

Abstract— A new recurrent neural network model which has

the ability to learn quickly is explored to devise a load

forecasting and management model for the highly fluctuating

load of London. Load forecasting plays an significant role in

determining the future load requirements as well as the growth

in the electricity demand, which is essential for the proper

development of electricity infrastructure. The newly developed

neuro-evolutionary technique called Recurrent Cartesian

Genetic Programming evolved Artificial Neural Networks

(RCGPANN) has been used to develop a peak load forecasting

model that can predict load patterns for a complete year as well

as for various seasons in advance. The performance of the

model is evaluated using the load patterns of London for a

period of four years. The experimental results demonstrate the

superiority of the proposed model to the contemporary

methods presented to date.

Index Terms— Load Forecasting, Neural Networks,

Cartesian Genetic Programming, Neuro-evolution, Recurrent

Neural Networks, Time Series Prediction.

I. INTRODUCTION

he cost of electricity which a subscriber must pay is

determined by various factors that are generally

classified in terms of generation and distribution costs.

The generation cost depends on both the means adopted for

generation and the generation efficiency. The efficiency

refers to maintaining balance between the demand and the

generation of electricity by making sure that the generation

is neither in excess nor less than the demand. Load

forecasting is used to attain the balance between the demand

and electricity generation which makes it an essential tool

for the modern electricity system.

Load forecasting can be divided into three major categories:

short-term forecasts (ranging from hourly to weekly basis)

medium forecasts (weekly to one year), and long-term

forecasts (more than a year) [1].

Energy storage on a large scale, even in modern times, is

considered impractical and inefficient. The production

therefore is maintained at a level to fulfill the demand, while

simultaneously considering the increase in future demands

of the electricity. This makes load forecasting extremely

important as it allows for efficient planning of electricity

supply from the power stations with future load increase in

consideration.

Various methods have been adopted to tackle the problem

such as statistical analysis methods of time series analysis

[2], Box Jenkins [3], linear regression and exponential

damping in order to produce a forecasting model which is

capable of predicting load forecasts years in advance. The

data collected can not only be used for maintaining

efficiency but for planning, dynamic market pricing and

maintenance as well. Adaptive load forecasting techniques

have also been developed that automatically change

according to the varying load conditions. Artificial

Intelligence (AI) based methods such as fuzzy logic system,

expert systems and artificial neural networks (ANNs) are the

most widely used approaches to load forecasting. Neural

network methods, in particular, have been used in different

hybrid approaches to develop an efficient load forecasting

model.

This paper utilizes Cartesian Genetic programming (a type

of evolutionary programming) to develop a Recurrent Neural

Network (RNN) model with the major objective being the

prediction of peak loads for the next day in advance using

the historical load data of the last 10 days.

Section 2 describes a thorough literature review, that include

a review of Computational Intelligence techniques for load

forecasting, NeuroEvolution, Cartesian Genetic

Programming (CGP), CGP evolved Artificial Neural

Networks (CGPANN), Recurrent Neural Network (RNN)

and Recurrent CGPANN in detail. Section 3 discusses the

use of RCGPANN for load forecasting. Section 3 also

highlights the experimental setup, along with the acquired

results and analysis. The conclusion along with the possible

future work is discussed in section 4.

II. LITERATURE REVIEW

A. Computational Intelligence Techniques for Load

Forecasting

Genetic algorithms have been used in load forecasting to

optimize the parameters that determine the forecast. Abbas

et al. used SVM models totaling a number of seven models

for the prediction of daily peak load demand [4]. Xu Tao et

al. used Support Vector Machines for predicting short term

load. A vector regression combined with a local prediction

framework in a hybrid approach for load forecasting is

suggested in El Atar et al. [5].

Artificial Neural Networks have also been used for load

forecasting as they provide the capability of learning and can

deal with the non-linear relationship nature between load

and effects of the historical data. Pang Qingle et al. [6]

suggested a neural network based on rough set. An ANN,

Gul Muhammad Khan Atif Rashid Khattak Faheem Zafari Sahibzada Ali Mahmud

Electrical Load Forecasting using Fast Learning

Recurrent Neural Networks

T

Gul Muhammad, Atif Rashid Khattak, Faheem Zafari, and Sahibzada Ali

Mahmud are with Centre for Intelligent Systems and Network Research,

Electrical Engineering Department, UET Peshawar Pakistan (email:

{gk502, atif.r.khattak, fahim.zafari, sahibzada.mahmud}@nwfpuet.edu.pk).

which used 2 renowned algorithms known as Multi-Layer

Perception (MLP) and Radial Basis Function (RBF) for

forecasting the peak value of load without using the weather

data is utilized in [7]. They concluded that better results

were obtained using the MLP in their forecasting system.

Using analyzable structure ANN for peak load forecasting as

well as forecasting using scatter search based weighted

average weather conditions is suggested in [8] [9]. Koushki

et al. achieved Short-Term Load Forecasting (STLF) using a

Local Linear Neuro-Fuzzy model [10]. 2 different non

parametric procedures are combined to train the ANN

structure and decide on the input for STLF in [11]. Mao et

al. combined a self-organizing fuzzy neural network

(SOFNN) learning method with a bi-level optimization

method for their prediction model [12]. Khan et al. used

Feed forward structure of CGPANN for short term load

forecasting [13]. Bukhari et al. used ANN for the

development of a STLF model for a 132/33Kv Sub Station

[14].

The accuracy of an algorithm is usually determined using the

Mean Absolute Percentage Error (MAPE). MAPE is

generally considered an international standard to determine

the performance of a load forecasting algorithm. It is given

by:

Where

LF = Forecasted Load

LA = Actual Load and,

N = Number of Season Days.

B. Neuro-Evolution (NE)

It is the process of incorporating artificial evolution

techniques with the artificial neural networks. Different

ANN aspects such as topology, node function and

connection weights are evolved in NE. The genotype

represents the network in the form of the array of numbers

and the phenotype is the ultimate network. The desired

characteristics of the phenotype are achieved through

sustained evolution. It is possible to simultaneously evolve

various parameters, but usually only a few parameters of the

network are entertained (evolved). Evolving only the

weights restricts the network’s solution space. It is believed

that in a restricted environment, novel solutions are not

achievable. Therefore a range of methods have been devised

in NE that evolve weights, topology or even both. This was

further explained by Xin, Yao [15] who elaborated through

experimentation that evolving both the topology and the

weight produce better results than evolving either

independently. In Symbiotic, Adaptive Neural Evolution

(SANE) a population of neurons is evolved to form a neural

network for a sequence oriented decision task [24]. Both the

Cooperation and specialization in the population are

promoted in this type of evolution, which results in a

prompt, efficient genetic search and does not allow the

network to converge to an inefficient solution [16]. Enforced

Sub-Population (ESP) is the extension of SANE. In ESP a

hidden layer subpopulation of neurons is evolved [17].

Neuro-evolution of Augmenting Topologies (NEAT)

addressed three major problems in neuro-evolution which

were: keeping track of genes that allows for crossover

flexibility, speciation along with evolution from a simple

structure and the subsequent complexification with the

passage of time [23]. Performance wise NEAT is considered

a major innovation. Lin Chen [18] proposed a hybrid

extension to NEAT called Learning-NEAT. L-NEAT

divides tasks into sub tasks which are then learned by

incorporating back propagation into NEAT algorithm

C. Cartesian Genetic Programming (CGP)

Cartesian Genetic Programming is an innovative form of

genetic programming that was introduced by Miller and

Thompson [21]. It was initially aimed at the evolution of

digital circuits. In CGP, the genotype has nodes represented

in the form of genes (integer numbers). Each node has inputs

and a function. The inputs can be programmed inputs and

the outputs of each node can also act as an input to some

other node. An activation function is also used which can be

any mathematical function i.e. OR, AND, Sigmoid, Tangent-

Hyperbolic, Step, Linear etc. The system output can be the

output of any node in the genotype, indeed a system input

can be an output as well. The genotype is an array of

integers with a finite length, which is also called the

chromosome. Mutation of either the node functions or the

connection genes yields offspring.

 The phenotype (the ultimate system) is yielded by following

the referenced ordered links which exist in the graph . It

means that the genes which form a path between the input

and output are selected. In this process many genes are

discarded (also termed as non-coding genes).

D. Cartesian Genetic Programming evolved Artificial

Neural Network (CGPANN)

CGPANN is a neuro evolutionary technique known for

providing much faster learning in comparison to various

other neuro-evolution techniques [21]. CGPANN is based on

CGP in which the nodes are replaced with artificial neurons

that have weighted connections and non-linear activation

functions. All attributes of neural networks such as its

weights, topology, and node functions are encoded into

genotype. The mentioned parameters are then evolved to the

point where the best combination is achieved.

The evolutionary strategy (1+ λ) is used for generating the

offspring. The mutation rate is set at 10% which means only

10 % of the genes are mutated to produce offspring. The

inputs can be initial (program inputs) or intermediate (output

of the program). The weights are generated randomly

(ranging from -1 to +1) which are multiplied with inputs and

summed up for each node. The output can be a subsequent

input, the output of the program or any node.

 E. Recurrent Neural Networks (RNNs)

RNN have a very dynamic behavior which makes them

special neural networks. They differ from the feed forward

neural networks due to the presence of feedback path (s)

from the output back into the system as an input. The

feedback path can exist for a single neuron as well as for a

whole layer. The presence of feedback improves the

learning ability of the network hence providing better

results. The feedback paths are divided into various branches

along with the presence of unit delay systems. This produces

a non-linear dynamic behavior because of non-linear nature

of neurons [31], which assists the recurrent neural networks

in its storage function. Recurrent networks are sensitive and

adaptive to the inputs from the past. In terms of modeling

and controlling the non-linear systems, RNNs perform far

superior to the feed forward neural networks. RNNs uses

the temporal information of applied inputs for efficient

prediction and classification. After the training, the

interrelationship between the current inputs and internal

states is processed for producing the output. The process of

learning is a supervised process, in which the target value

acts as the second source of information. The relevant

interrelations in the input sequence are also highlighted by

the target values. Time series is provided as an input to

RNNs, however the target is either a trivial or non-trivial

time series.

Units in an RNN form a directed cycle that produces a state

of networking that is internal in nature, allowing it to exhibit

dynamism [19]. These networks unlike feed-forward can

process arbitrary sequence inputs due to their ability to

access internal memory. RNN are applied in a wide variety

of applications that vary from control automation to

manufacturing, detection, time series prediction etc [25].

 F. Recurrent Cartesian Genetic Programming evolved

Artificial Neural Network (RCGPANN)

The significance of recurrent neural networks cannot be

denied due to its capability in addressing a broader spectrum

of dynamic and non-linear systems. Recurrent Cartesian

Genetic Programming evolved artificial neural network was

proposed by Khan et al. [29]. The algorithm is based upon

using Cartesian Genetic Programming to evolve recurrent

neural networks. The main characteriastics of this network is

that it utilizes feedback path(s) from the output which is fed

back as the input(s). RCGPANN uses direct encoding

method by encoding the weights and topology function into

the genotype. The genotype is then evolved until the

optimum function, weights and topology are obtained. In

RCGPANN, the offspring are produced using 1+ λ principal

and the value of λ is chosen to be 9.

Since RCGPANN is based upon TWEANN, it tends to act

both constructive and destructive. During the evolution of

the topological features, many new features might be added

while old features might be removed. Mutation is used for

the evolution of weights, functions, connection types, inputs

and outputs. The connections which might be disabled due

to mutation are not entirely removed, and are indeed saved

so that they might be used in future generations.

One of the characteriastics of RCGPANN is that the neurons

in RCGPANN are not totally connected and the inputs are

not supplied to the neurons present in the input layer. Hence

the topologies produced by RCGPANN are cost effective

and efficiently timed.

Also, all the input layer neurons are not supplied with

program inputs. This feature allows RCGPANN to produce

topologies which is efficient in terms of timing and hardware

implementation [30]. The genotype of a RCGPANN is

made up of nodes which represent the ANN neurons. The

inputs into each nodes belong to 3 different classes: inputs

fed back from the output, the program inputs and the inputs

from the previous nodes. The inputs may be recurrent or

system inputs in the first layer of the RCGPANN genotype.

However, the presence of feedback path(s) in other layers is

dependent upon the fact whether selecting the feedback

input, which is the node input, is random or not. Nodes are

also either connected or disconnected provided that the

connection value is either one or zero respectively. The

weights assigned to the connections are randomly generated

between -1 and +1, however the value of the weight of

feedback input is always taken as +1. The activation

functions which may be a sigmoid, linear, tangent

hyperbolic functions; acts on the sum of the multiple of

inputs and the weights of the connected inputs. The output at

each nodes depends upon the activation functions.

The output obtained from the node is then either used as the

output of the system or used an input to some other node.

The genotype’s output is taken from either a node output or

program input. The genotype’s output can also be used as a

recurrent input.

The obtained RCGPANN genotype is continuously evolved

until a desired level of fitness is achieved. The connections

and state units weights are not mutated. The obtained

genotype is then transformed into the RNN [29].

Fig 1(a) shows a RCGPANN node with weights, connection

inputs, output and functions. Fig 1(b) represents inside views

for the node shown in (a). I1 and I2 are the system inputs

while R is the recurrent input which is fed back as input

from the output. The inputs are multiplied with

corresponding weights and are summed up. The activation

function acts on the sum and produces the corresponding

output. Fig 1(c) shows a general RCGPANN phenotype

structure of a 3 input network the inputs being I0 , I1 and I2

and three activation functions F0 , F1 and F2. The genotype

is represented by

[R, WR1, I2, W21,F2, I0, W02, I2, W22, F1, I1, W13, R, WR3, F2

I0, I5, I4]

RCGPANN Neuron or
Node with Activation

Function
3

I1,W13 , C13

I2,W23 , C23

R,WR3 , CR3

a)

b)

Output 3

X

X

X

I1

W13

 C13

 C23

 CR3
R

I2

W23

WR3

Activation
Funciton

Io

I1

I2

F2 F1 F2

Oo

O1

O2

F0

WR1 WR3

W21

W02

W22

I3

I4

I5c)

W2R

W1R

W0RFeedback

W12

Figure 1: (a) RCGPANN node having two inputs (b) Internal View of

RCGPANN for node in (a). (c) General RCGPANN phenotype

structure.

III. RCGPANN APPLICATION FOR LOAD FORECASTING

A. Experimental Setup

For the experiment, the diurnal peak load (historical

consumption data) is used as single input variable. The data

of a complete year has been used for training the model.

Initially, a population of 10 RCGPANN networks is

produced. The number of inputs per node is selected to be 5.

The Mutation rate to be used is 10% as it results in fast

learning. Log-sigmoid function is chosen to be the activation

function for producing the output. The number of

RCGPANN rows is one; hence the number of columns and

number of nodes are equal. After applying the inputs, its

MAPE is calculated for every network generated and then

compared with each other to select the network with

optimum MAPE value. The selected network is used as the

parent genotype for the next generation. The fittest genotype

is mutated to generate further nine networks. This process

continues until:

 Generation limit is attained

 The MAPE value becomes zero.

Ten independent evolutionary runs are performed for ten

different network sizes, whereas each run is for 1-million

generations which took 24 hours per run on each core-i7

cluster.

B. Results and Analysis

The RCGPANN network’s performance was evaluated using

the historical load data of United Kingdom National Grid

which is in charge of maintaining the high-voltage electricity

transmission system across Great Britain. Peak load

information was extracted from the data which was

originally collected as hourly load data. The annual as well

as the seasonal data of 4 years was utilized. The data is

highly fluctuating which makes it tedious to accurately

predict the peak load. The data from the year 2006 was used

for training purposes and the testing was done on data

pertaining to the years 2007, 2008 and 2009. MAPE was

used as the performance criterion. Subsequently, the

genotype that exhibited the best fitness level was translated

to a phenotype and then testing was performed for 2007,

2008 and 2009 on seasonal as well as annual basis.

The training along with testing was done repeatedly while

the network size was varied from 50, 100, 150, 200, 250,

300, 350, 400, 450, and 500 nodes. The final phenotype

necessarily doesn’t use all nodes of the network. Generally

the phenotype is produced using only 5-10% nodes. Table I

shows the training results in terms of different number of

nodes. This shows the overall efficiency of the training

process for the year 2006. The RCGPANN network with

100 and 250 nodes provide the optimum MAPE values.

Table II shows the testing results of predictions for the year

2007, 2008, 2009 and independently for seasons of each

year. In the annual results, the best result is obtained for the

year 2008 for the networks of 100 and 250 nodes having a

MAPE of only 2.19 percent; whereas for seasonal results,

the best results are obtained for the autumn season. A MAPE

value as low as 1.56 percent has been achieved. Table III

shows a comparison of contemporary networks in terms of

MAPE. The results produced by the RCGPANN are better in

terms of prediction accuracy thus proving it's capability of

accurate forecasting. This is because of the presence of the

presence of feedback path and CGP algorithm. As stated

earlier, the presence of the feedback enhances the ability of

the network to learn quickly, so the proposed model

outperforms all its predecessors.

Table I. Training

Results for Various Node Numbers (Neurons) scenario trained on the daily peak load for 2006, predicting 11th day load from the ten

day's load data history.

Table II. Testing Results for Various Node Numbers (Neurons) scenarios for Various seasons of three years and yearly prediction.

Table III. Comparison of RCGPANN with other methods

IV. CONCLUSION AND FUTURE WORK

A Neuro-evolutionary technique called RCGPANN was

used in this paper for daily peak load forecasting. The load

data acquired was used to train the Artificial Neural

Network for forecasting based on quarterly and annual basis

and subsequently testing was done for peak load

forecasting. The testing result shows that in comparison to

previous models, RCGPANN produces more accurate

results. Since the only input to the learning model is that of

the peak load, in the future, other factors such as

environmental conditions can be incorporated as inputs to

produce even more Accurate results.

ACKNOWLEDGMENTS: The authors would like to

express their gratitude for the generous funding and

resources provided by the National ICT R & D Fund

Pakistan.

REFERENCES

[1] S.A. Soliman, A.M Al-Kandari, “Electrical Load Forecasting:

Modeling and Model Construction” British library Cataloging,

2010.

[2] J. Deng, and P.Jirutitijaroen, “Short-Term Load Forecasting

Using Time Series Analysis: A Case Study for Singapore.” In

proceedings of the 4th IEEE CIS & RAM 2010 - Session TA.

[3] T.GÖNEN, "Load Forecasting using Box-Jenkins Methodology

", COMPEL: The International Journal for Computation and

Mathematics in Electrical and Electronic Engineering, Vol. 3

Issue: 1, pp.35 – 46, 1984.

[4] S. Abbas and A. M, “Electric load forecasting using support

vector machines optimized by genetic algorithm.” In Proc.

CIMCA ’05, pages 395–399, 2006

[5] E. E. El-Attar, J. Goulemas, Q. Wu, “Forecasting electric daily

peak load based on local prediction.” In Power and Energy

Society General Meeting, pages 1–6, 2009.

[6] P. Qingle, Z. Min. “Very short-term load forecasting based on

neural network and rough set.” In Proc. ICICTA ’10, pages

1132–1135, 2010.

Training Results: MAPE for various Node Numbers (Year-2006)

Model 50 100 150 200 250 300 350 400 450 500

MAPE 2.43 2.41 2.43 2.42 2.41 2.44 2.43 2.47 2.45 2.44

Testing Results: MAPE for Various Node Numbers

Model Year 50 100 150 200 250 300 350 400 450 500

Annual 2007 2.54 2.53 2.54 2.53 2.52 2.56 2.56 2.59 2.56 2.56

2008 2.21 2.19 2.21 2.20 2.19 2.22 2.21 2.25 2.23 2.21

2009 2.36 2.35 2.37 2.36 2.35 2.38 2.39 2.38 2.36 2.37

Autumn 2007 2.04 2.04 2.02 2.01 1.99 2.02 2.01 2.09 2.03 2.03

2008 2.02 2.02 1.99 1.98 1.97 2.04 2.03 2.08 2.03 2.06

2009 1.59 1.62 1.57 1.56 1.58 1.65 1.69 1.73 1.64 1.67

Winter 2007 2.75 2.71 2.72 2.72 2.69 2.78 2.73 2.79 2.77 2.78

2008 4.05 4.02 4.03 4.02 4.01 4.09 4.06 4.07 4.05 4.11

2009 3.36 3.35 3.35 3.34 3.34 3.39 3.41 3.36 3.34 3.41

Summer 2007 1.60 1.57 1.60 1.60 1.58 1.60 1.58 1.64 1.63 1.57

2008 1.83 1.80 1.83 1.83 1.81 1.85 1.83 1.89 1.88 1.82

2009 1.96 1.90 1.97 1.96 1.91 1.94 1.90 1.95 1.96 1.90

Spring 2007 3.02 3.02 3.05 3.05 3.04 3.10 3.17 3.07 3.05 3.10

2008 2.24 2.24 2.25 2.25 2.25 2.25 2.28 2.24 2.24 2.25

2009 2.63 2.65 2.66 2.67 2.67 2.62 2.66 2.59 2.59 2.62

Method MAPE Reference

Local Linear Model Tree 1.98% [10]

Support Vector Machine 1.93% [4]

Autonomous ANN 1.75% [11]

Floating Search +SVM 1.70% [20]

CGPANN 1.71% [13]

ANN-Back Propagation 2.41% [26]

GA based Adaptive ANN 1.94% [27]

RCGPANN 1.56% Implemented

Algorithm

[7] M. Ghomi, M. Goodarzi, M. Goodarzi, “Peak load forecasting

of electric utilities for west province of Iran by using neural

network without weather information.” In Proc. UKSIM ’10,

pages 28–32, 2010.

[8] T. Matsui, T. Iizaka, Y. Fukuyama,. “Peak load forecasting

using analyzable structured neural network.” IEEE Power

Engineering Society Winter Meeting, 2:405, 2002.

[9] M. Kobayashi, T. Yukawa, Y. Kuze, T. Matsui, T. Iizaka, Y.

Fukuyama, "Electric Load Forecasting using Scatter Search

Based Weighted Average Weather Conditions," International

Joint Conference on Neural Network '06. 2006. IJCNN.

[10] A. Koushki, M. maralloo, B. Hashemitabar, C. Lucas, “Load

forecasting with the aid of neuro-fuzzy modeling.” In

Proceeding of Seventh International Conference on CSIT,

2009.

[11] V.H. Ferreira, A.P da Silva, "Toward Estimating Autonomous

Neural Network-Based Electric Load Forecasters," IEEE

Transactions on Power Systems, vol.22, no.4, pp.1554-1562,

Nov. 2007

[12] M.Huina, X.J.Zeng, G. Leng, Y.J. Zhai, J.A. Keane, "Short-

Term and Midterm Load Forecasting Using a Bi-level

Optimization Model," IEEE Transactions on Power Systems,

vol.24, no.2, pp.1080-1090, May 2009.

[13] G.M. Khan, S. Khan, F. Ullah , "Short-term daily peak load

forecasting using fast learning neural network," 11th

International Conference on Intelligent Systems Design and

Applications (ISDA), 2011 , vol., no., pp.843-848, 22-24 Nov.

2011

[14] M. Buhari, S.S.Adam, “Short Term load forecasting using

artificial Neural Networks ,” Proceeding of International

MultiConference of Engineering and Computer Scientists 2012

Vol I, IMECS 2012 March 14-16 2012 , Hong Kong.

[15] X. Yao “ Evolving artificial neural networks.” In Proceedings

of the IEEE, volume 87(9), pages 1423–1447, 1999.

[16] D. E. Moriarty, “Symbiotic Evolution Of Neural Networks In

Sequential Decision Tasks.” PhD Thesis Department of

Computer Sciences, The University of Texas at Austin, 1997.

117. Technical.

[17] F. J. Gomez, R. Miikkulaine “Solving Non-Markovian Control

Tasks with Neuroevolution (1999)” In Proceedings of the 16th

International Joint Conference on Artificial Intelligence

[18] C. Lin, D. Alahakoon, "NeuroEvolution of Augmenting

Topologies with Learning for Data Classification,"

International Conference on Information and Automation,

2006. ICIA 2006., vol., no., pp.367-371, 15-17 Dec. 2006.

[19] M. Graves, S. Liwicki, R. Fernandez, H. Bertolami, J. Bunke, J.

Schmidhuber, “A Novel Connectionist System for Improved

Unconstrained Handwriting Recognition.” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 31, no. 5,

2009.

[20] X. Tao, H. Renmu, W. Peng, D. Xu. “Input dimension

reduction for load forecasting based on support vector

machine.” In IEEE DRPT Conference, pages 510–513, 2004.

[21] M. M. Khan, G. M. Khan, and J. F. Miller, “Evolution of neural

networks using cartesian genetic programming.” In IEEE

CEC’10, pages 1–8, 2010.

[22] J. F. Miller, P. Thomson. “Cartesian genetic programming.” In

Proc. of the 3rd European Conf. on Genetic Programming,

volume 1802, pages 121–132, 2000.

[23] K. O. Stanley, R. Miikkulainen (2002). "Evolving Neural

Networks Through Augmenting Topologies". Evolutionary

Computation 10 (2): 99–127.

[24] D. E. Moriarty, Risto Miikkulainen “Efficient Reinforcement

Learning Through Symbiotic Evolution” Recent Advances in

Reinforcement Learning, I94-224.

[25] P. A. Mastorocostas, I. B. Theocharia, “A stable learning

algorithm for block-diagonal recurrent neural networks:

Application to the analysis of lung sounds.” IEEE Trans. on

Systems, Man, and Cybernetics, Part B, 36(2):242–254, 2006.

[26] L. Khan, K. Javed, S. Mumtaz, "ANN Based Short Term Load

Forecasting Paradigms for WAPDA Pakistan", Australian

Journal of Basic and Applied Sciences, 2010.

[27] J.H. Park, Y.M. Park, K.Y. Lee, “Composite Modeling for

Adaptive Short-Term Load Forecasting”, IEEE Transactions on

Power Systems, Vol. 6, Issue 2, pp. 450-57, May 1991.
[28] P. Smyth, D. Heckerman, M. Jordan, “Probabilistic

Independence Networks for Hidden Markov Probability

Models.” Neural Computation, 9:227–269, 1996.
[29] M. M. Khan, G. M. Khan, and J. F. Miller, “Efficient

representation of recurrent neural networks for markovian/non-

markovian non-linear control problems” In proceeding of: FIT

'10, 8th International Conference on Frontiers of Information

 Technology, Islamabad, Pakistan, December 21-23, 2010.

[30] A. N. Refenes, M. Azema-Barac, L. Chen, and S. A.

Karoussos, “Currency Exchange Rate Prediction and Neural

Network Design Strategies,” Neural Computing &

Applications, vol. 1, no. 1, pp. 46-58, Mar. 1993.

[31] S.F. Toha, M.O. Tokhi, “MLP and Elman Recurrent Neural
Network modeling for the TRMS” 7th International Conference

on Cybernetic Intelligent Systems, pp. 1-6, 2008

