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ABSTRACT
Mobile edge computing seeks to provide resources to dif-

ferent delay-sensitive applications. However, allocating the

limited edge resources to a number of applications is a chal-

lenging problem. To alleviate the resource scarcity problem,

we propose sharing of resources among multiple edge com-

puting service providers where each service provider has a

particular utility to optimize. We model the resource alloca-

tion and sharing problem as a multi-objective optimization

problem and present a Cooperative Game Theory (CGT) based
framework, where each edge service provider first satisfies its

native applications and then shares its remaining resources

(if available) with users of other providers. Furthermore, we

propose an O(N ) algorithm that provides allocation deci-

sions from the core, hence the obtained allocations are Pareto
optimal and the grand coalition of all the service providers is

stable. Experimental results show that our proposed resource

allocation and sharing framework improves the utility of all

the service providers compared with the case where the ser-

vice providers are working alone (no resource sharing). Our

O(N ) algorithm reduces the time complexity of obtaining a

solution from the core by as much as 71.67% when compared

with the Shapley value.
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1 INTRODUCTION
1
Mobile edge computing is a viable solution to support re-

source intensive applications (users). Edge computing relies

on edge clouds placed at the edge of any network [1]. This,

in contrast with running applications on different mobile

devices or deep in the Internet, usually allows one-hop com-

munication [2] between edge clouds and application that

results in reducing application latency. However, a funda-

mental limitation of mobile edge computing is that in con-

trast with traditional cloud platforms and data centers, edge

clouds are limited in resources and may not always be able

to satisfy application demands [1]. Realizing the resource

scarcity problem, the research community has started several

initiatives to create an open edge computing platform where

edge clouds in the same geographical location can form a

shared resource pool. However, allocating these resources

efficiently from the shared pool to different applications in

itself is a challenge.

There have been several attempts in the literature to ad-

dress the resource allocation problem. He et al. [1] studied

the allocation of edge resources to different applications by

jointly considering request scheduling and service placement.

Jia et al. [2] discussed edge cloud placement and allocation

of resources to mobile users in the edge cloud in a Wireless

Metropolitan Area Network (WMAN). Xu et al. [3] discussed

edge cloud placement in a large-scale WMAN that contains

multiple wireless access points (APs). However, most work

does not account for the fact that edge resources can belong
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to different service providers where each service provider

can have a particular objective to optimize such as security,

throughput, latency, etc. Therefore creating a resource pool

and then allocating these resources requires taking differ-

ent service provider objectives into account, which results

in a multi-objective optimization [4] (MOO) problem. Fur-

thermore, each service provider has primary applications

that should be prioritized over applications of other service

providers as customer loyalty is an important part of the

cloud business model. For example, Amazon Web Services
(AWS) and Microsoft Azure need to satisfy the demands of

their own customers first before they “rent” resources to

other service providers.

In this paper, we attempt to address the aforementioned

shortcomings. We consider an edge computing setting where

different edge clouds belonging to different service providers

are placed at the network edge. Each cloud has a specific

amount of resources and particular applications affiliated

with the cloud can ask for resources. All clouds initially

attempt to allocate resources to their own affiliated applica-

tions. If a cloud can satisfy its own applications and still have

available resources, it can share them with other edge clouds

that might need resources. To capture this, we present a Co-
operative Game Theory (CGT) based resource sharing and

allocation mechanism in which different edge clouds share

their resources and form a coalition to satisfy the requests

of different applications. Our CGT based framework takes

into account the fact that different edge clouds may have

different objectives, which is why traditional single objective

optimization framework cannot be used. The contributions

of this paper are:

(1) We propose a CGT basedmulti-objective resource shar-

ing and allocation framework for edge clouds in an

edge computing setting. We show that the resource

sharing and allocation problem can be modeled as a

Canonical game. The core of this canonical game is non-

empty and the Shapley value [5] lies inside the core.
For small number of players, we show numerically

that the Shapley value provides a fair, Pareto-optimal

and stable
2
allocation.

(2) We propose an efficient O(N ) algorithm that provides

an allocation from the core, hence reducing the com-

plexity from O(2N ) (for Shapley value).

(3) We evaluate the performance of our proposed frame-

work and show that the resource sharing and alloca-

tion mechanism improves the utilities of game players.

The paper is structured as: Section 2 presents our system

model. It also presents the resource sharing and allocation

2
No service provider has the incentive to leave the coalition and form a

smaller coalition.

optimization problem with the game theoretic solution. Sec-

tion 3 presents our experimental results while Section 4 con-

cludes the paper.

2 SYSTEM MODEL
Let N = {1, 2, · · · ,N } be the set of all the edge clouds that
act as players in our game. We assume that each player

has a set of K = {1, 2, · · · ,K} different types of resources
such as communication, computation and storage resources.

The n-th edge cloud can report its available resourcesC(n) =

{C(n)
1
....C(n)K } to a central entity, the coalition controller. Here

C(n)k is the amount of resources of type k available to edge

node n. VectorC = {
∑

n∈N C
(n)
1
,
∑

n∈N C
(n)
2
, · · · ,

∑
n∈N C

(n)
K }

represents all available resources at different edge clouds.

Each edge cloud n has a set of native applicationsMn =

{1, 2, · · · ,Mn} that ask for resources. Furthermore, the set

of all applications that ask for resources from the set of

edge clouds (coalition of edge clouds) is given by M =

M1 ∪ M2 · · · ∪ MN , whereMi ∩ Mj = ∅, ∀i , j, i.e.,
each application asks only one edge cloud for resources. The

coalition controller receives a request (requirement) matrix

R(n) from every player n ∈ N

R(n) =

[ r(n)1
.
.
.

r(n)Mn

]
=

[ r (n)
11
· · · · · · r (n)

1K. . . .
. . . .
. . . .

r (n)Mn 1
· · · · · · r (n)MnK

]
(1)

where the ith row corresponds to the ith application while

columns represent different resources, i.e., ri j is the amount

of jth resource that application i ∈ Mn requests. The coali-

tion, based on R and C , has to make an allocation deci-

sion X that optimizes the utilities un(X) of all the edge

clouds n ∈ N . The allocation decision X is a vector X =

{X (1),X (2), · · · ,X (N )} that indicates how much of each re-

source k ∈ K is allocated to application i at edge cloud

n ∈ N . Mathematically,

X (n) =

[ x(n)1
.
.
.

x(n)
|M|

]
=

[ x (n)
11
· · · · · · x (n)

1K. . . .
. . . .
. . . .

x (n)
|M|1

· · · · · · x (n)
|M|K

]
(2)

where x (n)ik is the amount of resource k ∈ K belonging to

player n that is allocated to application i .

2.1 Optimization Problem
In this section, we first present the resource allocation prob-

lem for a single edge cloud (no resource sharing with other

edge clouds). Then we present the MOO problem for the

coalition. For a single edge cloud n ∈ N , the allocation

decision matrix X (n)SO , where SO stands for single objective

optimization, is given by

X (n)SO =
[
x(n)1 . . . x(n)Mn

] t
(3)

The optimization problem is given below:
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max

X (n)SO

un(X
(n)
SO ) (4a)

s.t.

∑
i ∈Mn

x (n)ik ≤ C(n)k , ∀k ∈ K, (4b)

x (n)ik ≤ r (n)ik , ∀ i ∈ Mn ,k ∈ K, (4c)

x (n)ik ≥ 0, ∀ i ∈ Mn ,k ∈ K . (4d)

The above optimization problem captures the goal of ev-

ery single edge cloud i.e., maximizing its utility by allocat-

ing its available resources to its native applications
3
. The

first constraint (4b) indicates that resources allocated to all

users i ∈ Mn cannot exceed capacity. The second constraint

(4c) indicates allocated resources cannot exceed required

resources while the final constraint (4d) requires the allo-

cations to be non-negative. For the cooperative case where

edge clouds work in cooperation with other edge clouds, we

aim to maximize the utility of our coalition in (5):

max

X

(
wnun(X) + ζn

∑
j ∈N, j,n

unj (X)
) ∀n ∈ N (5a)

s.t.

∑
i ∈M

x (n)ik ≤ C(n)k , ∀k ∈ K, ∀n ∈ N , (5b)∑
j ∈N

x (j)ik ≤ r (n)ik , ∀ i ∈ M,k ∈ K,n ∈ N , (5c)

x (n)ik ≥ 0, ∀ i ∈ M,k ∈ K,n ∈ N . (5d)

Here un(X) in (5) indicates the utility that an edge cloud

receives by providing its resources to applications inMn .

Remaining available resources at edge cloud n can be used

by applications of other edge clouds j ∈ N\n that will be

charged at a rate that edge cloud (each edge cloud acts as

a player in our cooperative game) j would have charged

the application i ∈ Mj had the request been satisfied by

edge cloud j. Hence unj (X) is the utility that edge cloud n
receives for sharing its resources with edge cloud j .wn is the

weight assigned to the utility of player n. ζn is the weight

assigned to the utility unj (X). The purpose of the weights is
to highlight that each edge cloud first allocates resources to

its own applications and then shares the remaining resources

with other edge clouds.

2.2 Game Theoretic Solution
The characteristic function v for our game that solves prob-

lem in (5) is given in (6). We model the resource allocation

and sharing problem (with multiple objectives) in the afore-

mentioned settings as a canonical cooperative game with

transferable utility. We choose a monotone non-decreasing
utility function for our resource allocation and sharing frame-

work. This is because in edge computing, the more resources

provided, the higher is the gain or utility for the edge cloud.

3
Applications that are primarily affiliated with the edge cloud.

It is highly unlikely that the utility of any edge cloud will de-

crease with an increase in the amount of resources allocated.

Since the utility function used is monotone non-decreasing,

the game is convex. The core of any convex game is large

and contains the Shapley value [6]. Our goal is to obtain an

allocation from the core as all allocations in the core guar-

antee Pareto optimality and stability of the grand coalition

i.e. the allocation decision obtained is Pareto optimal and

no player (edge cloud) will have the incentive to leave the

grand coalition. We first use the Shapley value, that requires

solving 2
N −1 optimization problems, to obtain an allocation

from the core and then propose a computationally efficient

algorithm that can provide us an allocation from the core

but does not provide the fairness of the Shapley value.

v(N) =
∑
n∈N

(
wnun(X) + ζn

∑
j ∈N, j,n

unj (X)

)
(6)

Algorithm 1 provides an overview of our proposed ap-

proach. We calculate the Shapley value for the players and

assign it to u(R,X). Finally to obtain X, we take the inverse

function of u. As we are using monotonic utilities, we know

that the inverses of the utilities exist. A fundamental issue

with the Shapley value is its complexity. This motivates de-

veloping a more efficient algorithm to obtain an allocation

from the core.

2.3 Reducing the Computational
Complexity

To reduce computational complexity, we propose an algo-

rithm (Algorithm 2) that requires solving only 2N optimiza-

tion problems rather than 2
N
.

Algorithm 1 Shapley Value based Resource Allocation

Input: R,C, and vector of utility functions of all players

u
Output: X
Step 1: u(R,X) ←0, X ←0, ϕ ←0,

Step 1: Calculate Shapley Value ϕn ∀n ∈ N
Step 2: u(R,X) ← ϕ
Step 3: X ← u−1

max

X

∑
j,n

unj (X) ∀n ∈ N (7a)

s.t.

∑
i ∈M\Mn

x (n)ik ≤ C(n)k , ∀k ∈ K, (7b)

x (n)ik ≤ R(n)ik , ∀ i ∈ M\Mn ,k ∈ K, (7c)

x (n)ik ≥ 0, ∀ i ∈ M\Mn ,k ∈ K . (7d)

Theorem 1. The solution obtained from Algorithm 2 lies
in the core.
Proof. We need to show that the utilities obtained in Step

5 of Algorithm 2: a) are individually rational. b) are group

rational, and c) no player has the incentive to leave the grand

coalition and form another coalition S ⊂ N .
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Algorithm 2 O(N ) algorithm for obtaining Core’s allocation

Input: R,C, and vector of utility functions of all players

u
Output: X
Step 1: u(R,X) ←0, X ←0,O1 ←0,O2 ←0,

Step 2:
for n ∈ N do

On
1
← Solution of the optimization problem

in Equation (4)

end for
Step 3: Update R,C based on Step 2

Step 4:
for n ∈ N do

On
2
← Solution of the optimization problem

in Equation (7) with updated R and C
Update R and C

end for
Step 5: un(R,X) ← On

1
+On

2
∀n ∈ N

Step 6: X ← u−1

Individual Rationality: For each player n ∈ N , the solution

On
1
obtained by solving the optimization problem in (4) is

the utility a player obtains by working alone i.e. it is v{n}.
The value On

2
in Step 4 is either zero or positive but cannot

be negative due to the nature of utility used i.e.

un(R,X) = O
n
1
+On

2
≥ On

1
, ∀n ∈ N .

Group Rationality: The value of the grand coalition v{N}
as per (6) is the sum of utilities un ’s and unj ’s. Steps 2, 4
and 5 of Algorithm 2 obtain the sum of the utilities as well.

Hence the solution obtained as a result of Algorithm 2 is

group rational. Furthermore, due to super-additivity of the

game and monotone non-decreasing nature of the utilities,

no player has the incentive to form a smaller coalition. Hence

Algorithm 2 provides a solution from the core. □

3 EXPERIMENTAL RESULTS
To evaluate the performance of the proposed resource shar-

ing and allocationmechanism,we consider a set of game play-

ers where each player has three different types of resources

i.e., storage, communication and computation. Without loss

of generality (W.l.o.g), the model can be extended to include

other types of resources/parameters as well. We present re-

sults for four different settings with 1) N = 3, Mn = 3, ∀n ∈
N ; 2) N = 3, Mn = 20, ∀n ∈ N ; 3) N = 3, Mn = 100, ∀n ∈
N ; and 4) N = 10, Mn = 20, ∀n ∈ N . We used linear and

sigmoidal utilities (see (8)) for all the players. However, the

results hold for any monotone non-decreasing utility.

un(X) =
∑
i ∈Mn

( K∑
k=1

1

1 + e−µ(x
(n)
ik −R

(n)
ik )

)
∀n ∈ N . (8)

Table 1: Utility (Pay-off) for different coalitions with
µ = 0.01,N = 3,Mn = 3

Coalition Player Utilities Coalition Utility
P1 P2 P3

{1} 36 0 0 36

{2} 0 4.37 0 4.37

{3} 0 0 4.31 4.31

{12} 40.17 4.375 0 44.545

{13} 40.31 0 4.313 44.623

{23} 0 8.68 8.68 17.37

{123} O(N ) 44.68 8.68 8.68 62.06

{123} (S.V.) 40.34 10.90 10.81 62.06

µ is chosen to be either 0.01 or 10 to capture the requirements

of different applications. The request matrixR(n) and capacity
vector C(n) for each player n ∈ N were randomly generated.

The experiments were run in Matlab R2016b on Core-i7
processor with 16 GB RAM. The optimization problems were

solved using the OPTI-toolbox.

3.1 Value of Coalition
Table 1 shows the utilities of different players in a 3 player-3

application setting. Player one was assigned a linear util-

ity while player two and three had sigmoidal utilities. It is

evident from the table that the utility of the coalition im-

proves when more players are added. The grand coalition

has the highest utility, verifying the superadditive nature

of the game. The last row shows the Shapley Values (S.V.)

for the grand coalition. Our O(N ) (alg2 in Figure 1) provides

the same value of coalition as Shapley value (due to Pareto

optimality), however players are assigned different utilities

in the coalition. Figure 1 shows the value of coalition for

3 players, and 3, 10 and 100 applications with µ set to 0.01
and 100. The grand coalition achieves the highest coalition

utility for all three cases. As a higher value of µ (i.e., the

slope of the sigmoidal function is steep) puts a stringent

requirement on the edge clouds to satisfy requests of the

applications if it is to gain any utility, we see that that the

overall value of coalition is smaller for µ = 10 when com-

pared with µ = 0.01. Figure 2 shows the utility of a player

without resource sharing and with resource sharing in the

grand coalition in varying experimental settings (µ = 0.01,
µ = 10, Mn = 20, and Mn = 100). We show the utility of

the player in the grand coalition both using Shapley value

(SV) and our O(N ) algorithm (alg2 in Figure). Similar trends

are observed in Figure 3. However, we do not calculate the

Shapley value for N = 10 andMn = 20 due to the computa-

tional complexity and the utility of the players in the grand

coalition is obtained using Algorithm 2. It is evident that

all the players’ utilities improve by sharing resources and

taking part in the cooperative game.
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Figure 1: Value of Coalition for 3 players, and 3, 20 and
100 applications with µ = 0.01 and µ = 10
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Figure 2: Utilities in different settings without and
with resource sharing in grand coalition for N = 3

3.2 Time complexity
Computational complexity of the Shapley value is high, which

is why it cannot be used for a large number of players. We

compared the performance of our O(N ) algorithm with the

Shapley value based allocation (given in Algorithm 1) in a

3-player game with different number of applications. Experi-

mental results showed that Algorithm 2 reduces the compu-

tation time by as large as 71.67% and as small as 26.6% while

the average improvement was about 49.75%. Figure 4 shows

the calculation time for different user-application settings

with varying µ. We see that in all the settings, our proposed

algorithm outperforms the Shapley value based allocation.

4 CONCLUSIONS
We proposed a cooperative game theory based resource al-

location and sharing framework for edge computing that

can efficiently allocate resources to different applications
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300

U
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No sharing ( =0.01) Grand coalition ( =0.01) No sharing ( =10) Grand coalition ( =10)

Figure 3: Player utilities with and without resource
sharing in grand coalition for N = 10 andM = 20

3-3 3-20
Player-Applications

0

100

200

300

400

500

600

T
im

e
 (

s
e

c
o

n
d

s
) S.V. with  =0.01

Algorithm 2 with  =0.01

S.V. with  =10

Algorithm 2 with  =10

3-100

Player-Applications

0

1

2

3

4

T
im

e
 (

s
e

c
o

n
d

s
)

10
4

S.V. with  =0.01

Algorithm 2 with =0.01

S.V. with  =10

Algorithm 2 with  =10

Figure 4: Comparison of time Complexity
affiliated with edge clouds. Our resource allocation and shar-

ing game is canonical and convex. The core for the game is

non-empty, hence the grand coalition is stable and Shapley

value also lies in the core. Furthermore, due to computational

complexity of calculating Shapley value, we presented an

O(N ) algorithm that can provide an allocation and sharing

decision from the core. Experimental results showed that

edge clouds can improve their utility by using our proposed

resource allocation mechanism and our O(N ) algorithm can

provide us an allocation from the core (guarantee of Pareto

optimality and stability) in a shorter time than the Shapley

value.
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