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Motivation
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Consider an unknown scene with a certain texture, in order to render good quality viewpoint, for

Image-Based Rendering (IBR), the scene must be adequately sampled. Suppose the sampling

can be achieved using a camera mounted to a robot.

Important Questions:

� How should the camera travel relative to

the scene?

� Where to sample along the path?

� Whether to zoom or not?

Current Work:

� Approximating the scene with a linear depth model and bandlimited texture

� Bandwidth analysis of such a model to determine maximum uniform camera spacing



Plenoptic Function and the Epipolar Plane Image
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Consider the 2D Plenoptic Function, p(t, v), known as the Epipolar Plane Image (EPI) [2]

(a) Scene (b) EPI

� Point in the scene =⇒ Line in the EPI plane where the slope depends on the depth

� Fixing a camera position t1 =⇒ 1D image signal

� Fixing a pixel v1 =⇒ 1D signal of the pixel captured by all cameras



Slanted Plane Geometry
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Functional Scene Model [3]:

� s is the Curvilinear Coordinate

� x is the Projection of s onto t

� φ is the Slant of the Plane

Texture Signal Pasted to Scene Surface, g(s) = sin(ωss)

Constraints:

� Finite Field of View (FoV) for the Cameras =⇒ v ∈ [−vmax, vmax]

� Finite Plane Width =⇒ s ∈ [0, Tgeo]

� Lambertian Scene



Effect of the Constraints on the EPI
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Slanted Plane Plenoptic Spectrum
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ω1 =⇒ Projected frequency from

a ray at −vmax

ω2 =⇒ Projected frequency from a

ray at +vmax

� Finite Plane Constraint =⇒ Spectral spreading along lines relating to zmax and zmin

� Finite FoV Constraint =⇒ Spectral spreading in the ωv direction, for

ωt = ±ω1 and ωt = ±ω2



Evaluating Plenoptic Spectrum for g(s) = ejωss
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The Plenoptic Spectrum
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and ζ(jx), for x ∈ R, is defined as

ζ(jx) =
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E1(−jx) − 2jSi(−x) + jπ + ln(jx) + γ , if x < 0

0 , if x = 0

E1(w) is the Exponential Integral, Si(w) is the Sine Integral and γ is Euler’s Constant [1]

Note that for ωt = 0 the plenoptic spectrum is
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Bandwidth Analysis
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Consider a special case, when φ = 0, =⇒ Flat frontal parallel plane at a depth zc

Spectrum non-bandlimited in either ωv or ωt

� Convolution with Sinc function along the

line ωv = ωtzc

f

� Convolution with Sinc function parallel to

ωv-axis at ωt = ±ωs

Finite bandwidth covering 90% of the signal’s energy =⇒ Essential Bandwidth [4]

For a Sinc function =⇒ Essential Bandwidth is the main lobe [4]



Sampling Curve
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� ∆t =⇒ Spacing between Cameras

� ∆v =⇒ Finite Pixel Resolution

� Optimum Line =⇒ Optimum ∆t for given z



Conclusions and References
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� The finite constraints imposed lead to spectral spreading in the ωv-ωt domain. Thus the

plenoptic spectrum is no longer bound between the lines relating to minimum and

maximum depth.

� However the plenoptic spectrum for a slanted plane with a sine wave texture can be

expressed in a closed form expression.

� Simplifying to a frontal parallel plane, the finite constraints lead to convolution with sinc

functions. Thus the plenoptic spectrum is not bandlimited in either ωt or ωv but the

essential bandwidth can be defined.

� Using this essential bandwidth an optimum ∆t can be derived for a given distance

between the camera line and the scene. Plotting this optimum relationship leads to a

sampling curve, which determines the optimum ∆t given the depth.
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