
Predicting Network Attack Patterns in SDN using
Machine Learning Approach

Saurav Nanda∗, Faheem Zafari∗, Casimer DeCusatis†, Eric Wedaa‡ and Baijian Yang∗
∗Deparment of Computer and Information Technology

Purdue University, West Lafayette, IN 47906
Email: {nandas,faheem0,byang}@purdue.edu
†School of Computer Science and Mathematics

Marist College, Poughkeepsie, NY 12601
Email: casimer.decusatis@marist.edu

‡Information Technology
Marist College, Poughkeepsie, NY 12601

Email: eric.wedaa@marist.edu

Abstract—An experimental setup of 32 honeypots reported
17M login attempts originating from 112 different countries and
over 6000 distinct source IP addresses. Due to decoupled control
and data plane, Software Defined Networks (SDN) can handle
these increasing number of attacks by blocking those network
connections at the switch level. However, the challenge lies in
defining the set of rules on the SDN controller to block malicious
network connections. Historical network attack data can be used
to automatically identify and block the malicious connections.
There are a few existing open-source software tools to monitor
and limit the number of login attempts per source IP address
one-by-one. However, these solutions cannot efficiently act against
a chain of attacks that comprises multiple IP addresses used
by each attacker. In this paper, we propose using machine
learning algorithms, trained on historical network attack data,
to identify the potential malicious connections and potential
attack destinations. We use four widely-known machine learning
algorithms: C4.5, Bayesian Network (BayesNet), Decision Table
(DT), and Naive-Bayes to predict the host that will be attacked
based on the historical data. Experimental results show that
average prediction accuracy of 91.68% is attained using Bayesian
Networks.

Index Terms—Network Attack; Machine Learning; Honeypots;
SDN

I. INTRODUCTION

The drastic increase in the number of devices connected
to the Internet has resulted in a number of useful solutions
in different fields such as agriculture, health care, industry,
commerce. Such a huge increase in demand for connectivity
has challenged the traditional network architectures. To ac-
count for the challenges, Software Defined Network (SDN)
architecture was proposed that decouples the traditional user
plane and control plane [1], [2]. The advantage of such an
architecture is that it improves the overall network efficiency
and allows better network management [2]. While, such an
architecture has valuable advantages, it is also prone to number
of threats such as security attacks.

An attacker can perform attacks, such as Secure Shell (SSH)
bruteforce attack, on the SDN controller that can result in

serious security threats. Even if the network administrator
identifies a potential attack and attacker, it may not be possible
to efficiently account for simultaneous attacks in real time.
Therefore, there is a need for specific security rules that are
usually implemented on the SDN controller similar to firewall
rules. However, defining these rules can be a daunting task,
since the goal of such rules is to restrict the access of the
malicious nodes or attackers while allowing smooth access to
the normal users.

Abdou et al. [3] found that the malicious users have specific
characteristics that can be used to differentiate between the
attackers and legitimate users. Patterns such as coordinated
attacks and sharing of password dictionary are common among
attackers. Different techniques, including machine learning,
can be used to identify such patterns. Machine learning based
approaches have shown significant potential in classification of
the users [4]. In this paper, we apply four different machine
learning algorithms: C4.5, BayesNet (BN), Decision Table
(DT), and Naive-Bayes (NB) to predict the potential vulnerable
host that might be attacked, using historical network attack
data. We use data from the LongTail project [5] to train dif-
ferent Machine Learning (ML) models to predict the potential
host that can be attacked. Leveraging the ML-algorithm output,
we can define security rules on the SDN controller to restrict
the access of potential attackers by blocking the entire subnet.
The main contributions of this paper are:

• To the best of our knowledge, our work is the first paper
that leverages Machine Learning approach for defining
security rules on the SDN controller

• We compare and evaluate the performance of four widely
used ML algorithms. However, our goal is to show the
viability of ML approach in SDN security rather than
highlighting the four algorithms used.

• We show that even a small probability of attack, obtained
through ML approach, has significant effect on the SDN
security.



The paper is structured as follows: Section II discusses
related work and presents an insight into the ML algorithms
used in this work. Section III presents our methodology.
Section 4 presents the experimental results and a discussion
on our findings. Section V presents the conclusions.

II. RELATED WORK

In this section, we present a review of relevant literature
related to SDNs and Machine Learning (ML). We also present
an insight into ML algorithms used in this paper.

A. Literature Review

Ashraf et al. [2] described machine learning techniques that
could be used to handle intrusions and Distributed Denial
of Service (DDoS) attacks in Software Defined Networks
(SDNs). The paper discussed neural networks, Bayesian net-
works, Fuzzy logic, genetic algorithm and support vector
machine and their application in SDN anomaly detection. The
paper presents a detailed discussion on the advantages and
disadvantages of these approaches for anomaly detection. Ali
et al. [6] present a detailed survey on leveraging SDNs to
secure networks, and propose the use of SDNs for security as
a service. The survey lists a number of different challenges and
solutions that have been proposed in the literature to account
for network threats. Astuto et al. [7] also present a survey
on programmable networks with emphasis on SDNs. The
paper provides a discussion on the evolution of programmable
networks and highlights the SDN architecture. The paper
also describes various alternative solutions to the OpenFlow
standard and testing of SDN protocols. Hu et al. [8] present a
survey of SDN from OpenFlow perspective and highlight the
basic concept, applications, and security aspects of OpenFlow.
Abdou et al. [9] present an analysis of the automated SSH
brute force attacks. The paper used the data from the LongTail
project [5] to thoroughly analyze the attacker’s behavior and
the dynamics of the attacks including the password dictionary
sharing and coordinated attacks. The result of the analysis
can be leveraged to provide recommendations to the network
administrator and SSH users. Sommer [10] discusses different
anomaly detection mechanisms in SDN such as k-Nearest
Neighbors (kNN), Bayesian Networks, Support Vector Ma-
chines, and Expectation Maximization. The author elaborates
different attack scenarios, and their implementation in terms
of SDN applications. Qazi et al. [4] proposed a innovative
framework, called Atlas, that leverages application-awareness
in SDN, and is efficient for L2/3/4-based policy enforcement.
Atlas uses a machine learning approach, C5.0 classifier, to
classify the traffic in SDN, and collects ground truth data
using crowd-sourcing approach to integrate with the central-
ized control of SDN’s data reporting system. Their proposed
system is capable of detecting a mobile application with fine-
granularity, and achieved an average accuracy of 94% for the
top 40 android applications.

Kim et al. [11] provide a generic discussion on SDN
with particular emphasis on the present issues in the network
configuration and management systems, and propose different

mechanisms to improve network management. They focused
on the three major challenges of network management: capa-
bility of frequent changes to network conditions and state, high
level language support for network configuration, and better
interface and control to conduct network troubleshooting.
Drutskoy et al. [12] present a system on top of SDN layer
known as FlowN that leverages programmable control on
network switches, and allows different tenants to define their
own rules for routing and control. FlowN has the capability of
providing individual address space, topology and control logic
to their tenants. They also take advantage of databases to scale
the mapping between physical and virtual networks. Eskca et
al. [1] present a detailed discussion on security aspect of SDN.
The paper discusses a number of techniques and approaches
including machine learning that can be used to address the
security challenges. Jain et al. [13] present a novel system
called B4, which is a private Wide Area Network (WAN)
that connects Google’s data centers around the world. The
proposed approach has unique features such as high bandwidth
for reasonable number of data centers, dynamic traffic demand
that aims to maximize the average bandwidth, and thorough
control over the edge servers. Due to the aforementioned
characteristics, B4 leverages SDNs improved control over the
networks switches resulting in near 100% link utilization.

In contrast with the prior work, we leverage machine
learning algorithms to predict the networks that might be
attacked and limit the access of malicious users. The proposed
approach can be leveraged by SDN controller to define security
rules that aims to prevent potential attacks by blocking an
entire subnet, rather than the traditional approach of blocking
individual IPs. The motive behind blocking the entire subnet
is that most of the attackers have been found to use multiple
IP addresses within the same subnet range.

B. Machine Learning Algorithms

Machine learning algorithms have been widely used for
a number of classification and prediction problems [14] and
have provided accurate results. Below we describe some of
the widely used ML algorithms.

1) C4.5 Decision Tree: C4.5 Decision tree is widely used
for inductive inference [15]. In C4.5, the discrete-valued
functions are approximated and decision tree is used for rep-
resenting the learned function. C4.5 is based on heuristic hill
climbing, and carries out non-backtracking search throughout
all possible decision trees. In C4.5, the data is partitioned into
subgroups recursively. C4.5 is robust to highly noisy data and
is preferred for learning various disjunctive expressions. As
discussed in [15], the main learning steps of C4.5 DT are

• An attribute is selected, based on which a logical test is
formulated.

• Each test outcome is used as a branch and subset of the
training data that satisfies the outcome is moved to the
corresponding child node.

• The process is run recursively on all the child nodes.
• A leaf is declared as a node based on specific termination

rule.



C4.5 is suitable for large datasets. Since SDN related data
is huge in size, C4.5 DT is a viable option [2]. A detailed
discussion on C4.5 DT can be found in [15], [16].

2) Bayesian Network: Bayesian Network or Bayes Net
encodes probabilistic relationships among different variables
of interest [2]. It consists of a number of variables and set
of edges between the variables, resulting in an acyclic graph
[17]. Every node in the graph represents the random variable
and a directed edge from one variable to another. Every
variable in the Bayesian network is independent of the non-
descendants. Bayes Net has been used as classifier and if
trained properly, can result in highly accurate classifications.
A detailed discussion on Bayesian Network can be found in
[16], [18], [19].

3) Naive-Bayes: Naive-Bayes uses Bayesian theory that
predicts the type of the unknown samples based on prior prob-
ability using the training samples. The Bayesian classification
model relies on statistical analysis and Bayesian theory that
consists of the Bayesian learning [20], [21]. Bayesian learning
uses the prior and posterior probability in combination and
uses it to find the posterior probability as per the supplied
information and data samples [22]. The Naive-Bayesian algo-
rithm operates by segregating the training set into an attribute
vector and a decision variable. The algorithm also assumes that
every member of the attribute vector independently acts on the
decision variables. A detailed discussion on Naive-Bayes can
be found in [22].

4) Decision Table: Decision Table (DT) is used to organize
and document logic in a way that assists in easy inspection
[23]. DT helps in representing the machine learning output
as the input [24], and involves selecting some of the data
attributes. They also assist in evaluating different set of rules
for ambiguities and redundancy [25]. A detailed discussion,
which is beyond the scope of this paper, can be found in [23]–
[25].

III. METHODOLOGY

We use machine learning (ML) algorithms to predict po-
tential target host attacks based on the historical network
attack data for SDN. We use four different algorithms: C4.5,
BayesNet, DT, and Naive-Bayes [26] for predicting the host
that would be attacked, and compare their performance in
terms of accuracy. Figure 1 shows our ML-based architecture
for defining security rules on SDN controller. Historical data is
used to train a model. The trained model is then used for pre-
dicting the potential attacks on different hosts using real-time
network data, and specific rules are set on the SDN controller
to block the potential attacker. The underlying principles of
our proposed approach consist of a) Using historical data to
train the ML-based models, and b) Using the trained model to
identify the potentially vulnerable hosts and define the security
rules in the SDN controller as per the prediction output of the
Machine learning algorithm. Below we discuss each one of
them in detail

Fig. 1: Machine learning based architecture for defining secu-
rity rules on SDN controller

A. Use historical data to train the ML-based models

To obtain accurate classifiers to identify potential vulnerable
hosts, historical data is required to train the ML-based models.
The training helps the model learn and obtain better results.
Our goal is to use the historical attack pattern to identify
which host will be attacked by a potential attacker. Based on
attacker IP, we predict the potential host that can be attacked.
These predictions can be used to define security rules on
SDN controller to ascertain the network security. Rather than
restricting the access of a single IP, we also propose blocking
the entire subnet to prevent the future attacks from the same
attacker, attacking through a different IP in the same subnet.

B. Use the trained model to identify potentially vulnerable
host

Once the model is trained, it can be used to identify potential
hosts that can be attacked by an IP. During the testing phase,
we used our trained model to predict the attacked host based
on the attacker’s IP. If the attacker actually attacked a host
as predicted by the ML algorithm, it means that the model
is accurate. The accuracy of the models is calculated using
Equation 1.

Accuracy =
Number of correctly predicted attacks

Total number of attacks
×100

(1)
While testing, we also chose a threshold level α percentage

as the minimum probability required to consider any host as
vulnerable. We altered the values of α to evaluate its effect
on the classification accuracy. Algorithm 1 summarizes our
proposed approach.

Algorithm 1 Machine Learning based predictor for SDN
network attacks

1: procedure ML-BASED ATTACK PREDICTOR
2: Chose the Machine Learning Algorithm
3: Train the ML algorithm using historical data
4: if The trained model predicts an attack on a host by

an IP then
5: Update the SDN controller rules to block the IP

subnet
6: else Allow the IP to access the resources



TABLE I: Details of the dataset

Dataset Size Format
1 278,598 (With Chinese attack data) <attacker IP> <attacked host> <number of attempts in an attack> <timestamp>
2 187,488 (Without Chinese attack data) <attacker IP> <attacked host> <number of attempts in an attack> <timestamp>
2 91,110 (Only Chinese attack data) <attacker IP> <attacked host> <number of attempts in an attack> <timestamp>

TABLE II: Prediction accuracy of different ML algorithms for
the dataset 1 in different training/testing split scenarios and
threshold (α)

Algorithm Split α=10% α=5% α=1% α=0%
C4.5 30-70 78.62 85.54 87.95 88.22
C4.5 40-60 80.13 86.72 88.94 89.2
C4.5 50-50 80.96 87.5 89.68 89.91
C4.5 60-40 81.88 88.47 90.61 90.8
C4.5 70-30 82.3 89.1 91.2 91.4
NB 30-70 67.7 79.32 96.86 99.52
NB 40-60 68.62 80.24 96.87 99.52
NB 50-50 69 80.65 96.87 99.51
NB 60-40 69.66 81.2 96.99 99.5
NB 70-30 69.63 81.48 97.07 99.51
BN 30-70 73.56 86.63 98 99.84
BN 40-60 74.89 87.49 98.03 99.87
BN 50-50 75.31 87.99 98.12 99.87
BN 60-40 76.53 88.6 98.12 99.89
BN 70-30 76.92 88.96 98.18 99.89
DT 30-70 70.36 83.08 99.46 99.99
DT 40-60 71.18 83.99 99.5 99.99
DT 50-50 72.48 85.23 99.57 99.99
DT 60-40 72.04 84.73 99.59 99.99
DT 70-30 73.34 85.74 99.64 99.99

TABLE III: Prediction accuracy of different ML algorithms
for the dataset 2 in different training/testing split scenarios
and threshold (α)

Algorithm Split α=10% α=5% α=1% α=0%
C4.5 30-70 84.17 86.78 90.98 91.17
C4.5 40-60 84.51 86.86 90.84 90.99
C4.5 50-50 77.87 86.08 89.86 90.23
C4.5 60-40 78.63 86.29 89.9 90.24
C4.5 70-30 78.93 86.34 89.78 90.1
NB 30-70 72.11 82.27 97.74 99.6
NB 40-60 73.07 82.81 98.08 99.61
NB 50-50 73.66 83.27 98.13 99.62
NB 60-40 74.35 83.66 98.36 99.62
NB 70-30 74.34 83.79 98.28 99.59
BN 30-70 80.09 90.22 98.2 99.93
BN 40-60 80.65 90.53 98.5 99.93
BN 50-50 81.12 90.96 98.64 99.92
BN 60-40 81.7 91.31 98.65 99.94
BN 70-30 81.67 91.68 98.73 99.94
DT 30-70 66.26 83.48 99.16 99.98
DT 40-60 66.5 84.39 99.12 99.98
DT 50-50 67.35 84.61 99.19 99.98
DT 60-40 67.6 83.55 99.21 99.98
DT 70-30 68.06 83.98 99.25 99.98

IV. RESULTS AND DISCUSSIONS

To evaluate the accuracy of the used ML algorithms, we
use a machine learning tool called WEKA [27]. For training
purpose, we used a public dataset from “LongTail” [28], an
open source project by Marist College that records SSH brute
force attacks on the honeypots deployed for this purpose.
LongTail also performs a statistical analysis by recording IP

TABLE IV: Prediction accuracy of different ML algorithms
for the dataset 3 in different training/testing split scenarios
and threshold (α)

Algorithm Split α=10% α=5% α=1% α=0%
C4.5 30-70 79.83 82.54 83.74 83.88
C4.5 40-60 81.36 83.75 84.9 85
C4.5 50-50 82.45 84.79 85.85 85.94
C4.5 60-40 83.61 85.81 86.82 86.91
C4.5 70-30 84.06 86.29 87.13 87.21
NB 30-70 72.27 82.87 95.37 99.6
NB 40-60 73.31 83.51 95.25 99.62
NB 50-50 73.78 84.3 95.43 99.65
NB 60-40 74.68 84.86 95.31 99.67
NB 70-30 75.1 85.48 95.4 99.68
BN 30-70 78.73 88.77 97.77 99.83
BN 40-60 79.77 89.56 97.99 99.88
BN 50-50 80.42 89.77 98.08 99.92
BN 60-40 81.51 90.26 98.28 99.93
BN 70-30 82.14 90.55 98.43 99.93
DT 30-70 67.69 82.76 99.76 99.99
DT 40-60 69.89 84.44 99.85 99.99
DT 50-50 71.25 85.12 99.82 99.99
DT 60-40 72.16 86.28 99.84 99.99
DT 70-30 73.65 87.43 99.85 99.99

addresses used, accounts, passwords, and account-password
pairs, and analyze attack patterns for similarity and number
of times used. As of now 32 different honeypots are used
to collect the data. Table I presents a detailed description of
data. There are three different datasets used. Datasets 1 contain
the entire data available at [28], dataset 2 does not contain
the attack records from China, and dataset 3 contains the
record of attacks only from China. Using these three datasets,
we trained our ML models and then tested them to identify
potential vulnerable hosts. The datasets were split in 30/70,
40/60, 50/50, 60/40, and 70/30 ratio for training and testing
purposes. We also altered the α threshold described in Section
III.

Tables II, III, and IV show the prediction accuracy of
different ML algorithms, for different data sets, training/testing
split ratio and the α threshold. For a particular instance, the
highest accuracy of 99.99% is obtained with Decision Table
for dataset 1 and α 0% as shown in Table II. It is evident that
the choice of α, the ML algorithm and the training/testing
split ratio significantly affects the prediction accuracy. Below,
we discuss the results of these tables in detail with respect to
different parameters.

A. Effect of α on prediction accuracy

The results in Tables II, III, and IV highlight the fact that the
α threshold drastically affects the prediction accuracy of the
attacked host. The average prediction accuracy attained with
different values of α is given in the Table V. It is evident that



TABLE V: Effect of α on average prediction accuracy

α (%) Avg. Prediction Accuracy
0 97.06
1 95.78
5 85.74
10 75.59

0 1 5 10
0

10

20

30

40

50

60

70

80

90

100

Average prediction accuracy of different algorithms for different Alpha Values

Alpha 

A
ve

ra
ge

 P
re

di
ct

io
n 

A
cc

ur
ac

y 
(%

)

 

 
C4.5
Naive−Bayes
BayesNet
Decision Table

Fig. 2: The average prediction accuracy of different algorithms
for different values of α

the increase in the value of α affects the prediction accuracy.
The increase in α from 0-10% reduces the prediction accuracy
by 21.47%. The result is significant as it shows that even a very
small probability of attack on any particular host should be
deemed significant and not ignored. Therefore, the attacker IP
should be blocked and SDN controller rules must be modified
to accommodate for better network security on vulnerable
hosts.

B. Effect of the ML algorithm

Figure 2 provides an insight into the effect of ML algorithm
on the prediction accuracy. Table VI provides the average
prediction accuracy for the four different algorithms, and it
can be seen the that highest average prediction accuracy of
91.68% is attained with BayesNet.

C. Effect of training/testing split ratio

The training/testing split ratio also affects the prediction
accuracy as shown in Table VII. However, with the nature of

TABLE VI: Average Prediction Accuracy for Different ML
algorithms

Algorithms Avg. Accuracy
C4.5 86.19
Nave-Bayes 87.78
BayesNet 91.68
Decision Table 88.52

TABLE VII: Effect of training/testing split ratio on average
prediction accuracy for different α

Split Ratio 10 5 1 0
30/70 74.28 84.52 95.42 96.80
40/60 75.32 85.36 95.66 96.97
50/50 75.47 85.86 95.77 97.04
60/40 76.20 86.25 95.97 97.21
70/30 76.68 86.74 96.08 97.27

TABLE VIII: Effect of dataset on average prediction accuracy
for different α

Dataset 10 5 1 0 Avg.
1 74.26 85.13 96.06 97.32 88.19
2 75.63 86.14 96.53 97.52 88.96
3 76.88 85.96 94.74 96.33 88.47

C4.5 Naive−Bayes BayesNet Decision Table
0

20

40

60

80

100

120

140

160

180

200

220

Machine Learning Algorithms

A
ve

ra
ge

 T
im

e 
(s

ec
on

ds
) 

Average Time Taken by Machine Learning Algorithms for prediction/classification

85.95

57.93 57.84

205.37

Fig. 3: Average time taken by different machine learning
algorithms for predicting attacks on vulnerable hosts

the data obtained from the “LongTail” project [28], the change
in the training/testing split ratio did not bring significant
change in the prediction accuracy for a specific value of α.

D. Effect of the Dataset

The dataset also plays an important role in the prediction
accuracy. The higher the variance in data, the higher will be
the chances of false prediction. Since dataset 2 did not have the
entries from the Chinese attackers, the variation in the dataset
was much lesser than dataset 1 and dataset 3. This is why, as
seen in Table VIII, the average prediction accuracy is higher
for dataset 2 when compared with dataset 1 and dataset 2.

The results in Tables II, III, IV, V, VII and VIII show
that ML algorithms can accurately predict the vulnerable
host. Such accurate prediction can then be leveraged by SDN
controller to block the potential attacker from attacking the
network and help protect different hosts. Figure 3 compares
different algorithms in terms of total time required for training
and testing the machine learning model. From the Figure
3, it is also evident that BayesNet performs better than the



other three algorithms used, in terms of time as well average
prediction accuracy (see Table VI).

V. CONCLUSION

In this paper, we used machine learning algorithm to predict
the vulnerable host in SDN network that is highly likely
to be attacked. Leveraging the prediction output of machine
learning algorithms, the security rules for SDN controller can
be defined that will prevent malicious users from accessing
the network. Experimental results showed that machine learn-
ing algorithms can help in defining security rules for SDN
controller by accurately predicting the potential vulnerable
host. An average prediction accuracy of 91.68% was achieved
with Bayesian Network which indicates that out of the total
278,598 attacks, Bayesian network was able to accurately
predict 254,834 attacks. Also, the decline in the prediction
accuracy with the increase in the threshold α indicated that
even a small probability of attack should not be ignored and
security rules on the SDN controller must be accordingly
modified to account for the potential threat.

REFERENCES

[1] E. B. Eskca, O. Abuzaghleh, P. Joshi, S. Bondugula, T. Nakayama, and
A. Sultana, “Software Defined Networks Security: An Analysis of Issues
and Solutions,”

[2] J. Ashraf and S. Latif, “Handling intrusion and DDoS attacks in Software
Defined Networks using machine learning techniques,” in Software
Engineering Conference (NSEC), 2014 National, pp. 55–60, Nov. 2014.

[3] A. Abdou, D. Barrera, and P. C. van Oorschot, “What Lies Beneath?
Analyzing Automated SSH Bruteforce Attacks,”

[4] Z. A. Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt, and G. Noubir,
“Application-awareness in SDN,” in ACM SIGCOMM Computer Com-
munication Review, vol. 43, pp. 487–488, ACM, 2013.

[5] LongTail, “LongTail Log Analysis.” http://longtail.it.marist.edu/honey/.
[Online; accessed 21-Mar-2016].

[6] S. T. Ali, V. Sivaraman, A. Radford, and S. Jha, “A survey of securing
networks using software defined networking,” Reliability, IEEE Trans-
actions on, vol. 64, no. 3, pp. 1086–1097, 2015.

[7] B. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
“A survey of software-defined networking: Past, present, and future of
programmable networks,” Communications Surveys & Tutorials, IEEE,
vol. 16, no. 3, pp. 1617–1634, 2014.

[8] F. Hu, Q. Hao, and K. Bao, “A Survey on Software-Defined Network and
OpenFlow: From Concept to Implementation,” IEEE Communications
Surveys Tutorials, vol. 16, no. 4, pp. 2181–2206, 2014.

[9] A. Abdou, D. Barrera, and P. C. van Oorschot, “What lies beneath?
analyzing automated ssh bruteforce attacks,”

[10] V. Sommer, “Anamoly Detection in SDN Control Plane,” Master’s
thesis, Technical University of Munich, Munich, Germany, 2014.

[11] H. Kim and N. Feamster, “Improving network management with soft-
ware defined networking,” IEEE Communications Magazine, vol. 51,
pp. 114–119, Feb. 2013.

[12] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization
in software-defined networks,” Internet Computing, IEEE, vol. 17, no. 2,
pp. 20–27, 2013.

[13] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hlzle, S. Stuart,
and A. Vahdat, “B4: Experience with a Globally-deployed Software
Defined Wan,” in Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, SIGCOMM ’13, (New York, NY, USA), pp. 3–14, ACM,
2013.

[14] G. M. Khan, S. Khan, and F. Ullah, “Short-term daily peak load
forecasting using fast learning neural network,” in Intelligent Systems
Design and Applications (ISDA), 2011 11th International Conference
on, pp. 843–848, IEEE, 2011.

[15] K. Polat and S. Güneş, “A novel hybrid intelligent method based on
c4. 5 decision tree classifier and one-against-all approach for multi-
class classification problems,” Expert Systems with Applications, vol. 36,
no. 2, pp. 1587–1592, 2009.

[16] M. A. Friedl and C. E. Brodley, “Decision tree classification of land
cover from remotely sensed data,” Remote sensing of environment,
vol. 61, no. 3, pp. 399–409, 1997.

[17] V. Muralidharan and V. Sugumaran, “A comparative study of naı̈ve
bayes classifier and bayes net classifier for fault diagnosis of monoblock
centrifugal pump using wavelet analysis,” Applied Soft Computing,
vol. 12, no. 8, pp. 2023–2029, 2012.

[18] J. Cheng and R. Greiner, “Comparing bayesian network classifiers,”
in Proceedings of the Fifteenth conference on Uncertainty in artificial
intelligence, pp. 101–108, Morgan Kaufmann Publishers Inc., 1999.

[19] F. V. Jensen, An introduction to Bayesian networks, vol. 210. UCL press
London, 1996.

[20] W.-t. Wu, W.-z. Jin, and P.-q. Lin, “Research on choice of travel
mode model based on naive bayesian method,” in Business Management
and Electronic Information (BMEI), 2011 International Conference on,
vol. 2, pp. 439–444, IEEE, 2011.

[21] Y. Wang, J. Hodges, and B. Tang, “Classification of web documents
using a naive bayes method,” in Tools with Artificial Intelligence, 2003.
Proceedings. 15th IEEE International Conference on, pp. 560–564,
IEEE, 2003.

[22] T. Mitchell, “Machine learning. 2003.”
[23] B. J. Cragun and H. J. Steudel, “A decision-table-based processor for

checking completeness and consistency in rule-based expert systems,”
International Journal of Man-Machine Studies, vol. 26, no. 5, pp. 633–
648, 1987.

[24] I. H. Witten and E. Frank, Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, 2005.

[25] R. Kohavi, “The power of decision tables,” in Machine Learning:
ECML-95, pp. 174–189, Springer, 1995.

[26] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine
learning: A review of classification techniques,” 2007.

[27] WEKA, “Machine Learning Group: University of Waikato.” http://www.
cs.waikato.ac.nz/ml/weka/downloading.html. [Online; accessed 21-Mar-
2016].

[28] LongTail, “LongTail Log Analysis Dashboard.” http://longtail.it.marist.
edu/honey/dashboard.shtml. [Online; accessed 22-April-2016].


