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Abstract—We extend the existing network utility maximization 
(NUM) framework for wired networks to wireless sensor 
networks by formulating it in order to take into account 
interference among radio links. We study the conditions under 
which the formulated problem is a feasible convex optimization 
problem. Under such conditions, a distributed algorithm is 
proposed to solve the problem optimally. Finally, we provide 
numerical results, based on computer simulations, to show the 
performance of the proposed algorithm and the rate of 
convergence of its solution. 
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I. INTRODUCTION 
ireless Sensor Networks are considered as a new 

class of distributed systems that are being extensively 

used to sense critical information that require us to take some 

actions. One of the most important challenges in wireless 

sensor networks is the development of a self-optimization 

technique that would enable sensors to adjust their 

transmissions for optimal network performance. 

 This paper makes the following contributions to the problem 

of optimizing wireless sensor networks with respect to network 

resource allocation: 

1. Extend the network utility maximization (NUM) 

framework used in wired networks with the main 

characteristic of the wireless medium, namely, 

interference among links; 

2. Propose a new formulation for the resource allocation; 

3. Propose a distributed algorithm that is shown to solve 

the resource allocation problem optimally. 
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The remainder of this paper is organized as follows: Section 

2 is a brief literature review of the most relevant work in the 

area of NUM. Section 3 includes a presentation of the 

reformulated problem, based on Power Control, and a solution 

of the problem with a distributed algorithm that is shown to 

solve it optimally. In addition, we state the necessary and 

sufficient conditions needed for feasibility of the Power 

Control mechanism. Section 4 provides some numerical results 

concerning the performance of the algorithm and, finally, 

Section 5 concludes our results and outlines of our future work. 

II. RELATED WORK 

A. Wired networks 
Evidently, the first work on Network Utility Maximization was 

published in [1], which proposes the following formulation:  

                                                                      (1)( )max  r r
r R

U x
∈
∑
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                     0

s t Ax
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C  

where r, rx  and  denote the source sensor, the data rate of 

source sensor r and the utility of sensor r when transmitting at 

rate 

rU

rx  respectively. Then, element jrA  is 1 when resource j  

lies on route , and 0 otherwise. The authors propose an 

algorithm that enables the network nodes to determine the 

optimal way to share the link bandwidths among different 

traffic flows using the max-min fairness criterion. The solution 

is a set of differential equations, proved to be stable. The same 

problem was also solved in [2] following a different 

methodology based on Lagrange theory and two algorithms, 

both synchronous and asynchronous, are proposed. In [3] and 

[4], the authors use multi-level decomposition techniques to 

provide different optimization algorithms, each with a different 

r
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trade-off among convergence speed, message overhead and 

distributed computation architecture. A systematic framework 

is also presented to decompose the optimization problems. 

B. Wireless Networks 
The first attempt for NUM in wireless networks was made in 

[5]. Its most important contribution is the proof that the 

logarithmic relation between capacity and transmission power 

is neither convex nor concave and the proposal of a centralised 

algorithm converging to the optimal. In [6] and [7], the NUM 

framework was converted into mission-centric, where utility 

functions depend on more than one flows and flows may have 

more than one sinks. Moreover, the notion of maximal clique is 

introduced, which is a set of links that mutually interfere with 

each other. In addition, a distributed algorithm is proposed for 

solving the problem using a scheduling mechanism to avoid the 

difficulties of considering interference between links.  

To the best of our knowledge, existing work on the NUM has 

not actually taken into account the major characteristic of 

wireless networks, the interference among links. The key 

contribution of this work is to propose a NUM framework that 

indeed takes interference into account and makes use of power 

control to cope with interference. 

III. NETWORK UTILITY OPTIMIZATION USING POWER 
CONTROL 

A. Problem Formulation 
Consider a set of M randomly deployed sensors that act as 

data sources and send traffic to other nodes in a multihop 

wireless network. Assume that  is the set of all 

nodes in the network and that each traffic flow is generated by 

one of the M sensors with only one node as its destination. A 

rate vector 

{1, 2, , SΩ = … }

[ ]1 2, , , T
Mr r r r= …  denotes the transmission rates for 

all the individual nodes. Moreover, assume that there exists a 

set  of links in the network. There is a path loss 

matrix  of size  which depends on the physical 

characteristics of the link and whose element  is the path 

loss gain from the transmitter of link i  to the receiver of 

link . Vector 

{1,2, ,T = …

G

j

}L

L L×

ijG

[ ]1 2, ,p …,p p=
T

Lp consists of all the individual 

transmission powers of the links. Furthermore, we use a vector 

[ ]1 2, , , T
Lc c c c= …  to denote link capacities. Each traffic flow 

 is characterized by a utility function, i ( )i iU r , a function of 

the transmission rate of the flow. Moreover, there is a cost 

function ( )j jV p  for each link , which depends on its 

transmission power, 

j

jp , and represents the cost of using the 

limited power resources in the wireless sensor network. 

 We propose the following NUM formulation: 

 Problem P :       ( )i i −

r c

( )
L

j jV p∑
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where jγ  is the target signal-to-interference-plus-noise ratio 

(SINR) for link j and ( )Z j  represents the set of traffic flows 

passing through each link j. 

According to its first constraint, the total traffic flow passing 

from each link  should not exceed the link capacity, j jc . This 

is actually the same constraint as in the NUM framework for 

wired networks [1]. Even though it is difficult to know the 

exact capacity of a wireless link, it is possible to estimate it 

under some specific conditions based on the SINR at each node 

of the network. This is the contribution of the second constraint 

which is actually an expression of the power control problem. 

According to these constraints, we maximize the objective 

function so that the SINR is at least equal to a target value, 

which is a measure of the quality offered to the users of the 

network. In that way, we can capture the interference between 

links. As a result, if we know that the SINR will always be 

higher than a certain limit, one can be sure that the capacity of 

a link will always be above a specific value ( jc  in our case). 

Hence, the combination of the two constraints can adequately 

capture the necessary characteristics of wireless links. 
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B. Solution of the Problem 
Readers not familiar with Convex Optimization Theory are 

advised to refer to [8]. To solve problem P using local search 

algorithms, we need to make some assumptions about the 

concavity of the objective function. Both constraints of 

Problem P are linear and, therefore, convex. So, according to 

[8], three conditions must hold: 

 functions ( )i iU r , 1, , M= … , must be strictly concave, 

increasing and twice differentiable functions of ir  for 

1, , , 

i

i M= …

 functions ( )j jV p , 1, ,j L= … , must be strictly convex, 

increasing  and twice differentiable functions of jp  for 
1, ,j L= … , 

 variables ir  take values in the range [ ],  rr rI m M= , 
where   0rm ≥  and   rM < ∞ , and jp  take values in the 

range ,  pM ⎤⎦ , where   0pm ≥  and  pMp p⎡⎣I m= < ∞ . 
  We regard Problem P as our primal problem. As we can see, 

both source rates  and transmission powers  are coupled 

by constraints 1 and 2, respectively. So, in order to solve the 

problem in a distributed way, we need to look at the problem 

from a different point of view in order to reveal its distributed 

nature. Hence, we solve the Dual Problem. We define the 

Lagrangian function  of an optimization problem: 

ir jp

L

                                              ( )0min f x                                    (3)  

     
( )
( )

. .               0,            1,...,

                   h 0,            1,...,
i

i

s t f x i m

x i p

≤ =

= =
 

as a function : n pL R R R× → of the form:  

( ) ( ) ( ) ( )0
1 1

, ,
pm

i i i i i i
i i

L x f x f x hμ λ μ λ
= =

= + +∑ ∑ x               (4) 

Note that the variables iμ  and iλ  are called Lagrange 

Multipliers and are also the optimization variables of the Dual 

Problem. Please, refer to [8] for a complete description of the 

Lagrangian function and its properties. The objective function 

of the Dual Problem is 

( ) ( ),
, max , , ,  

r pi jr I p I
l L x pμ λ μ λ

∈ ∈
= ⇔   

( ) ( )
1

, max
ri

M
i

i i i
i r I

l U r rμ λ λ
= ∈

⎡ ⎤ −⎣ ⎦= −∑ ⋅

1

L

i

 

( )
1 1,

min
pj

L L

j j j jj j j j j j jjk k
j k

k j
p I

V p G p G p n cμ γ γ
= =

≠
∈

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

− − − − +∑ ∑ λ
=
∑       (5) 

Based on (5) we could define two optimization problems. The 

first one is: 

Problem  :         1
iP ( )max   

i r

i
i i ir I

U r r λ
∈

− ⋅                                  (6) 

where                              
( )

i
j

j S i

λ λ
∈

= ∑ .                                   (7)  

Each source sensor can solve the above problem in order to 

determine the optimal traffic rate that it should transmit its data. 

The only piece of information that each source sensor needs is 

the aggregate cost of the links it is using, which does not 

produce significant message overhead. Also note that problem 

 is actually the maximum benefit that sensor i  can achieve 

for that given aggregate price of links. 

i

1
iP

The second distributed problem is: 

 Problem 2
jP :   

( )
1,

min
j p

L

j j j jj j j jk k j jp I k
k j

V p G p G p nμ γ γ
∈

=
≠

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟− ⋅ − −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑              (8) 

It is clear that Problem  can be solved by each link 

independently. At each iteration, link  should be aware of 

the value of the dual variable

2
jP

j j

jμ . Note that the optimal value of 

problem 2
jP  is actually the minimum transmission cost that a 

link can have for the given price jμ . So, the objective function 

of the Dual Problem can be written in the form: 

( ) 1 2
1 1 1

,
M L L

i j
j j

i j j

l P P cμ λ λ
= = =

= − +∑ ∑ ∑                 (9) 

Then, the Dual Problem of the network is given by: 

Dual Problem :      D (
,

min   ,l
μ λ

)μ λ                                     (10) 

. .                0
                   0

s t λ
μ
≥
≥

 

Under the assumptions made earlier, the Duality Gap is zero 

and the optimal prices of the dual values, which are also the 

Lagrange multipliers of the Primal Problem, exist and hence 

the solution of the Dual problem is also the solution of the 

Primal one. In order to solve it, we will use an iterative 
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algorithm, the Gradient Projection Method described in [9]. 

Recall that the recursive formula for determining the value of a 

variable x  at time  is: 1t +

( ) ( ) ( )( )1x t x t F x tα
+

⎡ ⎤+ = − ⋅∇⎣ ⎦               (11) 

where α  is a positive constant. In our case, we obtain the 

update equations for the shadow prices jμ  and jλ  as follows: 

( ) ( ) ( )1
1,

1
L

j j jj j j jk k
k k j

t t G p G p nμ μ α μ γ γ j

+

= ≠

⎡ ⎛ ⎞
+ = − − + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎝ ⎠⎣

∑
⎤

⎥⎦
         (12) 

and 

( ) ( ) ( )
( )

21j j j i
i Z j

t t c rλ λ α λ

+

∈

⎡ ⎛
⎢ ⎜+ = − −⎜⎢ ⎝ ⎠⎣ ⎦

∑
⎤⎞
⎥⎟⎟⎥

                  (13) 

where [ ] ( )max ,0x x+
= . 

Using the same procedure, we also obtain the optimal 

solutions for problems  and 1
iP 2

jP  as  

( )

1

'

r

r

M

i i j
j S i

m

r U λ
−

∗

∈

⎡ ⎤⎛ ⎞⎢ ⎜ ⎟= ⎜ ⎟⎢ ⎝ ⎠⎣ ⎦
∑ ⎥

⎥
                                (14) 

and  

( ) 1* '
p

p

M

j j j jj
m

p V Gμ
−⎡= ⎢⎣
⎤
⎥⎦

                                (15) 

respectively, where [ ] ( )( )min max , ,b

a
x x a b= . 

 

C. Distributed Optimization Algorithm 
We propose the following distributed algorithm that can be 

used by each node in the network to reach the optimal 

performance. The algorithm consists of two sub-algorithms, 

one carried out by each source sensor i  and another one 

implemented by each link , as shown in tables 1 and 2. j

 
TABLE  I: SOURCE SENSOR’S   DISTRIBUTED ALGORITHM i

Each time slot do: 1,  2,t = …

1. Receive the aggregate cost iλ  , given by (5), for all 

the links that sensor i is using for sending its traffic. 

2. Calculate the new data rate for time 1t +  using (14) 

3. Send the new rate ( )1ir t +  to all the links that sensor i 

is using 

 

The message overhead of the algorithm does not seem to be 

significant. The aggregate price of each flow can be calculated 

by sending a packet from sink to source and each time it 

reaches an intermediate node, the link increases the cost header 

by its shadow price. Then, when the packet reaches the source 

the value of this header variable will be equal to the aggregate 

cost iλ .  

 
TABLE II: LINK’S   DISTRIBUTED ALGORITHM j

Each time slot 1,  2,t = … do: 

1. Receive the aggregate traffic rate that is passing 

through it using formula . 
( )

j
i

i Z j

r r
∈

= ∑

2. Calculate the value of the transmission power price 

jμ  for time 1t +  using (12). 

3. Calculate the value of the rate price jλ  for time 1t +  

using (13). 

4. Use the new value ( )1j tμ +  in order to calculate the 

optimal transmission power *
jp , using (15). 

4. Send the new price ( )1j tλ +  to all the sources that are 

using link j . 

 

D. Feasibility of the Algorithm 
Even though we have proposed an algorithm for solving the 

NUM problem, this does not mean that the problem has always 

a feasible solution and hence we need to provide some 

necessary and sufficient conditions for feasibility. Observe that 

the problem P can be viewed as two separable subproblems that 

are connected by the objective function. The first one is the rate 

allocation problem and the second is the power control 

problem. The rate allocation sub-problem is actually presented 

and solved in [1] and [2], and is proved to be feasible since the 

zero vector 0  is a feasible point of the problem. On the 

contrary, the power control sub-problem is not always feasible. 

However, Lemma 1 in [10] represents a necessary and 

sufficient condition that guarantees the existence of a feasible 

solution. Accordingly, the SINR targets ,      1, ,j j Lγ = … , are 

feasible if and only if 1ρ <  where ρ  is the Perron-Frobenius 

eigenvalue of the matrix 1 E−Y H⋅ ⋅ , where 
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0 0
0 0

0
0 0 0

j

j

j

j

Y

γ
γ

γ
γ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢
⎢=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # % #
# # % #
# #

"

⎥
⎥                           (16) 

Matrix H is defined as  and matrix  is 

. 

,   
0,      

ii
ij

G i j
H

i j
=⎧

= ⎨
≠⎩

E

0,       
,    ij

ij

i j
E

G i j
=⎧⎪= ⎨ ≠⎪⎩

IV. NUMERICAL RESULTS 
In this section, we present numerical results to show the 

performance of the proposed distributed algorithm. In 

particular, we have simulated the algorithm in a network 

consisting of 10 sensor nodes and a total of 9 links, as shown in 

Figure 1. Assume that three sensors, sensors 1, 2 and 3, in the 

network generate and send data flows to three other sensors, 

sensors 7, 9 and 10, and that the routing matrix of these flows 

is known a priori and fixed. For illustration purposes, we have 

set the utility functions  and the cost functions 

. Note that  is a concave function of  

and  is a convex function of 

( ) ( )logi i iU r r=

( )i iU r( ) ( )2

j j jV p p=

( )j jV p

ir

jp

10 dB

, as required by the 

conditions mentioned earlier. Finally, the SINR target at each 

link is equal to targetγ =

b

 and the capacity of each link is 

equal to c M .  10 ∗ = ps

 
Figure 1 – The network topology 

 

To study the convergence rate and the deviation from the 

optimality for the proposed algorithm, we have simulated our 

network for two different sets of update coefficients 1α   and 

2α  and compared it with the actual optimal solution. The 

performance of our distributed algorithm is shown in Figures 2 

to 6. According to [9], the values of 1α and 2α can be any 

positive and sufficiently small number, so that each iteration of 

the Gradient Projection method will decrease the value of the 

cost function unless we reach the optimal solution. 

We show the convergence of the rate allocation for two 

flows (Figures 2 and 3) and transmission power of three links 

(Figures 4 and 5). Figure 6 depicts the convergence of the 

aggregate SINR error with respect to the SINR target. The 

convergence metric is a normalized summation of the 

differences between the actual and the target SINR values as 

follows: 

target
1

target

M

i
i

perf

SINR SINR
SINR

SINR
=

−
=
∑

              (17) 

 

 
Figure 2 – Allocated Data Rate for α1 = 0.001 

 

 
Figure 3 – Allocated Data Rate for α1 = 0.01 

 
 

According to these graphs, it can be seen that for greater 

values of  1α   and 2α  the algorithm is converging quicker. 

However, the smaller the values of these parameters of the 

gradient projection method, the smoother the convergence to 

the optimal value will be. As shown in Figures 2 and 3, the 

allocated data rate may exceed the link capacity temporarily 
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before it reaches the optimal solution at steady state.  We 

further observe that the greater the coefficient 1α , the greater 

the data rate may exceed the capacity temporarily.  Therefore, 

it may be worthwhile to choose small coefficient values to limit 

such excessive data rate. 

Hence, we see that the optimal decision for these parameters 

actually represents a trade-off between convergence rate and 

convergence smoothness in practice. Nevertheless, these 

simulation results reveal that the proposed algorithm always 

converges at the actual optimal value which means that it can 

indeed solve the maximization problem optimally by selecting 

appropriate data rates and transmission power levels. 
  

 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, we have extended the existing Network Utility 

Maximization framework for wireless networks so that it takes 

into account the interference between links and the path loss 

effect by proposing a problem formulation based on power 

control. In addition, we have proposed a distributed algorithm 

for the optimization problem and obtained the conditions under 

which the problem is solvable and a feasible solution exists. 

Finally, we have verified the performance of the proposed 

algorithm in terms of convergence of rate allocation and 

transmission power by simulation. 

We plan to extend the proposed framework further so that it 

takes into account multi-sink and multi-source flows. In 

addition, we also prefer to enhance the formulation to capture 

the coupling between SINR and link capacity.  

Figure 4 - Transmission Power for α2 = 0.3 
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