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Abstract—This paper presents a non-convex optimization
framework for the Network Utility Maximization problem in
Wireless Networks, which incorporates the interference among
links and introduces a power penalty term in the objective
function to assure both convergence and energy efficiency of
the method. Moreover, a distributed gradient based algorithm
is proposed that converges to the optimal solution for problems
with zero duality gap and a fair-allocation heuristic is presented
to resolve user oscillations when they occur. Finally, numerical
results regarding the performance of the heuristic and the
distributed approach are presented.

I. INTRODUCTION

The problem of optimal resource allocation in communi-
cation networks using Optimization Theory has found a lot
of interest since the Network Utility Maximization - NUM
framework proposed by Kelly at al. in their seminal paper [1].
NUM models the allocation of network resources as an
optimization problem and solves it distributedly using a set
of differential equations. Later, [2] proposed an alternative
distributed iterative algorithm based on Duality Theory to
solve the same resource allocation problem. This algorithm
makes use of the Gradient method to calculate its optimal
solution

Both methods are proven to converge to the optimal rate
allocation under the assumption of logarithmic utility func-
tions, which are ideal for “elastic” TCP-like traffic, and
assuming that all links in the network are wired and therefore
their capacity is fixed throughout the optimization process.
However, current communication networks usually consist of
some (and possibly all links are) wireless links. In these
cases, the capacity of a link is not constant but a function
of its transmission power and that of the neighboring nodes.
Moreover, the properties of the traffic in such networks vary
significantly from the traditional TCP-like traffic. For instance,
a significant percentage of current network traffic comprises
real-time applications, such as video and audio streaming, and
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their “inelastic” properties cannot be modeled using logarith-
mic utilities.

These characteristics of current communication networks
have attracted increased effort from the research community
to extend the NUM framework to model “inelastic” traffic.
Fazel et al. in [3] remove the restricting assumption of concave
utilities and propose a centralized method based on sum-of-
squares relaxations to calculate approximations of the optimal
solution along with some performance bounds to evaluate the
approximation error. Moreover, [4] and [5] have extended the
NUM framework to model inelastic traffic using sigmoidal
utilities and have proposed distributed algorithms for wired
networks, which however are not guaranteed to converge to
the optimal solution in case of oscillations in the network.

On the other hand, there have been some attempts to extend
the NUM framework to model networks with wireless links.
Chiang in [6] extends the framework by proving the concavity
of an approximation of Shannon’s capacity formula in high
SINR environments. In [7], we have proposed an alternative
NUM formulation to jointly perform resource allocation and
power control in wireless networks by incorporating the in-
terference among wireless links. Finally, in [8] we propose a
general necessary and sufficient condition to identify the subset
of non-concave optimization problems that can be solved
distributively and describe a non-concave NUM formulation
in hybrid ad-hoc networks. Nevertheless, all these works
attempt to either tackle the “inelastic” traffic modeling or
the existence of wireless links in a network. The lack of a
complete distributed optimization framework that accounts for
both issues while at the same time resolves any oscillations
(caused by non-convexity) in a fair manner is our motivation
behind this work.

The contribution of this paper is threefold. We propose
a non-convex optimization framework for wireless networks
that, firstly, incorporates the main characteristic of the wireless
medium, namely the interference among links, and secondly,
introduces a power penalty term in the objective function to
ensure convergence and energy efficiency of the power control
subproblem. Finally, we propose the fair-allocation heuristic
to resolve user oscillations when they occur.

The rest of the paper is organized as follows: First, the non-
convex formulation is presented in Section II. Consequently in
Section III, a distributed gradient based algorithm is proposed
to solve the problem and the fair-allocation heuristic is pro-



posed to resolve cases of oscillation due to the non-concavity
of the optimization problem. Section IV presents numerical
results comparing our heuristic against other algorithms in
literature and Section V concludes our results and outlines
our future work.

II. PROBLEM FORMULATION

Consider a multihop wireless network where nodes can op-
erate either as sources, destinations or relays (i.e., intermediate
nodes that do not generate any new traffic, just forward traffic
to their neighbors) and let r = [r1, r2, . . . , rM ]T represent
the rate vector that includes the transmission rates of all
M source nodes in the network. A link l is defined as a
tuple (Tl, Rl), where Tl is a transmitting and Rl a receiving
node, respectively, while p = [p1, p2, . . . , pL]T represents the
transmission power vector comprises the transmission powers
of the L involved wireless links. Let G be the path loss matrix
of size L×L which depends on the physical characteristics of
the wireless links, where Gij is the path loss coefficient from
the transmitter of link i to the receiver of link j.

Each source node i receives a utility when sending traffic
at rate ri through the network according to a utility function
Ui(ri) and indicates its degree of satisfaction. At the same
time, each wireless link j has a cost for transmitting at a
specific power based on a convex cost function Vj (pj), which
represents the cost of using the limited power resources of
the wireless medium and assures the energy efficiency of the
solution.

The optimization of the network’s performance can be
formulated as a maximization problem of the form:

max
r,p

M∑
i=1

Ui(ri) − α

L∑
j=1

Vj(pj)

s. t.
∑

i∈Z(j)

ri ≤ Cj (p) , ∀ links j
(1)

where Z(j) represents the set of traffic flows that are passing
through link j. The rates ri and powers pj are positive
variables, α is a non negative constant and the capacity of
a wireless link is a function of the transmission powers of
all wireless links using Shannon’s capacity formula, Cj (p) =
B · log2 (1 + SINRj). Shannon’s formula is evidently a non-
concave function of powers which would prevent any gradient
based distributed algorithm to converge to the optimal power
vector. However, in case that SINRj � 1, i.e. in high SINR
environments where Gjj � Gkj , k �= j, the link capacity
formula can be approximated sufficiently well by (2)

Cj (p) = B log2 (SINRj) (2)

= B log2

(
pjGjj∑

k �=j pkGkj + nj

)

which can be proven to be a concave function of powers
after a log transformation of the power vector [6]. For the
remainder of this paper, and in order to gain concavity of the
link capacity function, we consider high SINR environments
where the capacity Cj (p) of link j in (1) will be approximated

by (2). This is a fair approximation, used in several other works
such as [6], [9] and [10]. When α > 0, the optimization
process will try to balance the profit of the link with the
cost of transmission and thus leading to more energy efficient
solutions. Therefore, the value of α and consequently the
relative importance of the power cost term in the optimization
objective consists a trade-off between the performance and the
energy efficiency of the network. Moreover, Vj (pj) plays an
important role in the convergence of the power control part of
the distributed algorithm, as explained later.

The utility function of each user Ui (ri) represents the
user satisfaction with respect to the allocated rate to user i.
The application generating the traffic at user i determines the
shape of the utility function. For instance, applications such as
file transfer or browsing are usually modeled by logarithmic
utilities, i.e. concave functions, while real-time applications are
modeled using sigmoidal functions, which are non-concave.
The choices for utility Ui(ri) in problem (1) are not restricted
to concave functions as in the traditional NUM framework,
making problem (1) non-convex. In this case, the duality gap
in non-convex problems can be positive and therefore these
problems can not be solved distributedly in general. However,
Theorem 1 in [8] can be used to identify a subset of non-
convex optimization problems for which the duality gap is zero
and the distributed gradient based algorithm can converge to
the optimal solution.

The proposed formulation, extends the NUM framework for
wireless networks by allowing non-concave utility functions
while considering mutual interference among links and by
using a power penalty term to ensure the convergence of the
distributed power control algorithm.

III. DISTRIBUTED ALGORITHM

Problem (1) optimizes the allocation of resources in an ad-
hoc network and therefore the applicability of any solution
relies on the ability to develop a distributed algorithm with
minimum message overhead among nodes. Such an algorithm
can be developed using Duality Theory and to this purpose,
we first define the Lagrangian function as:

L(r, p, λ) =
M∑
i=1

⎧⎨
⎩Ui(ri) − ri ·

⎛
⎝ ∑

j∈S(i)

λj

⎞
⎠
⎫⎬
⎭

+
L∑

j=1

⎧⎪⎪⎨
⎪⎪⎩λjB log

⎡
⎢⎢⎣ pjGjj∑

k �=j

pkGkj + nj

⎤
⎥⎥⎦− αVj(pj)

⎫⎪⎪⎬
⎪⎪⎭ ,

(3)

where S(i) is the set of links that source i is using in order
to send its traffic to the destination. The Lagrangian function
described in (3) incorporates two major terms, one that refers
to the sources and one that refers to the links. Regarding the
physical meaning of these terms, Ui(ri) is the “profit” that
source i will make for sending its traffic at rate ri, quantity
ri · (

∑
j∈S(i) λj) represents the total cost for source i in

order to send ri b/s of traffic through the network. Then,



term λjB log[ pjGjj∑
k �=j

pkGkj+nj
] represents the total “profit” that

link j will make by charging each unit of its capacity with
λj and term αVj(pj) represents the weighted cost for the

link to achieve a capacity of B · log
[

pjGjj∑
k �=j

pkGkj+nj

]
. After

a careful observation of the Lagrangian function, one can
see that the optimization process consists of two independent
subproblems of the primal variables x and p coupled by the
dual optimization variable vector λ. The first subproblem is
the rate allocation, maximizing the net revenue of each source,
and the second is a power control problem, maximizing the
net revenue of the links.

The gradient of the Lagrangian function with respect to the
optimization variables ri, pj and λj are:

∂L(r, p, λ)
∂ri

= U
′
i (ri) −

∑
j∈S(i)

λj (4)

∂L(r, p, λ)
∂λj

= B · log2

⎡
⎢⎢⎣ pjGjj∑

k �=j

pkGkj + nj

⎤
⎥⎥⎦

−
∑

i∈Z(j)

ri (5)

∂L(r, p, λ)
∂pj

= −αV
′
j (pj)

+
1

pj ln(2)

⎡
⎣λj −

∑
m�=j

λm
GjmPj∑

k �=m GkmPk + nm

⎤
⎦ (6)

and the gradient based iterative algorithm consists of the
following equations:

ri(t + 1) = ri(t) + γr(t)
∂L(r, p, λ)

∂ri
(7)

λj(t + 1) = λj(t) − γλ(t)
∂L(r, p, λ)

∂λj
(8)

pj(t + 1) = pj(t) + γp(t)
∂L(r, p, λ)

∂pj
, (9)

where γr(t), γλ(t) and γp(t) are small positive constants.
As mentioned earlier, Vj (pj) assures convergence of the
distributed algorithm. In the absence of this cost function, i.e.
when α = 0, it is possible to fall in a situation that equation (6)
is always positive, leading the distributed algorithm to infinite
power vectors. This phenomenon has been first identified in
[9] for a simple symmetric network topology but can also
be justified in the general case using the following scenario
when α = 0. Assuming an arbitrary wireless network at some
iteration t, the power vector is p = [pj , j ∈ {1, · · ·L}] and
the rate vector r = [rt

i , i ∈ {1, · · ·N}]. If the power vector is
increased by a small percentage, let ε, the new power vector
will become p̂ = (1 + ε) ·p and the new capacity of each link

will be Cj (p̂) = B · log2

(
(1+ε)·pjGjj

(1+ε)·
∑

k �=j
pkGkj+nj

)
> Cj (p).

Consequently, larger link capacities will lead to higher rate

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
User Utility function

Data Rate (Mb/s)

U
i(r i)

Fig. 1. Example of a sigmoidal utility function

allocation and ultimately to higher aggregate utility in the
network. Hence, at the absence of a power penalty function,
the distributed algorithm might lead to infinite transmission
power. On the other hand, when α > 0, there will be a finite
power vector p′ at which any further increase would lead
to a decrease in the net utility of the network and thus the
transmission power will stop increasing.

In literature, this case of infinitely increasing power is often
prevented by assuming a transmission power threshold pmax

j .
Such an assumption, even though is reasonable in a practical
system, causes distortion in the theoretical analysis since it
creates artificial convergence points. Specifically, according to
the Brouwer Fixed Point Theorem [11], a continuous mapping
of the power vector within a closed range

[
pmin

j , pmax
j

]
creates fixed points of an algorithm that might otehrwise never
converge. Therefore, the use of the penalty function Vj (pj) is
a more natural way of assuring both energy efficiency and
convergence of the distributed power control algorithm.

The dual optimization problem is always a convex problem
of the variables λj as a point-wise supremum of a family
of affine functions. Moreover, the power control subproblem
is also convex assuming that the capacity of a link j is
given by (2) and the penalty function Vj (pj) is a convex
function of powers. Therefore, (8) and (9) will converge to
the optimal solution. However, the rate allocation subproblem
is not convex since the utility functions can be non-concave. In
this case, the duality gap can be positive and the distributed
algorithm can converge to a suboptimal solution. It is pos-
sible to use Theorem 1 in [8] to identify those non-convex
optimization problems for which the duality gap is zero and
the gradient based distributed algorithm can converge to the
optimal solution. Theorem 1 relies on the knowledge of the
continuity properties of the primal variables as a function of
the dual ones. In the context of problem (1), the optimal
transmission rate of a source, r∗i (λ) is given by:

r∗i (λ) = arg max

⎡
⎣Ui(ri) − ri ·

⎛
⎝ ∑

j∈S(i)

λj

⎞
⎠
⎤
⎦ , (10)

which is a function of the aggregate price along the path that
source i is using, λs =

∑
j∈S(i) λj . However, the continuity

properties of (10) are not known for a general utility function
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Fig. 2. Optimal Rate Allocation as a function of the aggregate price

and therefore we have to restrict the choices of utilities
to more well-studied cases, such as to sigmoidal utilities,
which are non-concave functions that model efficiently real-
time applications such as video/audio streaming. An example
of such a function is shown in Figure 1. For this family
of utilities, r∗i (λ) is discontinuous at only one point [5].
This point represents the user’s maximum willingness to pay,
λmax

s , above which the optimal user rate is always zero. The
maximum willingness to pay of a user solely depends on its
utility function and therefore the choice of utility function
uniquely determines its maximum willingness to pay. For
instance, Figure 2 shows the optimal rate and the discontinuity
at λmax

s for the sigmoidal utility in Figure 1. The optimal rates
for aggregate prices less than λmax

s are in the concave region
of Ui(ri) and hence the optimal solution if non-zero will
always be in the concave region. Then, according to Theorem
1 [8], iff λ∗

s �= λmax
s , the duality gap is zero and the distributed

algorithm converges to the optimal primal solution following
the convergence rate and properties, regarding the step sizes
γr, γλ and γp, of the Gradient Method [12].

For sigmoidal utilities, and under specific conditions [5],
it is possible that the algorithm oscillates between zero and
positive values of rates when the aggregate price is around
λmax

s . In such cases, the users could run the fair-allocation
heuristic to resolve oscillations.

The fair-allocation heuristic is based on the idea that an
oscillating user will be allocated the minimum rate in the
concave region of its utility function and will be removed
from the rest of the optimization process to allow stability
of the network. User oscillations indicate that the optimal rate
allocation is non-zero, but due to the discontinuity at λmax

s ,
the optimal rate is not possible to be calculated. According to
the fair-allocation heuristic, when user i realizes oscillations
between zero and positive rates around λmax

s , user i will
be allocated with rate equal to the inflection point of its
utility function, as the minimum non-zero rate value that is
a candidate optimal solution. Consequently, the optimization
process will continue for the rest of the users and with the
remaining capacity at each link. The resulting rate allocation
for the remaining users is optimal while oscillating users get
a non-zero suboptimal rate.

Removing the oscillating users is an obvious decision to
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ensure stability of the system but the question lies in the
allocated rate to those users. Authors in [5] attempt to solve the
oscillation problem by removing the oscillating users from the
optimization process without allocating any rate. However, this
approach is unfair and suboptimal for finite number of users.
The fair-allocation heuristic has two advantages against this
approach; first, it leads to a more fair resource allocation, since
no users are excluded unless the optimal solution indicates
zero rate, and, second, it generally leads to higher values of the
objective function. The latter is justified as follows: Since both
concave and sigmoidal utilities behave in a logarithmic manner
around the optimal solution, allocating the total throughput
to all users, instead of a subset of them, will yield higher
total utility. After removing the oscillating users, if more of
the remaining ones start oscillating as well, the fair-allocation
heuristic will, of course, follow the same procedure to bring
the network to a stable condition.

IV. NUMERICAL RESULTS

The fair-allocation heuristic was simulated in MATLAB for
various network scenarios, an example of which is the network
topology shown in Figure 3. The wireless network consists of
4 source nodes (in green), 5 intermediate nodes (in blue) and
a set of 4 destination nodes (in red). Source nodes 1 and 4 are
HTTP applications with concave utilities while source nodes
2 and 3 are real-time applications with sigmoidal utilities.

The performance of the fair-allocation heuristic is compared
against two cases: the case that no oscillation resolving method
is applied, and the case that the self-regulating heuristic [5]
is applied in the network to resolve oscillation. Figures 4, 5
and 6 illustrate the performance of the three methods. During
iteration 92, the aggregate price for user 2 exceeds its maxi-
mum “willingness to pay” and thus user 2 stops transmitting
at iteration 93. This abrupt decrease in the transmitted traffic
causes a decrease in the aggregate price, which now falls
below the maximum “willingness to pay” value of user 2. This
encourages user 2 to start sending at a positive rate which
in turn initiates a new circle of oscillation. When such an
oscillation is observed, the heuristics are evoked to resolve it.
The fair-allocation heuristic sets the rate to a non-zero value,
the inflection point (in this case to 1 Mb/s), and continues the
optimization process, while according to the self-regulating
heuristic the rate is set to zero. According to Figure 4, the
decision for non zero rate for the oscillating users yields higher
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value of the objective function compared to the self-regulating
heuristic, which is intuitively expected for the reason explained
earlier. For brevity, Figure 6 shows the convergence of the
power allocation of the first 4 links in the network, the ones
initiated from the 4 source nodes.
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V. CONCLUDING REMARKS

This paper extends the theoretical work in [8] by presenting
a non-convex optimization formulation for Network Utility
Maximization in wireless networks and provides a distributed
algorithm to solve it optimally for the cases that the duality
gap is zero. The formulation includes a power penalty function
to assure convergence and energy efficiency of the approach.
Moreover, an oscillation resolving heuristic is proposed that
assures network stability, leads to a fair resource allocation and
results in higher aggregate utility compared to other heuristics.

The non-convex optimization framework for wireless net-
works and the fair-allocation heuristic lead to optimal solu-
tions when the duality gap is zero and to an approximation
of the optimal solution otherwise. It is within our research
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interests to identify analytical performance bounds of the
heuristic and work towards a distributed framework that would
converge to the optimal solution in all cases.
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