix is in the order of 0.0001bpp (for a 512x512 image with 5-level wavelet
decomposition). Therefore the gamma matrix needs very few bits for it to be sent to the

decoder.

3.1.6 Encoderl - The Reference Image

After defining our codec system now we need to explain how we are going to compress our

two stereo images as efficiently as possible in a distributed fashion. So let’s again show the

((l)

block diagram of our system:

Image 1 5-Level = | Bit Allocation Quantization
DWT

Channel Noise (Between Sourcel-and Source2)

((c[)))
5-Level %_» Denoise %_’ Image 1

IDWT

Motion
Block /‘ Vector

Image 2 » Matching
\ Residual

5-Level Bit Allocation Quantization
DWT

Figure 17 — The Block Diagram of the Encoder1 and Encoder2

As mentioned before the reference encoder needs to send the complete coded version of
the captured Imagel to the decoder regardless of what other cameras are viewing. Here, we
assume that the raw image taken from the cameras is already digitized. As shown in the

figure we first take the wavelet transform of the captured image then we allocate bits for

each class of wavelet coefficients. After the completion of bit allocation process, the wavelet
coefficients are quantized according to the gamma matrix. Finally the coded image is sent

directly to the receiver.

3.1.7 Encoder 2 - The Adjacent Camera

The second encoder overhears a noisy and coded version of Imagel. Therefore, as stated
before, we need to take the inverse quantization and the inverse wavelet transform of the
incoming image and then denoise it. After denoising, we will use motion compensation
method to find the motion vector of image2 with respect to imagel. Then we find the
residual image by subtracting the original image2 from its estimated version. Finally we send

the motion vector with the coded residual image.

3.1.8 Denoising

We will use an adaptive wavelet threshold estimation method, called the NormalShrink
denoising algorithm [15], to denoise our noisy Imagel. It is assumed that the probability
density function of the channel noise is Gaussian distributed. Since we are taking 5-level
wavelet decomposition, there will be 16 classes of wavelet coefficients ([H1 V1 D1 H2 V2 D2
H3 V3 D3 H4 V4 D4 H5 V5 D5 A)). The denoising algorithm is applied to the first 15 classes

and the approximation subband is left intact.

The proposed formula in [15] for the threshold is:

Where beta is the scaling parameter and is defined as: f = |[log (L]—k). Here, L is the length

of the subband (class) and J is the number of decompositions, which in our case is 5. 6, is
the standard deviation of the subband being considered and 4?2 is the variance of the noise

which is estimated form the subband D1. The formula that is used in [15] for estimating the

a2 (median(|Yij|)

2
variance of the noise is: & Sorag) . Here, 0.6745 is a normalisation factor so that

the variance of the noise will correspond to the variance of Gaussian distribution.

Once the threshold is found we can apply either soft thresholding or hard thresholding for
denoising. The formulas for soft and hard thresholding for a given coefficient and threshold

are as follows:
Soft Thresholding => Coeff = sign(Coeff) X max (0, |Coef f| — Threshold)

. Coef f if Coeff = Threshold
Hard Thresholding => C =
ar resholding oeff { 0 Otherwise
Generally soft thresholding gives better results in wavelet denoising. Soft thresholding
moves the coefficients towards zero and results in a smooth image which could help us in

motion compensation (next section).

A problem that we face here is that for small bit-rates the subband D1 is always zero so we
cannot estimate the variance of the noise. One way to overcome this problem could be to
estimate the noise from D2, D3, D4 or D5 subbands but after some tests we realized that the
estimated variance will be quite large and finding a normalizing factor which would work for
any given image would not be straight forward and may not be accurate. Therefore we
assumed that the second encoder knows about the variance of the channel noise
beforehand. This could be done by sending a small known signal from encoder 1 to encoder
2. Encoder2 can then compare the received message with the original (known) message and

estimate the channel noise with a good accuracy.

Now we will show some examples on how our denoising algorithm performs under different
noise variances. Figure 18 and 19 show the noisy and denoised “Room” image at ¢ = 20
where ¢ is the standard variation of the channel noise. The noise is added to the image by
the “randn” function in MATLAB. The mean of “randn” function is 0 and its variance is 1. By
using the expression Var(aX) = a?Var(X) we can generate Gaussian distributed noise
with any variance that we wish. For example if we want a noise variance of 100 we just

multiply our “randn” function by the square root of 100 i.e. 10.

Figure 20 and 21 show the noisy and denoised image at ¢ = 30. Also Figure 22 and 23 show
the noisy and denoised image at 0 = 40. From the figures and the PSNR values we can see

that the wavelet thresholding denoising algorithm performs quite well.

Figure 18 — The noisy image, o =20, PSNR = Figure 19 — The denoise image using wavelet,
22.10dB thresholding, PSNR = 27.69dB

Figure 20 — The noisy image, o =30, PSNR = Figure 21 - The denoise image using wavelet,
18.58dB thresholding, PSNR = 25.07dB

Figure 22 — The noisy image, 0 =40, PSNR = Figure 23 - The denoise image using wavelet,
16.09dB thresholding, PSNR = 23.25dB

One thing that is quite important to mention here is that for very noisy images, wavelet
transform itself (without any thresholding) could be used for denoising. This is done by
eliminating the diagonal or even horizontal and vertical subband of the wavelet transform.
The reason is that by eliminating the diagonal subbands, we are eliminating high frequency
noise. This is very evident when we are working at very low bit-rates. At low-bit rates, the bit
allocation process will only allocate bits to subbands that will result in the least distortion,
therefore most of the high frequency terms are set to 0. This will result in a better image
quality. Figures 25 and 26 show what happens to our noisy image at 1bpp bit-rate and

Figures 27 and 28 show what happens to our noisy image at 0.2bpp.

Figure 25 - The noisy image at 1bpp, PSNR = Figure 26 — The denoised image at 1bpp, PSNR
19.20dB =21.55dB

|
ol - e’

-
onoal |

s
i

i

Figure 27 - The noisy image at 0.2bpp, PSNR = Figure 28 - The denoised image at 1bpp, PSNR =
21.00dB 21.28dB

We can see from the figures that our noisy image has better quality at 1bpp and 0.2bpp than
the case with 8bpp (no quantization). Also we can see from figures 27 and 28 that at very
low bit rates (0.2bpp here) the denoised image is really no different from the noisy image.
This is because most of the denoising is done on the diagonal subbands of the wavelet
transform and at low bit-rates these are set to zero. We need to mention here that we used

Haar filters for wavelet denoising.

3.1.9 Block Matching and Motion Vector [16]

After decoding and denoising the received signal from encoderl we will use motion
compensation to find an estimated version of captured image2 from imagel. In this method
we divide up the captured image2 into non-overlapping blocks of KxK and we estimate the
motion compensation vector, one for the horizontal shift and one for the vertical shift. After
that we compare a block in image2 with the same block in imagel and its surrounding
blocks. By surrounding blocks we mean a rectangular search box around the block in Imagel.
The block that has the least distortion with regards to the considered block in image2 is

chosen. The distortion here is calculated by taking the absolute difference of the two blocks.

The positions of these blocks are stored in a matrix called the motion vector. By using

motion compensation we only need to send the two motion vectors and the disparity

between the original captured image2 and its estimated version. The disparity will be

compressed before being sent to the decoder.

The choice of block size and the search area (surrounding blocks) is dependent on the
images we are working on. If the images are too complex, that is if they are highly detailed,
then we need to use small block sizes. The choice of block size is a trade-off between
accuracy and bandwidth. The smaller the block size the better the estimation and the bigger

motion vector. Usually blocks of 16x16 and 8x8 are used.

The rectangular search area is dependent on how far apart the cameras are. If they are very
close to each other then we can use a small search area. If they are quite far from each other
then we need to either expand our search area or shift the search area according to the
distance of the cameras. In this project we assume that the cameras are quite close to each
other. The choice of search box size is a trade-off between accuracy and speed. The larger
the box size the more computationally complex it will get. With the test images we used
anything between 5x5 and 9x9 search boxes would give good results both in terms of

accuracy and speed.

The intensities of the pixels of the residual image are usually close to zero especially if the
correlation between the two images is high. The range of the residual image is usually
between -255 to 255 but the mean is close to zero. This could be a problem at low bit rates
since, generally the number of pixels that are above 128 and below -128 is very small and as
we are using a uniform quantizer we can get poor results. One possible way to deal with this
problem is to keep the residual image range from -128 to +128. Therefore any pixel that is
higher than 128 changes to 128 and any pixel that is lower than -128 changes to -128. At low
bit rates, this will improve the performance of the distributed coding and joint coding

significantly.

Now we can show an example of how the estimated version of image2, the residual and the
motion vector will look like. Figure 29 and 30 show the original “Room Left” and “Room
Right” stereo pictures respectively. Figure 31 shows how the estimated version of “Room
Right” will look like from “Room Left” with block size of 16x16 and search area of 9x9.

Figures 32 and 33 show the corresponding residual image and the motion vectors. Here we

are assuming that the received Imagel in the encoder2 is neither noisy nor compressed i.e.

Joint Coding with no quantization.

Figure 29 — Original “Room Left” Figure 30 - Original “Room Right”

Figure 31 — Estimated image of “Room Right” Figure 32 — The residual Image

35

,,,,,, . R
AAAAAAA SILIITItDIIIIIIII IItrid
A N]
A T N
/A“//;//A,AAAA ,L,L.,Aw.\\\L\,//

PN [P . - - e o o - — - e -~ e \ [
NN AP A S SN N INE B
N A A DA .S SN
R N N S R
- 7 = - e o o o ! - -
AR AN R R B NN SN I N i
A N N R N NI SN\
A /.\/i/(\\/\w/v‘/«‘\/‘/T\A ,

I T ﬂvﬁ(\4/y»¢ RVANYARN iFE‘W\‘/
N N A e Nl S
N et~ S S St I B
N O s L S S SN I
RN AN T A (A A S N
,/j/\,,..../,6,.,.,.,..,\U}»,\;

[0 AR A VD T O B
A/xﬂég.\g7¢/.g,1g\A./A,A/i\zj\A/\r
R A N A A A AR A S SN
,///i/,,/ “ ,//,,,,,J/,/Viﬁ\i\,'\r
5L - - . - S A LSS T T i
A S - T L. oo - \\\/r
- .-, - - . - - - - . - -~ - o - N - 11
‘‘‘‘‘‘ - - - - e - - - . - - - . - -~ - "
A e R I S
0 5 10 15 20 25 30 35

Figure 33 — The motion vector

In the decoder, we have the complete version of “Room Left” image. From this image and
the motion vector we can generate the estimated version of Image2. By adding the residual
image to the estimated image we can reconstruct our Image2. The choice of block size is
very important here. Figure 34 and 35 show the estimated Image 2 for block sizes of 8x8 and
32x32 respectively. As can be seen from the figures with block size of 8x8 the estimated
version is very close to the original image. The difference will be even more evident when we

deal with more complex images (high detailed images).

Figure 34 - Estimated image of “Room Right”, Figure 35 - Estimated image of “Room Right”,
with block size of 8x8 with block size of 32x32

Figure 36 and 37 show the original stereo image pair of Pentagon. Figure 38 and 39 show the
estimated version of “Pentagon Right” with block size of 8x8 and 16x16 respectively.
Although with block size of 8x8 more bits is needed to send the motion vector? to the

decoder but generally block size of 8x8 gives better results in rate-distortion graphs.

Figure 38 — Estimated image of “Pentagon Figure 39 — Estimated image of “Pentagon
Right” with block size of 8x8 Right” with block size of 16x16

% The size of horizontal and vertical motion vectors will be 64x64 each. The stereo images are 512x512 pixels.

3.2 The Decoder

At the decoder we receive the complete version of Imagel and the motion vector with the
residual image of Image2. First of all, the decoder needs to do inverse quantization and
inverse wavelet transform on both Imagel and the residual image. Then it will generate an
estimated version of Image 2 from the motion vector and Imagel. Finally the decoded
residual image is added to the estimated image for reconstruction. Figure 40 shows a block

diagram of the Decoder:

(((1))

| Coded | Inverse _ S-level | ' Imagel =
Image 1 Quantization IDWT
v
| Horizontal
Motion Vector Generate an
estimated Estimated
- —>
version of Image 2
L Vertical Image2
Motion Vector

Coded _
L Residual Inverse | 5-Level Residual
Image Quantization IDWT Image

|
Y Image 2 “::>
T

Figure 40 — Block diagram of the Decoder

Chapter 4

Results and Analysis

We used MATLAB for programming and all the codes are available in the Appendix. We will
test the proposed system with some stereo image pairs. As mentioned before our stereo

images are 512x512 pixels and greyscale.

The aim here is to see how close we can get to the optimum result with our distributed
coding system with limited and corrupted communication between the encoders. The
optimum case (the upper boundary) for our system is when there is no channel noise
between encoder 1 and encoder 2. This is basically just joint source coding where all the
cameras have all the information available from their neighbouring cameras. We can also
have a lower boundary. The lower boundary could be when we independently compress our

two images without exploiting the correlation between the two images.

We chose 5 stereo image pairs for testing. We added different noise standard deviations of
o =10, 20 and 30. 0 = 0 means that there is no channel noise, so this will be used for joint
source coding. For Imagel bit-rates of 4bpp, 2bpp and 1bpp were chosen for testing with
each stereo pair. Also the working bit-rate range for Image2 was chosen to be within 0 to

0.6bpp.

4.1 Stereo Pair 1 - Room

Figures 41 and 42 show the original stereo pictures of “Room Left” and “Room Right”
respectively. Figures 43, 44 and 45 show the rate-distortion graphs for Image2 when Imagel
is sent to the decoder at the rates 4bpp, 2bpp and 1bpp respectively. In these tests the
standard deviation of noise is 10. The corresponding PSNRs of Imagel are 43.52dB at 4bpp,
33.93dB at 2bpp and 27.98dB at 1bpp.

Figure 41 — Original “Room Left” image Figure 42 — Original “Room Right” image
29
/pf———77+ ————
28 =
// = = 010
// % o “_,_'-L F__n.-
27 7 2355
A 28G5
m * O o
26 A o0
P ﬁ =288
=) = 2~ 3 =
£ 1 d8_
© a5°
Z 24 32
2 - 9 m 3
o I = o
23 —= S o
_— 4 ==
o 2
AT
/——— g3
+ = 3
o
21 o
[r=)
=]
20 5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 3
bpp

Figure 43 — Comparison of rate-distortion graphs
o =10, Imagel at 4bpp

In figure 43, the red line shows the joint source coding rate distortion graph. The green line
shows the Independent coding rate distortion graph. The black line shows the distributed
coding without any denoising on Imagel. We included this to see how our denoising
algorithm is performing. Finally the blue line shows the distributing coding case with
NormalShrink denoising algorithm. We can see that until 0.3bpp the distributed coding rate
distortion graph is doing better than the independent coding case and its only 3db below the
joint coding case. From 0.3bpp until 0.6bpp the gap increases to 5db and the distributed
coding gets very far from the joint coding line.

In figure 44 and 45 we have the same scenario except that Imagel is compressed at 2bpp
and 1bpp respectively. Our distributed coding system (blue line, when denoised) is about 6
below the joint coding case and independent coding is doing better than the distributed
coding. We can see that the rate which Imagel is compressed at is very important. This is
more evident in figure 45, where the independent coding does better than joint coding from

0.5bpp to 0.6bpp.

28 A F——1 28
26 = 26 =
+
-+ 24
24 -
£ E
% DZ: 20
2 20 2
o 4 — 18
18 16 = —d
H—
16 14 —————
H— —
" — | 1
0 0.1 0.2 03 0.4 05 0.6 07 0 01 0.2 0.3 04 05 06 0.7
bpp bpp
Figure 44 — Comparison of rate-distortion graphs, Figure 45 — Comparison of rate-distortion
o =10, Imagel at 2bpp graphs, ¢ = 10, Imagel at 1bpp

Now we apply the same tests but with noise standard variation of 20. Figure 46 shows the
rate distortion graph of Joint Coding, Distributed Coding and Independent Coding. This time
our distributed coding system is 4-5dB below the joint coding case. The independent coding

system is doing much better than our distributed coding system.

30 28 o
28 A _— - B 26 A
+ 24 b
26
N
> 4 9 2
E 2 £
% £ 20
o 22 8
18
B 5
20 v ===
16 C—
B &S
18 B
14
- o — R +
16 12
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
bpp bpp
Figure 46 — Comparison of rate-distortion Figure 47 - Comparison of rate-distortion
graphs, ¢ =20, Imagel at 4bpp graphs, ¢ =20, Imagel at 2bpp

Figures 47 and 48 show the rate distortion graphs at 2bpp and 1bpp for imagel respectively.
In figure 47 the blue line i.e. the distributed coding with denoising is not performing well and
it even goes below the black line which is the distributed coding without denoising. A
possible explanation could be, as stated before, wavelet transform itself is a good denoiser

at very low bit-rates as the high frequency components are disregarded.

28

26 -

24

22

20

PSNR-Image2

18

16

14 =

12
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7
bpp
Figure 48 - Comparison of rate-distortion
graphs, ¢ =20, Imagel at 1bpp

Just for reference, we are going to include the rate-distortion graphs for the case when the

standard deviation of noise is 30. We already know that the independent coding case is

doing much better than our distributed coding system for the “Room” stereo image pair.

Figures 49 up-to 51 show the rate-distortion graphs at 4bpp, 2bpp and 1bpp for imagel

respectively.

30

+H =
28
re
26
|
Q24
[=2)
©
E
o
g 22
]
o
20
el . 4 o
B, P - S
18 e ©
H— L.
" <" S I R
0 0.1 0.2 0.3 0.4 05 0.6 0.7
bpp

Figure 49 - Comparison of rate-distortion graphs,

o =30, Imagel at 4bpp

28

PSNR-Image2

28

Zi——
26 ai
24 A
22
20
18
16
G T
14 e
- ——q
A== —h— —— I —
12
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

bpp

Figure 50 - Comparison of rate-distortion graphs,
o =30, Imagel at 2bpp

26 -+
H
24
m
22
9
o 20
©
E
x 18
=z
n
o
16
14
G ~
nEEE
ek e — . — 9
10
0 0.1 0.2 0.3 0.4 0.5 0.6
bpp

0.7

Figure 51 - Comparison of rate-distortion graphs,
o =30, Imagel at 1bpp

4.2 Stereo Pair 2 - Blocks

Figure 52 and Figure 53 show the original stereo pictures of “Blocks Left” and “Blocks Right”
respectively. Figures 54, 55 and 56 show the rate-distortion graphs for Image2 when Imagel
is sent to the decoder at the rates 4bpp, 2bpp and 1bpp respectively. In these tests the
standard deviation of noise is 10. The corresponding PSNRs of Imagel are 44.04dB at 4bpp,
34.56dB at 2bpp and 27.28dB at 1bpp.

Figure 52 — Original “Block Left” Image Figure 53 — Original “Block Right” Image
) + + + +
— St
g2gg
a‘_ o - =
aooa 2
o 35 AFEoo
g 932z
I o = = =
£ LK
2 “Szz
5 233
Q 2w
G = =
=1
30 \ s - 5. g
+ € 2@
/ =
_— 3 Q
2. =
y 2 B
/// a8 =

/** &

x oy =

25 =

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 3

bpp

Figure 54 - Comparison of rate-distortion graphs, ¢ = 10, Imagel at 4bpp

[43]

As can be seen from figure 54 our distributed coding system is not as efficient as the joint
source coding case but throughout 0.1-0.6bpp is above the independent coding case. Figure
55 and 56 show the rate distortion graphs at 2bpp and 1bpp for Imagel respectively. We can
see from the graphs that, Imagel needs to be coded at the rate of 2bpp or higher in order to

get reasonable results for the joint source coding and distributed coding codecs.

34 m e 30
+- | +
28 e
32
26
30
N oy 2
54 8
£ 28 E 22
DZIC e % AN
9 6 . 9 20 =
= ~g—9
Ny A 18
24 —=
* 16
22 \,,, ,,,,,,, e
e 14 =
* o S —
20 12
0 0.1 0.2 0.3 0.4 0.5 0. 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
hnn bpp
Figure 55 - Comparison of rate-distortion graphs,
o =10, Imagel at 2bpp Figure 56 - Comparison of rate-distortion graphs,

o= 10, Imagel at 1bpp

Now we can try the same stereo image pairs with higher noise. We are going to try standard
variation of 20 and 30 for the channel noise. Figure 57, 58 and 59 show the rate distortion
graphs at the rates 4bpp, 2bpp and 1bpp for image 1 with ¢ = 20 and figures 60, 61 and 62
show the same graphs with the same specifications, except ¢ = 30. In figure 58 we can see
that our denoising algorithm is not performing well. One possible reason was explained
earlier. Another reason could be due to our bit allocation. We have realized that the bit
allocation process is not always optimal, especially at low bit rates.

From now on we will only try to compress Imagel at the rates 4bpp and 2bpp. We have seen
from our graphs that at the rate of 1bpp, even Independent coding can sometimes do better

than the joint coding.

PSNR-Image2

-+ |
ne
e
(€]
\\
\\7\
B! o——ag————— 4
\k ######## o +

0 0.1 0.2 0.3 0. 0.5 0.6 0.

Figure 57 - Comparison of rate-distortion graphs,

PSNR-Image2

30

28

26

24

22

20

18

16

14

12

o =20, Imagel at 4bpp

(03

N T G—6

10
0

0.1 0.2 0.3 0.4 0.5 0.6
bpp

0.7

Figure 59 - Comparison of rate-distortion graphs,

PSNR-Image2

o =20, Imagel at 1bpp

P—————— T t
e
*
qQ
—
\k\”\»-*, — &
0. 0. 0.3 0.4 0.5 0.6

Figure 61 - Comparison of rate-distortion
graphs, ¢ = 30, Imagel at 2bpp

0.7

PSNR-Image2

PSNR-Image2

PSNR-Image2

EEE—— A
4
[
+
. T f
0 0.1 [} 0.3 0. 0.5 0.6 0.7
bpp
Figure 58 - Comparison of rate-distortion
graphs, ¢ =20, Imagel at 2bpp
40
At |
H
A
35
30
N
25 =
N - 9
— \e’,/,_,,,(c e
\ o
20— e — T
15
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
bpp
Figure 60 - Comparison of rate-distortion
graphs, ¢ = 30, Imagel at 4bpp
30
ot : :
28 S3E
26
24
22
*
20 4
18
16 < —
— | 4
14
12
O -
10
0 0.1 0.2 0.3 04 05 06 0.7
bpp

Figure 62 - Comparison of rate-distortion

graphs, ¢ = 30, Imagel at 1bpp

4.3 Stereo Pair 3 - Book

Figures 63 and 64 show the original pictures of “Book Left” and “Book Right” respectively.
Figure 65 shows the rate-distortion graphs for Image2 when Imagel is sent to the decoder at
the rate of 4bpp. In these tests the standard deviation of noise is 10. The corresponding

PSNRs of Imagel are 39.76dB at 4bpp and 32.08dB at 2bpp.

Figure 63 — Original “Book Left” Image Figure 64 — Original “Book Right” Image
34 ‘ ‘
A— ‘ ‘
32 2555
® 5 55
EEZ2
o ® g g
3. 22
o 30 oS 28
> SFaca
o]
£ 4 § Sa a
- (=
z 28 283
(=9
2 s 2
w2,
= w
26 EN=
(]
C T — g—-C L
9 < o a
= [=]
o, =
24 e— n =
R [—h———F 2 32
w
=)
s
22 5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 3

bpp

Figure 65 - Comparison of rate-distortion graphs, ¢ = 10, Imagel at 4bpp

As can be seen from figure 65 our distributed coding system is not only as efficient as the

joint source coding case but also throughout 0.1-0.6bpp is below the independent coding

case. Also we can see that with the independent coding case the maximum PSNR happens at

0.1bpp. This shows that our bit allocation process is not optimal. Figures 66, 67, 68 and 69

show the rate distortion graphs for o = 20 and ¢ = 30 at the rates of 4bpp and 2bpp for

Imagel. We can see that our distributed coding system is always well below the Joint coding

and Independent coding.

34

]
,/’+
32
30
-+
o 28
[
[=)
[
£ 26
o
4
L 24
+ 06— 9 9
22
20 ~—
18
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
bpp

Figure 66 - Comparison of rate-distortion graphs, o
=20, Imagel at 4bpp

34 "

w
N

w
o

n
el

PSNR-Image2
N
(=2

n
EN

22 + =

~_ "

e S
20 \
—— 4 ‘*‘mwuw‘*
18
0.1 0.2 0.3 0.4 0.5 0.6 0.7
bpp

Figure 68 - Comparison of rate-distortion graphs, ¢
=30, Imagel at 4bpp

32

A
30
28
P

26
N
[
[=)
©
£ 24
o
)
9D 22

*
20 <
18 S
%—— — "
16
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
bpp

Figure 67 - Comparison of rate-distortion graphs, ¢
=20, Imagel at 2bpp

32

30

28

26

24

PSNR-Image2

22

20

18
* . —

16
0

En)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
bpp

Figure 69 - Comparison of rate-distortion graphs, ¢
=30, Imagel at 2bpp

We can see that overall we get poor results for distributed coding rate-distortion graphs.

4.4 Stereo Pair 4 - Spider

Figures 70 and 71 show the original stereo pictures of “Spider Left” and “Spider Right”
respectively. Figures 72 and 73 show the rate-distortion graphs for Image2 when Imagel is
sent to the decoder at the rates 4bpp and 2bpp. In these tests the standard deviation of
noise is 10. The corresponding PSNRs of Image1l are 38.87dB at 4bpp, 32.64dB at 2bpp.

Figure 70 — Original “Spider Left” Image Figure 71 — Original “Spider Right” Image

31

/’— | | + + + +
30 A

o szoo
29 P22
+ EE-
2855
28 g8
N 2 5oo
> 27 322
© & o~ 3 3
= S e e
Z 26 @ %— = =
=z e 2 2
n 3 o
a8 7]
25]
U o
=)
24 2 a
6— | o
(=1
23 I e > § S
W ;:-:

=

22 i o

21 =

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 3

bpp
Figure 72 - Comparison of rate-distortion graphs, ¢ = 10, Imagel at 4bpp

30 I

+,
28 u
o 26
()
()]
©
E
o
T 24
7]
o
22
G\\\\
* \\\\
20 e ~g— —=
N R —"
* — ——
18
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

bpp
Figure 73 - Comparison of rate-distortion graphs, ¢ = 10, Imagel at 2bpp
From figure 72 we can see that the distributed coding rate-distortion graph is close to the
independent coding case and is about 5 to 7db below the joint coding case. Figure 73 shows
the same comparison but at the rate of 2bpp for Imagel. The rate-distortion graph of
distributed coding is well below the Independent coding and Joint Coding. This shows how

important it is in the way we send Imagel to the decoder.

4.5 Stereo Pair 5 - Tennis_Ball

Figures 74 and 75 show the original pictures of “Tennis_Ball Left” and “Tennis_Ball Right”
respectively. Figures 76 and 77 show the rate-distortion graphs for Image2 when Imagel is
sent to the decoder at the rates 4bpp and 2bpp. In these tests the standard deviation of
noise is 10. The corresponding PSNRs of Imagel are 46.52dB at 4bpp, 39.72dB at 2bpp.

Figure 74 — Original “Tennis_Ball” Left Figure 75 — Original “Tennis_Ball” Right
42
— 8544
| 2333
38 SEcc
§ v A&
N [
) =S 0O
g 36 9388
E 2038 &
- = o 7 -
x “ 2z
» a5 2
o 34 a o
SN
= um
o B
g 8
30 ———— 23
o
\//*/*N ;g
28 S
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 g‘
bpp

Figure 76 - Comparison of rate-distortion graphs, ¢ = 10, Imagel at 4bpp

40

36

34

32

PSNR-Image2

30

28

26

24 — .
* ,,,,,,,,,,,, * — —

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
bpp
Figure 77 - Comparison of rate-distortion graphs, ¢ = 10, Imagel at 2bpp

22

As show on figure 76 the rate distortion graph for distributed coding is well above the
Independent coding throughout the 0-0.6bpp and is 6-8dB below the joint coding case. In
figure 77 where, Imagel is sent at 2bpp, the rate distortion graph for distributed coding is
below the independent coding by 1-4dB. This again shows how important it is in the way we
send Imagel to the decoder. Figures 78 and 79 show the rate distortion graphs for the cases

when o =20 and o = 30 respectively. Imagel for both cases is compressed at 4bpp.

42 45,
ul -
40 n
H o
38 40| i
al
o 36
> o
IS o 35
£ 34 g
Z 32 E
9 z
® 30 % 30
G— G
28 = ———— —H.
25 5 - J - —

26 —

24 SH— */_7;_/,,,7*— | ~ K

22 200 0.1 0 0.3 0 0.5 0.6 0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 : : : : : : :
bpp bpp

Figure 78 - Comparison of rate-distortion graphs, ¢ Figure 79 - Comparison of rate-distortion graphs, ¢
= 20, Imagel at 4bpp =30, Imagel at 4bpp

Chapter 5

Further Improvements and Future Work

The aim of this project is to see if distributed coding is as efficient as joint coding when we
have a noisy channel between encoderl and encoder2. Up until now we get poor results for
the distributed coding rate distortion graphs. We have proved that the stereo pictures itself,
the bit-rate that imagel is compressed at, and the variance of the noise, play an important
part on the results we achieve. Now we are going to make some modifications to see if the

performance of the rate-distortion graphs of distributed coding get any better.

5.1 Denoising

We used Haar filters when we were denoising the corrupted Imagel in encoder2. We could
also use Daubechies filters for denoising corrupted signals. In order to try denoising using
Daubechies filters we first need to find the inverse wavelet transform of the corrupted
image in the encoder with the use of Haar filters. This is because for the compression of
Imagel in encoderl we used Haar filters, so we have to use Haar filters again to take the
inverse wavelet transform. Now we take the wavelet transform of the Image using
Daubechies filters, denoise it, and then take the inverse wavelet transform with the same
filters. The choice of which Daubechies filters to be used is quite important but generally
‘db8’ (8 vanishing moments) filters work quite well. Also the choice of number of
decompositions is important but generally 3-level decompositions are preferred for 512x512

images.

It is important to mention here that we have an image border distortion problem with
Daubechies filters in MATLAB. There are different ways of handling the distortion problem
using the MATLAB “dwtmode” function. The function “dwtmode” specifies the image
extension mode for discrete wavelet transform. Some of the modes are “sym” for
symmetric-padding (half-point), “zpd” for zero-padding and “ppd” for periodic-padding.

Zero-padding usually gives the best result for our test images so we stick to “zpd” mode

when using Daubechies filters for denoising. We will show some examples on how denoising
under ‘db8’ with 3-level wavelet decomposition performs by comparing to the Haar filters

case with 5-level decomposition.

Figure 80 and Figure 81 show the denoised “Room” image with the use of Haar and ‘db8’
filters respectively. The standard variation of noise was chosen to be 40. The corresponding
values of PSNRs are 23.3dB and 24.4dB respectively. We can see that with the use of ‘db8’
filters we can improve our denoised image by about 1dB. We can try another image. Figure
82 and Figure 83 show the denoised “Spider” image with the use of Haar and ‘db8’ filters
respectively. The standard variation was chosen to be 40. The corresponding values of PSNRs
are 24.86dB and 25.31dB respectively. Therefore with ‘db8’ filters we improved our
denoised image by about 0.5dB.

Figure 80 — Denoise Image using Haar filters Figure 81 — Denoised Image using ‘db8’
filters

Figure 82 - Denoise Image using Haar filters Figure 83 - Denoised Image using ‘db8’
filters

Now we show some examples of rate-distortion graphs with the use of ‘db8’ filters and

compare it our previous results where we were using Haar filters for denoising the corrupted

Imagel in encoder2. Figure 84 and Figure 85 show the rate distortion graphs for “Book”

stereo image pairs. In Figure 84 we are using Haar filters to denoise Imagel and in Figure 85

we are using ‘db8’ filters to denoise Imagel. As can be seen from the figures, the distributed

coding (blue line) rate distortion graph has gone up by about 1db when we use ‘db8’ filters.

Another example is shown in Figure 86 and Figure 87 for the “Tennis_Ball” stereo pair. As

can be seen from the figures the distributed coding rate distortion graph with the use of

‘db8’ filters is about 2dB higher.

34 1
A
32
N 30 /
(&)
= y
£ -+
x 28
z
[
o
26
4—-+—1 —9
24 e
——— | — A
22
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
bpp
Figure 84 - Rate-distortion graphs, =10,
Imagel at 4bpp, Haar filters
42
40 = e
H
4
38
Y
g 36
£
¢
z
2
32 Lo — —
o
30
A—
_— —H
28 \ ,,,,,,, S

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 86 - Rate-distortion graphs, ¢ = 10,
Imagel at 4bpp, Haar filters

34

-+
A
y
32
/

« 30
[
)
©
£ 4
g
< 28
0
o

26

g
24 e
[—f———— W
22
0 0.1 0.2 0.3 0.4 0.5 06 -

bpp

Figure 85 - Rate-distortion graphs, ¢ = 10, Imagel

at 4bpp, ‘db8’ filters

42

40 +
A
|
38
? 36
j=2]
©
E
& 3
4
) Cr
o i — g —
32 -
+
30
J—
S~ — —
28 ki
0 0.1 0.2 0.3 0.4 0. 0.6 0

Figure 87 - Rate-distortion graphs, ¢ = 10, Imagel

at 4bpp, ‘db8’ filters

5.2 Block Matching

The method we used for our motion compensation is called fixed block matching. Fixed
block matching means that the block sizes are fixed to KxK. Fixed block matching is very
popular due its simplicity. Other block matching methods are “Variable Block Matching” and
“Overlapped Block Matching”. Generally theses two perform much better than fixed block
matching at normal bit-rates. At low bit rates fixed block matching performs better than the
other two. This is because, with fixed block size method we can pre-specify the block size for
both the encoder and the decoder so no other information is needed to be sent to the
decoder about the block size. With “Variable Block Matching” method this is not case and
we need to send the variable block sizes to the encoder for each captured image. Also, for
overlapped block matching method, there are more bits needed to send the motion vector
to the decoder. Therefore at low bit-rates “Fixed Block Matching” is probably the best

available method for motion compensation.

5.3 Bit Allocation

As mentioned before, from our results we realized that the bit allocation algorithm we use is
not optimal. It may be impossible to find an optimal bit allocation algorithm which would
optimally work on very low bit-rates. In JPEG2000 codec system, a weighted bit allocation is
used instead. In this way, the lowest weights are given to the diagonal subbands and the
highest weight is given to the approximation subband. Figure 88 shows one way of setting
the weights for different subbands. Now we will show how this would improve our rate-

distortion graphs significantly by showing some examples.

Figure 89 shows the rate-distortion graph of “Tennis_Ball” stereo pair with the following
specifications: o =10, rate of Imagel = 4bpp, and ‘db8’ filters for denoising with the non-
weighted bit allocation algorithm. Figure 90 shows the same rate distortion graph with the
weighted bit allocation algorithm. The results are very surprising. The rate distortion graph
for our distributed coding system has gone up by at least 4db. Now we can even say that our
distributed coding is very close to the joint coding case. This shows how important the bit
allocation process is. Now we can change the specifications and compare the new results to

the previous results where non-weighted bit allocation algorithm was used.

h 4
h 4

0.178

0.178 0.044

Figure 88 — Possible weighting table for bit allocation

42 42
; ; H—
40 * : ‘ 40
—+ 81
4

38 38 =
9 36 2 36 A
[[
£ £
€ 34 3 Z
[— n
o - - _g o *

32 —< 32

+
30 ~ 30|
Q \\\k - . B ‘* . * Q
25 0.1 0.2 03 04 05 0.6 07 % 0.1 0.2 03 0.4 05 06 07
bpp bpp
Figure 89 — Rate-distortion graphs, o = 10, Figure 90 — Rate-distortion graphs, ¢ = 10, Imagel
Imagel at 4bpp, ‘db8’ filter, Non- at 4bpp, ‘db8’ filter, Weighted Bit Allocation

Weighted Bit Allocation

Figure 91 and Figure 92 show the rate-distortion graphs of the “Tennis_Ball” stereo pair with
the non-weighted bit allocation algorithm and the weighted bit allocation algorithm
respectively. The specifications for both cases are as follows: o =30, rate of Imagel = 4bpp,
‘db8’ filters for denoising. Again the results have improved significantly with the weighted bit
allocation. Even at high noise variances the distributed coding rate distortion graph is doing
as good as the rate distortion graph of independent coding scenario. One important thing to
mention here is that even the rate distortion graph of Independent coding has improved but

the change in distributed coding case is much higher.

45
) —
40 : 4
A
o 35
[}
j=2)
©
E
o
5 30
o
G— -
25 4 g g
T~
S~
* _______ %,“7*7,,,*
20
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
bpp

Figure 91 - Rate-distortion graphs, ¢ = 10, Imagel
at 4bpp, ‘db8’ filter, Non-Weighted Bit Allocation

45
At
40 —— i
| E—
o
® 35
g
£ S 2 S
g o +
~
o o —O
30 <4
P
&
25
20
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

bpp

Figure 92 - Rate-distortion graphs, ¢ = 30, Imagel
at 4bpp, ‘db8’ filter, Weighted Bit Allocation

Figure 93 and Figure 94 show the rate-distortion graphs of the “Room” stereo image pair

with the non-weighted bit allocation algorithm and the weighted bit allocation algorithm

respectively. The specifications for both cases are as follows: 0 =10, rate of Imagel = 4bpp,

‘db8’ filters for denoising. This time the results for distributed coding have actually gone

down. This shows the importance of the weighting table. An adaptive weighted bit allocation

algorithm could be an immediate future work for this project.

29
H + —
28
27 :
A
2
o~
S
< 25
£ 4
g
2 P
A
23 —==
22 e Sl e
I
21
20
0 0.1 0.2 03 0.4 05 0.6 0.7
bpp

Figure 93 - Rate-distortion graphs, ¢ = 10, Imagel
at 4bpp, ‘db8’ filter, Non-Weighted Bit Allocation

29

28

27

26

25

24

PSNR-Image2
ES

23 [——F———

-

22

A\

21

20
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

bpp

Figure 94 - Rate-distortion graphs, ¢ = 10, Imagel
at 4bpp, ‘db8’ filter, Weighted Bit Allocation

5.4 Residual Coding

We use wavelet transform to compress our residual image in the second encoder. In [17]
Moellenhiff’s analysis shows that residual images show significantly different characteristics
from ordinary images. The pixels of the residual images are less correlated when compared
to the original captured image and they mostly contain edges and high frequency
information. This would mean that, wavelet transform which works very well on
compressing images would not very useful for residual images. Also, as mentioned before,
the range of residual images is most likely from -255 to 255 for 8-bit images therefore
uniform quantization would not be very useful for residual coding. One way to tackle the
problem is to take the discrete cosine transform (DCT) of the disparity blocks that are below
a threshold and take the wavelet transform of the disparity blocks that are above the set
threshold. In [18] a similar method was developed by Frajka and Zeger and they achieve

some good results. Improvements on residual coding could be a future work for this project.

Summary and Conclusion

The aim of this project was to see if distributed coding is as efficient as joint coding when we
have a noisy channel between encoderl and encoder2. It was shown that the stereo pictures
themselves, the bit-rate that imagel is compressed at, and the variance of the noise, play an
important part on the rate-distortion graphs. If the stereo pictures are highly detailed then
we need to choose a smaller block size for motion compensation. This would mean more
data needs to be sent to the decoder and generally is not a good solution at low bit-rates.
The bit-rate that Imagel is compressed at is extremely important, especially if the variance
of the channel noise is high. If the reference image is highly compressed, then due to the
noise in the channel, it is extremely difficult to achieve an acceptable quality for the
denoised Imagel at the second encoder. Also if the variance of the channel noise is too high

then it would be difficult to be even as efficient as independent coding.

The choice of filters for the wavelet transform is quite important as well especially for
denoising images. We showed that by using ‘db8’ filters instead of Haar filters we can, on
average, improve the PSNR of our denoised image by about 1db. We also showed how
extremely important the process of bit allocation is, especially when we are working at low
bit-rates. The weighted bit allocation improved some of the rate-distortion graphs
dramatically. A probable immediate future work for this project would be to design a new
adaptive weighted block matching algorithm which would work on most images. To
conclude, we can say that although being as efficient as joint source coding with distributed

coding is practically impossible, but on certain conditions we can get very close to it.

Bibliography

[1] D. Slepian and J. K. Wolf, “*Noiseless coding of correlated information

sources," IEEE Trans. Inform. Theory, vol. IT-19, pp. 471-480, July 1973.

[2] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding with
side information at the decoder," IEEE Trans. Inform. Theory, vol. IT-22, pp. 1-10,
January 1976.

[3] A. D. Wyner, On source coding with side information at the decoder, IEEE

Trans. Inform. Theory, vol. IT-21, pp. 226-228, May 1975.

[4] A.D. Wyner, "The rate distortion function four source coding with side
information at the decoder-Il: General sources," Information and Control, vol. 38, pp.

60-80, May 1978.

[5] B. Girod, A. Aaron, S. Rane and D. Rebollo-Monedero, "Distributed video
coding," Proceedings of the IEEE, Special Issue on Video Coding and Delivery, vol. 93,

no.l, pp. 71-83, Jan. 2005.

[6] K. Varma and A. Bell, ”JPEG2000-Choices and Tradeoffs for Encoders”, IEEE

Signal Processing Magazine, pp.70-74, November 2004.

[7] A. Skodras, C. Christopoulos and T. Ebrahimi, "The JPEG2000 still image
compression standard", IEEE Signal Processing Magazine, vol. 18, no. 5, pp. 36-58,

September 2001.

[8] H. Wu and A. Abouzeid, “Energy efficient distributed image compression in
resource constrained multihop wireless networks”, Computer Communications, vol.

28, pp. 1658-1668, September 2005

[9] M. Flierl and P.Vandergheynst, “Distributed Coding of Highly Correlated Image
Sequences with Motion-Compensated Temporal Wavelets”, EURASIP Journal on

Applied Signal Processing, vol. 2006, id 46747, 2006.

[10] R. Wagner, R.D. Nowak and R.G. Baraniuk, “Distributed image compression
for sensor networks using correspondence analysis and super-resolution”, In

Proceedings of ICIP 2003, pp. 597-600, 2003.

[11] O.Rioul and M. Vetterli, “Wavelets and Signal Processing,” IEEE Signal

Processing Magazine, vol. 8, no. 4, pp. 14-38, October 1991.

[12] [Book]—A. Abbate, C.M. DeCusatis and P.K. Das, “Wavelets and Subbands

fundamentals and applications”, September 2001.

[13] A. Ortega, "Optimal rate allocation under multiple rate constraints",

Data Compression Conference, March 1996.

[14] E. A. Riskin, "Optimum bit allocation via the generalized BFOS algorithm,"
IEEE Trans. Inform. Theory, vol. 37, pp. 400-402, March 1991.

[15] L.Kaur, Savita Gupta and R.C.Chauhan, “Image Denoising using Wavelet
Thresholding”, Third Conference on Computer Vision, Graphics and Image Processing,

December 2002.

[16] E. A. Edirisinghe, M. Y. Nayan and H. E. Bez, “A wavelet implementation of the
pioneering block-based disparity compensated predictive coding algorithm for stereo
image pair compression”, Signal Processing: Image Communication, vol. 19, Issue 1,

pp. 37-46, January 2004,

[17] M. S. Moellenho and M. W. Maier, “Characteristics of disparity-compensated
stereo image pair residuals", Signal Processing: Image Communication, vol. 14, pp.

55-69, 1998.

[18] A. Frajka and K. Zeger “Residual image coding for stereo image compression”,
International Conference on Image Processing, vol. 2, pp. 11-220 and 11-271, vol. 2,

January 2003

Appendix

A CD-ROM is also available at the end report with all the MATLAB codes, the stereo pictures

used and the PDF document of this report.

“Encoder 1”

function [T M gamma] = encoderl(imagel,rate,h);

% function endoderl compresses Imagel at the given bit-rate. "h" is used
for

% enabling or disabling quantization. The outputs are T, the transformed

% image, M, the values of minima and maxima, gamma the calculated bits for
% different subbands using the bitalloc function

% Reading Imagel
X1 = readimage(imagel);

% Taking the wavelet transform of the image with N decompositions,

% WaveQuant function also does the bit allocation and quantization for all
% the subbands

[T M gamma] = WaveQuant(X1,5,"dbl",rate,0,h);

“Encoder 2”

function [vert_disp,horz_disp,par,M_par,gamma2] =
encoder2(image2,sigma,X1,M,gamma, rate2,k,v);

% The encoder2 function receives a noisy version of Imagel. It first has to
% denoise Imagel. Then using motion compensation, It estimates Image2 from
% Imagel. The residual image is found by subtracting Image2_ estimated from
% the original Image2. Finally the residual image is coded using the

% Wavequant function. k is a flag used for enabling/disabling the denoising
% process. Sigma is the standard variation of the noise. v is used for

% enabling/disabling quantization.

% Receive the noisy Imagel
X1 = channel_noise(sigma,X1);

% Ignore the the subbands B1, C1, D1, B2, C2 and D2. This is very useful
% for low bit-rates, when denoising
if k==1
gamma = [zeros(1,6) gamma(7:16)];
end

% WaveDeQuant does Inverse Quantization and inverse wavelet transform with
% the option of denoising
X1 = WaveDeQuant(X1,M,gamma,5,*db1",0,0,v);

X1
X1

uint8(X1);
double(X1);

% The denoising algorithm is applied in the WaveDeQuant function
if k==1
[X1 Mtmp gammatmp] = WaveQuant(X1,3,"db8",0,0,0);
X1 = WaveDeQuant(X1,Mtmp,gamma,3, "db8",sigma,1,0);
end
X1 = uint8(X1);

double(X1);
readimage(image2);
cmr=0; flag=0;

b =8; % block size
T = 512/b; % Motion vector size
w = 9; % search area (surrounding blocks) has to be an odd number

w_max = (w-1)/2;
horz_disp = zeros(T,T);
vert_disp = zeros(T,T);

for m = 1:1:7
c = ((m-1)*b)+1;
for n = 1:1:T
L = inf;
d = ((n-1)*b)+1;
ref = X2(c:c+(b-1),d:d+(b-1)); % A Block is Image2 is considered
for 1 = 1:1:w
for j = 1:1:w
e = ¢ + ((i-w_max-1)*b);
g =e + (b-1);
f=d+ (g-w_max-1)*b);
h =Ff + (b-1);
it (e>0) & (F>0) & (g>0) & (h>0) & (9<513) & (h<513)
mean = sum(sum(abs(X1(e:g,f:h) - ref)));
if mean < L
L = mean;
col = j-w_max-1;
row = i-w_max-1;
end
end
end
end

horz_disp(m,n) = col;
vert_disp(m,n) = row;
Q = ct+b*vert_disp(m,n);
W = d+b*horz_disp(m,n);

% Making Image2 estimated version from the horizontal and
% vertical displacements
X2_est(c:c+(b-1),d:d+(b-1)) = X1(Q:Q+(b-1),W:W+(b-1));
end
end
par = (X2-X2_est); % The residual Image

% We force the range to be within -128 and 128
for m=1:512
for n=1:512
it abs(par(m,n)) >= 128
par(m,n) = sign(par(m,n))*128;
end
end
end

% Compressing the residual Image
[par M_par gamma2] = WaveQuant(par,5,"dbl",rate2,1,v);

“Decoder”

function decoder(imagel, image2,sigma,rate3,h)
% This is the main program. We first set the two stereo images with the

% standard deviation of the channel noise and the rate at which we want to

% compress Imagel. h here is used for enabling/disabling the quantizer.

% Setting the wavelet extension mode to zero-padding

dwtmode("zpd™);

clc;

close all;

figure()

warning off;

s 1] oY Gelicisiaiaisiaiaiuiaiaiaiainisiaiaiuiabaioiaioisiaiaiuiabaisiaiainiaiaiuiabaiaiaiaisiaiaiuiobaiaiaioisiaiaiuiabaiatatoiaiaie D)
d i Sp(- ******************Cod i ng & DeCOd i ng I mage 1****************** ')

d i Sp (FAAAAAAXAAAAAAAAAAAAAAXAXAAAAXAAXAXAAAAXAAXAXAAAXAXAAXAXAAAXAXAAXAXAAAXAXAAXAXAAA XX)
% Receive the coded Image from encoderl
[Xone MM gammal] = encoderl(imagel,rate3,h);
% Deocode to retrieve Imagel
X1 = WaveDeQuant(Xone,MM,gammal,5, dbl",sigma,0,h);
% For Testing Purposes Only
X11 = readimage(imagel);
PSNR__ Imagel = calcPSNR(X11,X1)
hold on; grid; xlabel("bpp"); ylabel ("PSNR-Image27);
% The bit-rates that are used for Image2
rate = [0 0.2 0.3 0.4 0.5];
[aaa,bbb] = size(rate);
for j = 1:3
if j==
k=0;
str = "-_k*";

M FAAAAAAAAAXAAXAAXAAXAAXAAXAIAAXAAXAAXAAAAXAAXAAAXAAXAAXAAAkAAAAkAAhAhAhkhAhkAhkhAhhkhhhhhiihkii
disp(
E e o o)
2************************* -)
STr2=["****xkdkdrtdrhrrixtx® "Sigma = " num2str(sigma) ", No
disp(str2);

ok o)

str2 = ["sigma = " num2str(sigma) " No denoising algorithm™];
strll = str2;

end

if j==
k=1;

ok

2************************* -)

str2=[" " "Sigma = " num2str(sigma) ", NormalShrink
deno i S i ng al gor i thm - TFAAAXIAAAAAAAAAAAAXKXK '] ;
disp(str2)

EE e e)

str2 = ["sigma = " num2str(sigma) " NormalShrink denoising
algorithm™];
str22 = str2;
end
if j==
k=0;

sigma=0; %=>no_noise

str = "-.r+7;

ok o

2 b))
str2=[" " "No noise - Joint Coding”
TFAAXAXIAXAAAAAAAAXAAAAAAAAAAXAKXKX '] -
disp(str2)
d i Sp(AR AAAAAAAAAAAAAAAAAAAAAAIAA A A A I A A A A A A I A A A A A Idrhhhhhhhhhhhhhhhhhhiiiikik

EE e e)

str2 = ["No noise - Joint Coding~®];
Str33 = str2;
end
for 1 = 1:1:bbb
% Receilve the residual image, motion vectors, the allocated bits and
% the maxima and minima of iImage2
[vert_disp,horz_disp,par,M_par,gamma2] =
encoder2(image2,sigma,Xone,MM,gammal, rate(i),k,h);
% Decode the residual image
par = WaveDeQuant(par,M_par,gamma2,5, dbl",sigma,0,h);
b =8; % block size

T = 512/b;
% Estimate Image2 from Imagel using the motion vectors
for m = 1:1:T
for n = 1:1:T
c = ((n-1)*b)+1;
d = ((n-1)*b)+1;
Q = ct+b*vert_disp(m,n);
W = d+b*horz_disp(m,n);
X2_est(c:b*m,d:zb*n) = X1(Q:Q+(b-1),W:W+(b-1));
end
end
% Add the residual Image to estimated_Image2 for reconstruction of
% Image2

P=X2_est+par;

% FOR TESTING PURPOSES ONLY

X22 = readimage(image2);

PSNR_Image2 DC(i,1) = calcPSNR(X22,P);

PSNR__ Image2 DC = calcPSNR(X22,P)

% Rate that is used for Independent Coding of Image2
rate2 = [0.1 0.2 0.3 0.4 0.5];

% Independent Coding

if j==
[TT M gamma3] = WaveQuant(X22,5,"dbl",rate2(i),0,h);
A = WaveDeQuant(TT,M,gamma3,5, "db1",sigma,0,h);
PSNR_Image2 IC(i,1) = calcPSNR(X22,A);
PSNR__Image2_IC = calcPSNR(X22,A)

end

bpp2_IC(i) = rate2(i);

bpp2_DC(i) = rate(i)+(((2*T*T*3))/(512*512));
end
plot(bpp2_DC,PSNR_Image2 DC,str)
end

plot(bpp2_IC,PSNR_Image2_IC,"-.gd")

legend(strill,str22,str33, " Independent Coding);

% The codes below could be used for showing the Motion vector
%{

figure(1l); hold on; axis([O T 0 T]);

YY = meshgrid(T:-1:1)";

XX = meshgrid(1:1:T);

quiver(XX,YY,horz_disp,vert_disp)

%3}

“N-Level Wavelet Transform”
function T = N_Level DWT(A,N,Filter);
% This function takes the N-th level wavelet transform of the given image
[a,b] = size(A);
T = zeros(a,a);
for 1 = 1:1:N
[A,B,C,D] = dwt2(A,filter);
[c,d] = (size(A));
T(1:(c*2),1:(c*2)) = [A,B;C,D];
end

“N-Level Inverse Wavelet Transform”

function A = N_Level IDWT(T,N,filter);
% This function calculates the inverse wavelet transform of the given
% transformed image
[a,b] = size(T);
cc = BSC(Filter,N,a);
dd = [512 cc];
A = T((L:cc(N)),(1:cc(N)));
for 1 = 1:1:N

c = cc(N-i+l);

D = T((c+1l):(2*c),(c+1l):(2*c));

C = T((c+1):(2*c),(1:¢c));

B = T((1:¢),((ctl):2*c));

A = idwt2(A,B,C,D,Filter,dd(N+1-i));
end

“Quantizer”
function [out,MIN,MAX] = Quantizer(B,gamma,h)
% This function quantizes the given image B, with the given number of bits
if h==1

[a,b] = size(B);

MIN = min(min(B));

B =B - MIN;
MAX = max(max(B));
Q 2”gamma;

I Xx 1

if Q==1
out=zeros(a,b);
MIN=0;
MAX=0;
else
P = MAX/(Q); % The step-size
ifP>0
out = round(B/P);
else
out = zeros(a,b);
end
end
else

out = B; MIN =0; MAX=0;
end

“Dequantizer”
function out = Dequantizer(In,MIN,MAX,gamma,h);
% This function dequantizes "In" with the given MIN, MAX and gamma values
if h==1
[a,b] = size(ln);
Q = 2~gamma;
if Q==
out=zeros(a,b);
else
P = MAX/(Q);
tmp In*P;
out = round(tmp + MIN);

end
else

out = In;
end

“Bit_Alloc”
function gamma = bitalloc(T,N,filter,rate,v);
% The bitalloc function allocates bits to different subbands. This function
% uses a predefined weighting for bit allocation.
X = (3*N)+1;
if rate > 0
% The weightings
w = ones(1,x); w(1l) = 0.178; w(2) = 0.178; w(3) = 0.044;
w(4) = 0.561; w(b) = 0.561; w(6) = 0.284; w(9) = 0.727;

[a,b] = size(T);
cc = BSC(Filter,N,a);
gamma = zeros(1,x);

% Einitializing the distortion matrix
Dist = zeros(1,x);

for j = 1:(12*x) % assuming 12 bits is the maximum number of bits
assigned to a block
for i = 1:1:N
c = cc(i);
B = T((1:¢),((c+tl):2*c));

[B1,MIN,MAX] = Quantizer(B,gamma(3*i - 2)+1,1);
B1 = Dequantizer(B1,MIN,MAX,gamma(3*i - 2)+1,1);
tmp = sum(sum(abs(B1-B)))/(c"2);
Dist(3*i - 2) = w(3*i - 2)*tmp;

C = T((c+1):(2*c),(1:0));

[C1,MIN,MAX] = Quantizer(C,gamma(3*i - 1)+1,1);
Cl1 = Dequantizer(C1,MIN,MAX,gamma(3*i - 1)+1,1);
tmp = sum(sum(abs(C1-C)))/(c"2);

Dist(3*i - 1) = w(3*i - 1)*tmp;

D = T((c+1):(2*c),(c+1):(2*Cc));

[D1,MIN,MAX] = Quantizer(D,gamma(3*i)+1,1);
D1 = Dequantizer(D1,MIN,MAX,gamma(3*i)+1,1);
tmp = sum(sum(abs(D1-D)))/(c"2);

Dist(3*i) = w(3*i)*tmp;

end

A =T(:c,1:¢);

[A1,MIN,MAX] = Quantizer(A,gamma(x)+1,1);
Al = Dequantizer(Al,MIN,MAX,gamma(x)+1,1);
tmp = sum(sum(abs(Al1-A)))/(c"2);

Dist(x) = tmp;

% At low bit rates setting B1,C1,D1,B2,C2 and D2 to zero would
% generally help
if v==1
Dist(1:6) = O;
end

% We need to find the subband that has the highest distortion as we
% are starting from Obits for all subbands. We also need to make
% sure that the allocated bits of no subband goes above 12.

[a,b] = sort(Dist, "descend”);
for k = 1:x
it gamma(b(k)) >= 12
else
gamma(b(k)) = gamma(b(k)) + 1;
break;
end
end

% Find the total rate using CRC function
R = CRC(gamma,cc);
if R >= rate
break;
end
end
else
gamma = zeros(1,x);
end

“WaveQuant”

function [out M gamma] = WaveQuant(T,N,filter,rate,v,h)

% The function WaveQuant is a multi process function. It first takes the

% wavelet transform of a given image T. Then it allocates bits to different
% subbands at the given bit-rate, using the bitalloc function. Finally it

% quantizes all the subbands and outputs the transformed image. At the end
% the iInverse wavelet transform of the image is calculated

% Taking the wavelet transform (for Haar use "dbl")
T = N_Level DWT(T,N,Filter);

% Allocating bits to different subbands at the given bit-rate
gamma = bitalloc(T,N,Ffilter,rate,v);
[a,b] = size(T);

% Finding the sizes of the different subbands
cc = BSC(filter,N,a);
out = zeros(a,b);

% Finding the number of subbands
X = (3*N)+1;

% Initializing the Minima/Maxima matrix
M = zeros(2,X);

for i = 1:1:N

c = cc(i);
B = T((1:c),((c+l):2*c));
[B.M(1,(B*1 - 2)),M(2,(3*1 - 2))]

C = T((c+tD):(2*c),(1:c));
[C.M(1,(B*T1 - 1)),M(2,(3*1 - 1))]

D = T((c+1):(2*c),(c+t1l):(2*c));
[D,M(1, (3*1)),M(2,(3*1))] = Quantizer(D,gamma(3*i),h);

Quantizer(B,gamma(3*i - 2),h);

Quantizer(C,gamma(3*i - 1),h);

A = zeros(c,C); % temporary
ifi==

A =T(:c,1:¢);

[A.M(1,x),M(2,%X)] = Quantizer(A,gamma(x),h);
end

out(1:(c*2),1:(c*2)) = [A,B;C,D];

end

“WaveDeQuant”

function out = WaveDeQuant(T,M,gamma,N,filter,sigma,k,h)

% The function WaveDeQuant is a multi process function. It first finds the
% inverse quantization of the wavelet subbands. Denoising will be applied
% on the dequantized subbands. k is a flag used for enabling/disabling the
% denoising algorithm.

[a,b] = size(T);

out = zeros(a,b);

cc = BSC(filter,N,a);

%var = calcvar(T,M,gamma,cc,h);

X = (3*N)+1;
for 1 = 1:1:N
c = cc(i);
B = T((1:¢),((ct1l):2*c));
B = Dequantizer(B,M(1,(3*i - 2)),M2,(3*i - 2)),gamma(3*i - 2),h);
B = denoiseNS(B,N,sigma,k);
C = T((c+D):(2*c),(1:c));
C = Dequantizer(C,M(1,(3*i - 1)),M(2,(3*1 - 1)),gamma(3*i - 1),h);
C = denoiseNS(C,N,sigma,k);
D = T((c+t1l):(2*c),(c+1):(2*Cc));
D = Dequantizer(D,M(1, (3*1)),M(2,(3*1)),gamma(3*1),h);
D = denoiseNS(D,N,sigma,k);
A = zeros(c,C); % temporary
ifi1==N
A =T(:c,1:¢);

A = Dequantizer(A,M(1,x),M(2,x),gamma(x),h);

out(1:(c*2),1:(c*2)) = [A,B;C,D];
end
out = N_Level IDWT(out,N,Filter);
out = round(out);

“denoise_NS”

function T = denoiseNS(T,N,sigma,k)
% The denoiseNS function is the implementation of NormalShrink denoising
% algorithm
if k==1
[a,b] = size(T);
beta = sqrt(logl0o(as/N));
tmp = reshape(T,[]1.1);
sd = std(tmp);
thr = beta*(sigman2)/sd;
for m = 1:1:a
for n = 1:1:b
T(m,n) = sign(T(m,n))*max(0,abs(T(m,n))-thr); %soft
thresholding
end
end

end

function var = calcvar(T,M,q,cc,h)
% The calcvar function estimates the variance of noise. This function is
% not used when we are working at low-bit rates.
[a,b] = size(M);
tmp=0;
for i = 1:((b-1)/3)
if (qB*i) >= 1)
DD =
Dequantizer(T((cc(i):2*cc(i)),(cc(i):2*cc(1))),M(1,3*1),M(2,3*1),q(3*1),h);
S = reshape(DD,[1,1);
S = median(abs(S));
var = (5/0.6745)"2;
tmp=1;
break;

end
end
it tmp==
var=0;

end

“read_image”

function out = readimage(name)

% The function readimage reads a given image to MATLAB. An example would be
% readimage(“abc.bmp®). If the image is RGB then it is converted to

% grayscale.

[out map] = imread(name);

if max(size(size(out))) ==
out = rgb2gray(out);

end

out = double(out);

llBSc"

function cc = BSC(Filter,N,a)

% The BSC function finds the sizes of the different wavelet subbands. This
% is necessary when we are working with Daubechies filters

% Get the vanishing moment number from the "filter"™ string
tmp = sscanf(filter, "%c", [1 3]);
tmp (str2num(tmp(3))-1)*2;

cc(1l) = ceil(a’2);
for 1 = 2:N
cc(i) = ceil((cc(i-1)+tmp)/2);
end
lICRC"

function out = CRC(gamma,cc);

% The CRC function calculates the total rate by multiplying each

% subband by its number of allocated bits and the end dividing the sum of
% all rates by 512*512. We are assuming that our images are 512x512 pixels
[v.x] = size(gamma);

out=0;
N = (x-1)/3;
for i=1:N

c = cc(i);
out = out + ((gamma(3*i - 2)+gamma(3*i - 1l)+gamma(3*i))*(c"2));

end
out = out + (gamma(x)*c”2);
out = out/(612*512);

“Calc_PSNR”

function out = calcPSNR(a,b);

% The function calcPSNR calculates the PSNR of a with regards to b or vice
% versa

[cc,dd] = size(a);

J = (a-b)."2;

MSE = (sum(sum(J))/(cc*dd));

out = 20*10g10(255/sqrt(MSE));

“Channel_Noise”

function X1 = channel_noise(sigma,X1);

% The channel _noise function adds noise to the image at the given standard
% deviation

noise = sigma*randn(512,512);

X1 = Xl1+noise;

