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ABSTRACT

The novelty of this paper is divided into two technical sections; first
we propose a novel algorithm for system identification with known
input sparse signal, based on the Finite Rate of Innovation sampling
theory. Then we consider the problem of simultaneously estimating
the input sparse signal and also the linear system and propose a
novel iterative algorithm for that setup. We will show that, based
on our numerical simulations, the solution to the second problem is
normally convergent.

1. INTRODUCTION

In this paper we will be considering the problem of system identifi-
cation based on a sparse sampling system. In many practical appli-
cations the impulse response of an unknown system is required to
be estimated. This problem is usually referred to as ’System Identi-
fication Problem” in literature. Unlike standard techniques for sys-
tem identification which require the sampling rate to be at or above
the Nyquist rate, we use sparse sampling techniques to identify the
system at sub-Nyquist sampling rates. Figure 1 shows a system
identification problem setup where a sparse signal g(x) is fed to an
unknown system with impulse response y(x). The output signal
from the unknown system then goes through a sampling process
with a sampling rate 7 which outputs the samples s;. The aim of
system identification is to completely determine the function y(x)
from the samples s;. Key to our formulation is the prior knowledge
that the system is specified by a small number of unknown parame-
ters.
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Figure 1: A system identification problem setup.

Regarding the sampling process, it has been recently shown that
[15, 6, 5] it is possible to sample and perfectly estimate sparse sig-
nals. In these schemes the sparsity or parametric structure of the
input signal is taken into account and perfect recovery is achieved
based on a set of suitable measurements. Depending on the setup
used, these sampling methods go under different names such as
compressed sensing (CS), compressive sampling [6, 5] or sampling
signals with finite rate of innovation (FRI) [15, 7]. Signals with the
latter framework, posses a finite number of degrees of freedom per
unit of time and examples of such signals include stream of Diracs
and piecewise-polynomial [15, 7] signals. In this paper, we con-
sider the finite rate of innovation sampling theory for our sampling
process block where its setup is modeled as in Figure 2. In [15, 7],
it is shown that perfect reconstruction of classes of FRI signals is
possible by utilizing the Prony’s method, which is also known as
the annihilating filter method [12].

Sparse signal estimation is well known in literature and some
of its applications include image registration in image super-
resolution [2], multichannel sampling [1], channel estimation [10,
8], radar and ultrasound applications [13, 4] and many more. In
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Figure 2: FRI 1-D Sampling Setup. Here, g(x) is the continuous-
time signal, 4(x) the impulse response of the acquisition device
and T the sampling period. The measured samples are s; =

(8(x),9(x/T —k)).

this paper we will propose a novel algorithm for simultaneous esti-
mation of sparse signals along with system identification using the
theories of FRI sampling. Specifically, we will divide the simul-
taneous estimation problem into two stages where we first assume
that the input sparse signal is known, so that the problem simplifies
to a system identification problem only and then in the second stage,
we extend the setup and modify the algorithm for the case when the
input sparse signal is also unknown, that is simultaneous estima-
tion of both the input signal and the unknown system y/(x). System
identification using the sparse sampling theories has already been
considered in [11] and in [9]. In [11], McCormick et al. consider
a problem similar to ours but model and approximate the unknown
system as a finite impulse response (FIR) filter. In [9], Hormati el al
consider distributed sampling of two signals linked by an unknown
sparse filter.

The organization of the paper is as follows: In Section II we
review the main results on sampling FRI signals and in particular
focus on E-spline sampling kernels. In Section III, we propose our
novel algorithm for system identification for the case when the input
sparse signal is known and given. Then in Section IV, we extend our
results and propose a novel algorithm for simultaneous estimation
of both the input sparse signal and the unknown system y(x). We
finally conclude in Section V.

2. FINITE RATE OF INNOVATION SAMPLING THEORY

In Figure 2 we show the typical setup employed for sampling 1-D
FRI signals where the signal g(x) represents the input signal, A (x)
the impulse response of the sampling device, ¢ (x) a re-scaled and
time-reversed version of 4(x) (also known as the sampling kernel),
gs(x) the sampled version of the input signal g(x), s; the samples
and T the sampling interval. The box C/D (continuous-to-discrete)
reads out the sample values s; from gs(x). From the setup shown in
Figure 2, the following equations for the samples s; can be deduced:

sk = g(x) % h(x) [x=tr
= [ e o(5— R dx

= (3(x). 0(5 — ).

Sampling kernels are characterized by the physical properties of the
acquisition device which are normally specified and cannot be mod-



ified. Throughout the paper, we will focus on exponential reproduc-
ing kernels and in particular exponential splines “E-splines” [14],
splines that can reproduce real or complex exponentials. In the sub-
sequent subsection, a detailed discussion of exponential reproduc-
ing kernels is presented.

2.1 E-Spline Sampling Kernels

Any kernel ¢(x) that together with its shifted versions can re-
produce real or complex exponentials in the form e® with m =
0,1,...,M is called an exponential reproducing kernel. That is any
kernel satisfying the following property (For simplicity and without
loss of generality we have assumed 7' = 1):

Z AMo(x—n) =e%*

nez

with a,, € C, (1)

for a proper choice of coefficients ¢} € C. The coefficients ¢} in
the above equation are given by the following equation:

cf:/ e ¢ (x —n)dt,

where @ (x) is chosen to form with ¢ (x) a quasi-biorthonormal set.
The choice of the exponents in e%* is restricted to 04, = 0 + mA
with 0,A € C and m = 0,1,...,M. This is done to allow the use
of the Prony’s method at the reconstruction stage [15, 7]. The the-
ory of exponential reproducing kernels is based on the notion of
E-splines [14] and this is because any exponential reproducing ker-
nel is given by the convolution between a normal function f(x) and
an E-spline. A function S5 (x) with Fourier transform
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is called E-spline of order M + 1 where & = (@, @1, ..., 0s). The
produced spline has compact support and can reproduce any expo-
nential in the subspace spanned by (e%* e%* ... ¢®™¥). In time-
domain, the expression of an E-spline of order one is given by:

e® 0<x<1

&m&):{o )

otherwise,

where the higher order E-splines are obtained by successive convo-
lutions of lower order ones with their specific ¢, parameters. An
interesting fact is that, if we consider the setup of Figure 2, then,
when ¢(x) is an exponential reproducing kernel, we can retrieve
the exponential moments of the input signal from the samples sy.
To illustrate this, let us consider the following weighted sum of the
samples:

T = Y1k 3)

k

Substituting the equation for the samples s, into the above equation,
gives:
T = (g(x), Y FP(x—k)).
k

The second term in the inner product can be replaced by the Equa-
tion (1) and the exponential moments of the signal are therefore
obtained as follows:

Ty = / g(x) e®* dx.

When o, is purely imaginary, the Fourier transform at o, of the
signal g(x) is obtained:

Tn = G(0).

Here G(u) represents the Fourier transform of the signal g(x). In
the subsequent sections we will show how this useful feature can be
employed to address the system identification problem.

3. SYSTEM IDENTIFICATION WITH KNOWN INPUT
SIGNAL

Having gone through the sampling stage in the previous section, we
will now show how such a sampling scheme could be employed to
estimate the unknown function y(x). First we assume, as the title of
this section suggests, the input sparse signal g(x) is known. Figure
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Figure 3: System identification setup with known input signal

3 shows the setup used for our proposed algorithm, which is really a
combination of Figure 1 and 2 in a two-channel system. As shown
in Figure 3, the two-channel system is used for sampling the input
sparse signal with and without the unknown system y/(x). In the
first channel, the input sparse signal is directly sampled with our
pre-specified E-spline sampling kernel ¢ (x). The Fourier transform
of the pre-specified E-spline sampling kernel ¢ (x) is given by:

s =TT (l’ea"’fjw)
W)= V|
m=0 JO — O
where P depends only on the structure of the unknown function
y(x). This will be more evident later on. The samples s; at the
output are:
st9 = (g(x), 9 (x—K)).

Given the samples, we then calculate the exponential moments of

the sparse signal t5/¢ using Equation 3 as was described in Section
Sl
Tin ¢= G(aum)

Here, G(ai,) represents the Fourier transform of the signal g(x) at
o, withm =0,1,...,P and oy, = 0y +mA. This method will also
work for the case of real E-splines but for simplicity we have as-
sumed that our pre-specified E-spline sampling kernel is complex
valued. In the second channel, the same input sparse signal is fed
through the unknown function y/(x) and then sampled with the same
sampling kernel. Therefore, its corresponding samples s are:

st = (g(0) * y(x), 9 (x— k).

Same as before, given the samples we calculate the exponential mo-
ments as follows:

Ty = G(0w) ¥ (0m),

where W(oy,) represents the Fourier transform of the function y/(x)
at a,,. Moreover, the above equation is deduced from that fact that
convolution in time domain corresponds to multiplication in Fourier
domain. From the set of results obtained above, we can show that:

IS Glay) - ¥(am)

s = =¥
T;,S;IG G((Xm) ((Xm),

where we have assumed that G(a,) # 0. Therefore, by dividing
the exponential moments obtained from the two channels, we have
shown that the Fourier transform ¥(,) of the unknown function
y(x) can be obtained. Now, given ¥(oy,) with m =0,1,..,P and
o, = O +mA, we will have an inverse problem to solve for the un-
known parameters of the function y/(x). Once the unknown parame-
ters are estimated, the function y(x) will be completely determined
and the system will therefore be fully identified. In the following
section, we show cases where we can solve the above inverse prob-
lem (i.e. we identify the system) and highlight the applications in
which the proposed system model is of interest. It should be pointed
out that the above method works regardless of the structure of the
input signal.



3.1 A Stream of Diracs

Consider the unknown function y(x) to be a stream of K Diracs
with unknown locations and amplitudes. Applications of such a
system could be acoustic room impulse response estimation or line
echo cancelation. We already know that the Fourier transform of
such a function has a power-sum series form [15, 7]:

K
m) = Z akuznv
k=1

where a; and uy correspond to the unknown amplitudes and loca-
tions respectively. From our setup shown in Figure 3, as previously
described the exponential moments of the output samples with and
without the unknown function are obtained. Then, the Fourier coef-
ficients of the signal W(oy;,) can be easily calculated as follows:

T;E;YS

716 =%(om), for

m=0,1,....P.

As ¥(a,) has a power-sum series form, we apply the annihilating

SYS
filter method to the measurements ”;,( = ¥(ayy) to retrieve the un-

known parameters a; and uy. For such a system, in order to recover
the K Diracs, the E-spline sampling kernel is required to be of the
order P > 2K. This set-up is similar to the one discussed in [9].

3.2 B-Spline

Let us consider y(x) to be a B-spline BX(x) of unknown order
K+ 1. An application of such a system could be the camera lens
calibration [3]. This is because the point spread function of a cam-
era lens is very often assumed to be a Gaussian pulse and B-splines
of order K > 2 are increasingly similar to Gaussian functions. We
already know that the Fourier transform function of a B-spline of
order K + 1 is given by:

—j —j K+1
BK(w):ﬁlfe ]“’: l—e /9
jo jo .

k=0

Assuming the unknown function in our setup shown in Figure 3 is
a B-spline of unknown order, that is y(x) = BX(x), then by cal-
culating the exponential moments of the output samples with and
without the unknown filter, we can obtain the Fourier coefficients
of y(x) as follows:

i\ K1
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By taking logarithms of both sides of the equation, the unknown
order K + 1 is calculated as follows:

log(‘¥(0tm))
log(( Lo ))

In order to estimate the unknown order of the B-spline, the E-spline
sampling kernel is required to be of the order P > 1.

=K+1.

3.3 E-Spline

Let us consider y(x) to be an E-spline f83(x) of known order K +
1. An application of such a system could be the estimation of the
electronic components of a finite order electronic circuit, which will
be fully described in the next subsection. As stated previously, the
Fourier transform function of an E-spline of order K 4 1 is:

K | _eh—Jjo
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We assume that the order of the spline is known but the parameters
Y are unknown. From our setup we obtain the Fourier coefficients
of the unknown function y(x) as follows:

Trflys ﬁ — %= J0m
TSIG - — Y%

Calculation of the unknown parameters of the E-splines (as the un-
known function y/(x)) is more involved. We first need to simplify
both the numerator and denominator of the E-spline function. Sim-
plifying the numerator gives:

K ‘ K
H (1 —e”‘ﬁa’”> = H (1—ap.u™),
k=0 =0
where a; = e% and u”* = ¢/% . This can be further simplified as
follows:
K
[TO—au™) = (1—au™)(1—a™)...(1—agu™)
k=0
K
= Y qu
k=0
K
= Y al,
k=0

where 1, = u*. Simplifying the denominator gives:

K

[T Gam—

k=0

K
= Z rkmk7
k=0

where Q(m) is a polynomial of degree K + 1. Rearranging the above
polynomial functions leads to:

Z rkm P (oyy)
k=0

Z qktm

The above equation can be considered as a linear system con-
sisting of 2K unknowns with the unknown parameters being 60 =
(ro,rl,...,r[(_l,qz,...,q[(+1). Here, g0 =1, 1o =1 and #; are a
known set of parameters. As we have a linear system, by construct-
ing the following matrix equation and taking its inverse we are able
to calculate the unknown parameters: Once the parameters are esti-
mated, by taking the roots of the polynomial ¢, for k =0,1,...,K
and then taking the logarithm of the roots we obtain the unknown
Y« parameters, as roots(qy) = a; = e%. The E-spline sampling ker-
nel is required to be of the order P = 2K in order to estimate the
parameters of the E-spline function y(x). In the next section, we
will explain how we could extend the results for the E-splines case
to the case of finite order electronic circuits.

3.4 Finite Order Electronic Circuits
Any finite order electronic circuit can be thought of a modified E-
spline [7]. In general any p-th order electronic circuit has a transfer
function (s = jw):

0
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The equation above has a very similar structure to the E-spline case
and one may suggest a similar simplifying procedure with con-
structing a system of linear equations with Q + P + 1 unknowns,
as discussed previously. However, the transient response of a fi-
nite order electronic circuit is infinite and this would mean that the
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function ¥(®) will not have compact support. Assuming that the
electronic circuit has a fast decay or by taking enough samples, we
can approximate the above function to have finite duration and thus,
similar to the E-spline case, a linear system of matrix equations with
Q+ P+ 1 unknown parameters could be constrcuted. As a simple
example, consider the setup shown in Figure 4 where the unknown
function y/(x) is a first order RC circuit (low-pass filter). We already

T SIG
plr) —"—tw

g(z)
™ + + T P_TS
_T R T_ w(x) L

Figure 4: First order RC circuit as the unknown function y(x)

know that the transfer function of such a circuit is:

W)= "

T rtje’

where ¥ = 1/RC. Our goal is to estimate the parameter Yy = 1/RC
and therefore identify the transfer function. Like before, we obtain
the exponential moments and obtain the Fourier coefficients of the
function y(x):

SYS
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The above function has one unknown parameter only and therefore
the product RC can be estimated as follows:

_ J%m (o)
Tl —Y(a)

4. SIMULTANEOUS ESTIMATION OF SPARSE SIGNAL
AND SYSTEM IDENTIFICATION

When both the signal and the system are unknown, the above so-
lution cannot be used directly and the problem is in general more
involved. However, a recursive version of the previously discussed
method, as shown in Figure 5(a) and 5(b), can be utilized to estimate
both the input sparse signal and the unknown function y/(x).

For simplicity, let us assume that the input sparse signal is a
stream of Diracs with unknown locations and amplitudes. As shown
in Figure 5(a), the unknown input signal is fed to the unknown func-
tion y(x) and then is sampled with our pre-specified E-spline sam-
pling kernel, therefore its corresponding exponential moments are:

20 =W(a,) Glay),

where ¥(a,) and G(a,) are not known. As our input signal is a
stream of Diracs with unknown amplitudes and locations, we di-
rectly apply the annihilating filter method to the moments ’L',% and
obtain an estimate of the input signal, denoted as g(x) (Figure 5(b)).
Once an estimate of the input signal is obtained, we recursively feed
the estimated signal g(x) back to our pre-specified sampling kernel
and obtain its corresponding exponential moments at each recur-
sion: R
P4 — G(at).

o
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Figure 5: The setup proposed for recursive estimation

Here the superscript “upd” stands for “updated” and G(a,n) is an
estimate of the Fourier coefficients of the input signal. Now, we
divide the updated exponential moments 1" ? and the initial mea-
surements 7, to obtain an estimate for the unknown filter ¥(ot,,) as

follows:
Tz(r)z N G(0) - P (04)

’T,',L:,pd B G(ai71)

= y(om).

From {(0yy,), as was shown in Section 3.2, the unknown parameters
of the unknown system can be estimated. Once the parameters are
estimated, from the model of the unknown system, we re-estimate
the function y(x), denoted by V() and from that we re-estimate

d
the measurements 7" as follows:

0
T
Trt;lpd: - m

V(o)

We apply the annihilating filter method on the re-estimated 7, ? and
re-estimate the unknown input signal ¢(x). Our empirical results
show that by applying the above method recursively, the estimations
converge to the actual input signal g(x) and the unknown function
v(x).

As an example let us assume that our input signal consists of 2
Diracs with unknown amplitude and location. Let us also assume
that the unknown system to be identified is a first order E-spline with
Y= 2. Our goal is to simultaneously estimate the input signal which
consist of two Diracs and also the unknown Yy parameter. Figure 6
shows the results for the above example with 10 iterations. It can
be seen that both the input signal and also the unknown system are
estimated to a very good degree when compared to their true values.

5. CONCLUSION

In this paper we proposed our novel algorithm for simultaneously
estimating input sparse signal and system identification based on
the finite rate of innovation sampling theories. We described our
algorithm in two stages, where in the first stage, we showed that
by having access to the input signal, system identification problem
could be solved at low sampling rates by employing exponential
moments. Then in the second stage, we showed that a recursive
method could be utilized to estimate both the input sparse signal and



also the unknown system when we only have access to the output
samples.
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Figure 6: Simultaneous estimation of an input sparse signal with a
first order E-spline as the unknown function y(x). (a) The input
signal with 2 Diracs (circle) along with the immediate estimate of
the signal (star) with no iterations. (b) Input signal convolved with
the function y(x). (c) True vs. estimated values of the parameter y
after 10 iterations. (d) True vs. estimated version of the input signal
after 10 iterations.



