
 

 

Abstract— A new recurrent neural network model which has 

the ability to learn quickly is explored to devise a load 

forecasting and management model for the highly fluctuating 

load of London. Load forecasting plays an significant role in 

determining the future load requirements as well as the growth 

in the electricity demand, which is essential for the proper 

development of electricity infrastructure. The newly developed 

neuro-evolutionary technique called Recurrent Cartesian 

Genetic Programming evolved Artificial Neural Networks 

(RCGPANN) has been used to develop a peak load forecasting 

model that can predict load patterns for a complete year as well 

as for various seasons in advance. The performance of the 

model is evaluated using the load patterns of London for a 

period of four years. The experimental results demonstrate the 

superiority of the proposed model to the contemporary 

methods presented to date. 

 
Index Terms— Load Forecasting, Neural Networks, 

Cartesian Genetic Programming, Neuro-evolution, Recurrent 

Neural Networks, Time Series Prediction. 

 

I. INTRODUCTION 

he cost of electricity which a subscriber must pay is 

determined by various factors that are generally 

classified in terms of generation and distribution costs.  

The generation cost depends on both the means adopted for 

generation and the generation efficiency. The efficiency 

refers to maintaining balance between the demand and the 

generation of electricity by making sure that the generation 

is neither in excess nor less than the demand. Load 

forecasting is used to attain the balance between the demand 

and electricity generation which makes it an essential tool 

for the modern electricity system.  

Load forecasting can be divided into three major categories: 

short-term forecasts (ranging from hourly to weekly basis) 

medium forecasts (weekly to one year), and long-term 

forecasts (more than a year) [1]. 

Energy storage on a large scale, even in modern times, is 

considered impractical and inefficient. The production 

therefore is maintained at a level to fulfill the demand, while 

simultaneously considering the increase in future demands 

of the electricity. This makes load forecasting extremely 

important as it allows for efficient planning of electricity 

supply from the power stations with future load increase in 

consideration.  

 

 

 
  
 

 

Various methods have been adopted to tackle the problem 

such as statistical analysis methods of time series analysis 

[2], Box Jenkins [3], linear regression and exponential 

damping in order to produce a forecasting model which is 

capable of predicting load forecasts years in advance. The 

data collected can not only be used for maintaining 

efficiency but for planning, dynamic market pricing and 

maintenance as well. Adaptive load forecasting techniques 

have also been developed that automatically change 

according to the varying load conditions. Artificial 

Intelligence (AI) based methods such as fuzzy logic system, 

expert systems and artificial neural networks (ANNs) are the 

most widely used approaches to load forecasting. Neural 

network methods, in particular, have been used in different 

hybrid approaches to develop an efficient load forecasting 

model. 

This paper utilizes Cartesian Genetic programming (a type 

of evolutionary programming) to develop a Recurrent Neural 

Network (RNN) model with the major objective being the 

prediction of peak loads for the next day in advance using 

the historical load data of the last 10 days.  

Section 2 describes a thorough literature review, that include 

a review of Computational Intelligence techniques for load 

forecasting, NeuroEvolution,  Cartesian Genetic 

Programming (CGP),  CGP evolved Artificial Neural 

Networks (CGPANN), Recurrent Neural Network (RNN) 

and Recurrent CGPANN in detail. Section 3 discusses the 

use of RCGPANN for load forecasting. Section 3 also 

highlights the experimental setup, along with the acquired 

results and analysis. The conclusion along with the possible 

future work is discussed in section 4.  

 

II. LITERATURE REVIEW 

A. Computational Intelligence Techniques for Load 

Forecasting 

Genetic algorithms have been used in load forecasting to 

optimize the parameters that determine the forecast.  Abbas 

et al. used SVM models totaling a number of seven models 

for the prediction of daily peak load demand [4]. Xu Tao et 

al. used Support Vector Machines for predicting short term 

load. A vector regression combined with a local prediction 

framework in a hybrid approach for load forecasting is 

suggested in El Atar et al. [5]. 

Artificial Neural Networks have also been used for load 

forecasting as they provide the capability of learning and can 

deal with the non-linear relationship nature between  load 

and effects of the historical data. Pang Qingle et al. [6] 

suggested  a neural network based on rough set. An ANN, 
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which used 2 renowned algorithms known as Multi-Layer 

Perception (MLP) and Radial Basis Function (RBF) for 

forecasting the peak value of load without using the weather 

data is utilized in [7]. They concluded that better results 

were obtained using the MLP in their forecasting system. 

Using analyzable structure ANN for peak load forecasting as 

well as forecasting using scatter search based weighted 

average weather conditions is suggested in [8] [9]. Koushki 

et al. achieved Short-Term Load Forecasting (STLF) using a 

Local Linear Neuro-Fuzzy model [10].  2 different non 

parametric procedures are combined to train the ANN 

structure and decide on the input for STLF in [11]. Mao et 

al. combined a self-organizing fuzzy neural network 

(SOFNN) learning method with a bi-level optimization 

method for their prediction model [12]. Khan et al. used 

Feed forward structure of CGPANN for short term load 

forecasting [13]. Bukhari et al. used ANN for the 

development of a STLF model for a 132/33Kv Sub Station 

[14]. 

 

The accuracy of an algorithm is usually determined using the 

Mean Absolute Percentage Error (MAPE). MAPE is 

generally considered an international standard to determine 

the performance of a load forecasting algorithm. It is given 

by:  

 

     
 

 
         

       

  
      

 

 

Where  

LF = Forecasted Load 

LA = Actual Load and, 

N = Number of Season Days. 

 

B. Neuro-Evolution (NE) 

It is the process of incorporating artificial evolution 

techniques with the artificial neural networks. Different 

ANN aspects such as topology, node function and 

connection weights are evolved in NE. The genotype 

represents the network in the form of the array of numbers 

and the phenotype is the ultimate network. The desired 

characteristics of the phenotype are achieved through 

sustained evolution. It is possible to simultaneously evolve 

various parameters, but usually only a few parameters of the 

network are entertained (evolved). Evolving only the 

weights restricts the network’s solution space. It is believed 

that in a restricted environment, novel solutions are not 

achievable. Therefore a range of methods have been devised 

in NE that evolve weights, topology or even both. This was 

further explained by Xin, Yao [15] who elaborated through 

experimentation that evolving both the topology and the 

weight produce better results than evolving either 

independently. In Symbiotic, Adaptive Neural Evolution 

(SANE) a population of neurons is evolved to form a neural 

network for a sequence oriented decision task [24]. Both the 

Cooperation and specialization in the population are 

promoted in this type of evolution, which results in a 

prompt, efficient genetic search and does not allow the 

network to converge to an inefficient solution [16]. Enforced 

Sub-Population (ESP) is the extension of SANE. In ESP a 

hidden layer subpopulation of neurons is evolved [17]. 

Neuro-evolution of Augmenting Topologies (NEAT) 

addressed three major problems in neuro-evolution which 

were: keeping track of genes that allows for crossover 

flexibility, speciation along with evolution from a simple 

structure and the subsequent complexification with the 

passage of time [23]. Performance wise NEAT is considered 

a major innovation. Lin Chen [18] proposed a hybrid 

extension to NEAT called Learning-NEAT. L-NEAT 

divides tasks into sub tasks which are then learned by 

incorporating back propagation into NEAT algorithm 

 

C. Cartesian Genetic Programming (CGP) 

Cartesian Genetic Programming is an innovative form of 

genetic programming that was introduced by Miller and 

Thompson [21]. It was initially aimed at the evolution of 

digital circuits. In CGP, the genotype has nodes represented 

in the form of genes (integer numbers). Each node has inputs 

and a function. The inputs can be programmed inputs  and 

the outputs of each node can also act as an input to some 

other node. An activation function is also used which can be 

any mathematical function i.e. OR, AND, Sigmoid, Tangent-

Hyperbolic, Step, Linear etc. The system output can be the 

output of any node in the genotype, indeed a system input 

can be an output as well. The genotype is an array of 

integers with a finite length, which is also called the 

chromosome. Mutation of either the node functions or the 

connection genes yields offspring. 

 The phenotype (the ultimate system) is yielded by following 

the referenced ordered links which exist in the graph . It 

means that the genes which form a path between the input 

and output are selected. In this process many genes are 

discarded (also termed as non-coding genes). 

 

D. Cartesian Genetic Programming evolved Artificial 

Neural Network (CGPANN) 

CGPANN is a neuro evolutionary technique known for 

providing much faster learning in comparison to various 

other neuro-evolution techniques [21]. CGPANN is based on 

CGP in which the nodes are replaced with artificial neurons 

that have weighted connections and non-linear activation 

functions. All attributes of neural networks such as its 

weights, topology, and node functions are encoded into  

genotype. The mentioned parameters are then evolved to the 

point where the best combination is achieved. 

The evolutionary strategy (1+ λ)  is used for generating the 

offspring.  The mutation rate is set at 10% which means only 

10 % of the genes are mutated to produce offspring. The 

inputs can be initial (program inputs) or intermediate (output 

of the program). The weights are generated randomly 

(ranging from -1 to +1) which are multiplied with inputs and 

summed up for each node. The output can be a subsequent 

input, the output of the program or any node.   



 

  E. Recurrent Neural Networks (RNNs)  

RNN have a very dynamic behavior which makes them 

special neural networks. They differ from the feed forward 

neural networks due to the presence of feedback path (s) 

from the output back into the system as an input. The 

feedback path can exist for a single neuron as well as for a 

whole layer.  The presence of feedback improves the 

learning ability of the network hence providing better 

results. The feedback paths are divided into various branches 

along with the presence of unit delay systems. This produces 

a non-linear dynamic behavior because of non-linear nature 

of neurons [31], which assists the recurrent neural networks 

in its storage function. Recurrent networks are sensitive and 

adaptive to the inputs from the past.  In terms of modeling 

and controlling the non-linear systems, RNNs perform far 

superior to the feed forward neural networks.  RNNs uses 

the temporal information of applied inputs for efficient 

prediction and classification. After the training, the 

interrelationship between the current inputs and internal 

states is processed for producing the output. The process of 

learning is a supervised process, in which the target value 

acts as the second source of information. The relevant 

interrelations in the input sequence are also highlighted by 

the target values. Time series is provided as an input to 

RNNs, however the target is either a trivial or non-trivial 

time series.  

Units in an RNN form a directed cycle that produces a state 

of networking that is internal in nature, allowing it to exhibit 

dynamism [19]. These networks unlike feed-forward can 

process arbitrary sequence inputs due to their ability to 

access internal memory. RNN are applied in a wide variety 

of applications that vary from control automation to 

manufacturing, detection, time series prediction etc [25].  

 

  F. Recurrent Cartesian Genetic Programming evolved 

Artificial Neural Network (RCGPANN) 

The significance of recurrent neural networks cannot be 

denied due to its capability in addressing a broader spectrum 

of dynamic and non-linear systems.  Recurrent Cartesian 

Genetic Programming evolved artificial neural network was 

proposed by Khan et al. [29]. The algorithm is based upon 

using Cartesian Genetic Programming to evolve recurrent 

neural networks. The main characteriastics of this network is 

that it utilizes feedback path(s) from the output which is fed 

back as the input(s). RCGPANN uses direct encoding 

method by encoding the weights and topology function into 

the genotype. The genotype is then evolved until the 

optimum function, weights and topology are obtained. In 

RCGPANN, the offspring are produced using 1+ λ principal 

and the value of λ is chosen to be 9.  

Since RCGPANN is based upon TWEANN, it tends to act 

both constructive and destructive. During the evolution of 

the topological features, many new features might be added 

while old features might be removed. Mutation is used for 

the evolution of weights, functions, connection types, inputs 

and outputs. The connections which might be disabled due 

to mutation are not entirely removed, and are indeed saved 

so that they might be used in future generations. 

One of the characteriastics of RCGPANN is that the neurons 

in RCGPANN are not totally connected and the inputs are 

not supplied to the neurons present in the input layer.  Hence 

the topologies produced by RCGPANN are cost effective 

and efficiently timed.  

Also, all the input layer neurons are not supplied with 

program inputs. This feature allows RCGPANN to produce 

topologies which is efficient in terms of timing and hardware 

implementation [30].  The genotype of a RCGPANN is 

made up of nodes which represent the ANN neurons. The 

inputs into each nodes belong to 3 different classes:  inputs 

fed back from the output, the program inputs and the inputs 

from the previous nodes.  The inputs may be recurrent or 

system inputs in the first layer of the RCGPANN genotype. 

However, the presence of feedback path(s) in other layers is 

dependent upon the fact whether selecting the feedback 

input, which is the node input, is random or not. Nodes  are 

also either connected or disconnected provided that the 

connection value is either one or zero respectively. The 

weights assigned to the connections are randomly generated 

between -1 and +1, however the value of the weight of 

feedback input is always taken as +1. The activation 

functions which may be a sigmoid, linear, tangent 

hyperbolic functions; acts on the sum of the multiple of 

inputs and the weights of the connected inputs. The output at 

each nodes depends upon the activation functions. 

The output obtained from the node is then either used as the 

output of the system or used an input to some other node.  

The genotype’s output is taken from either a node  output or 

program input. The genotype’s output can also be used as a 

recurrent input.  

The obtained RCGPANN genotype is continuously evolved 

until a desired level of fitness is achieved. The connections 

and state units weights are not mutated. The obtained 

genotype is then transformed into the RNN [29].  

 

Fig 1(a) shows a RCGPANN node with weights, connection 

inputs, output and functions. Fig 1(b) represents inside views 

for the node shown in (a). I1 and I2 are the system inputs 

while R is the recurrent input which is fed back as input 

from the output. The inputs are multiplied with 

corresponding weights and are summed up. The activation 

function acts on the sum and produces the corresponding 

output. Fig 1(c) shows a general RCGPANN phenotype 

structure of a 3 input network the inputs being I0 , I1 and I2 

and three activation  functions F0 , F1 and F2. The genotype 

is represented by  

 

[R, WR1, I2, W21,F2,  I0, W02, I2, W22, F1, I1, W13, R, WR3, F2   

I0, I5, I4 ] 

 



 

RCGPANN Neuron or 
Node with Activation 

Function
3

I1,W13 , C13

I2,W23 , C23

R,WR3 , CR3

a)

b)

Output 3

X

X

X

I1

W13

 C13

 C23

 CR3
R

I2

W23

WR3

Activation 
Funciton

 

 

Io

I1

I2

F2 F1 F2

Oo

O1

O2

F0

WR1 WR3

W21

W02

W22

I3

I4

I5c)

W2R

W1R

W0RFeedback

W12

 

 

 
Figure 1: (a) RCGPANN node having  two inputs (b) Internal View of 

RCGPANN for node in (a).  (c) General RCGPANN phenotype 

structure.  

 

III. RCGPANN APPLICATION FOR LOAD FORECASTING 

A. Experimental Setup 

For the experiment, the diurnal peak load (historical 

consumption data) is used as single input variable. The data 

of a complete year has been used for training the model. 

Initially, a population of 10 RCGPANN networks is 

produced. The number of inputs per node is selected to be 5. 

The Mutation rate to be used is 10% as it results in fast 

learning. Log-sigmoid function is chosen to be the activation 

function for producing the output. The number of 

RCGPANN rows is one; hence the number of columns and 

number of nodes are equal. After applying the inputs, its   

MAPE is calculated for every network generated and then 

compared with each other to select the network with 

optimum MAPE value. The selected network is used as the 

parent genotype for the next generation. The fittest genotype 

is mutated to generate further nine networks. This process 

continues until: 

 Generation limit is attained 

 The MAPE value becomes zero.  

Ten independent evolutionary runs are performed for ten 

different network sizes, whereas each run is for 1-million 

generations which took 24 hours per run on each core-i7 

cluster.   

B.  Results and Analysis 

The RCGPANN network’s performance was evaluated using 

the historical load data of United Kingdom National Grid 

which is in charge of maintaining the high-voltage electricity 

transmission system across Great Britain. Peak load 

information was extracted from the data which was 

originally collected as hourly load data. The annual as well 

as the seasonal data of 4 years was utilized. The data is 

highly fluctuating which makes it tedious to accurately 

predict the peak load. The data from the year 2006 was used 

for training purposes and the testing was done on data 

pertaining to the years 2007, 2008 and 2009. MAPE was 

used as the performance criterion. Subsequently, the 

genotype that exhibited the best fitness level was translated 

to a phenotype and then testing was performed for 2007, 

2008 and 2009 on seasonal as well as annual basis.  

The training along with testing was done repeatedly while 

the network size was varied from 50, 100, 150, 200, 250, 

300, 350, 400, 450, and 500 nodes. The final phenotype 

necessarily doesn’t use all nodes of the network. Generally 

the phenotype is produced using only 5-10% nodes. Table I 

shows the training results in terms of different number of 

nodes. This shows the overall efficiency of the training 

process for the year 2006. The RCGPANN network with 

100 and 250 nodes provide the optimum MAPE values. 

Table II shows the testing results of predictions for the year 

2007, 2008, 2009 and independently for seasons of each 

year. In the annual results, the best result is obtained for the 

year 2008 for the networks of 100 and 250 nodes having a  

MAPE of only 2.19 percent; whereas for seasonal results, 

the best results are obtained for the autumn season. A MAPE 

value as low as 1.56 percent has been achieved. Table III 

shows a comparison of contemporary networks in terms of 

MAPE. The results produced by the RCGPANN are better in 

terms of prediction accuracy thus proving it's capability of 

accurate forecasting.  This is because of the presence of the 

presence of feedback path and CGP algorithm. As stated 

earlier, the presence of the feedback enhances the ability of 

the network to learn quickly, so the proposed model 

outperforms all its predecessors.  

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Table I. Training  

Results for Various Node Numbers (Neurons) scenario trained on the daily peak load for 2006, predicting 11th day load from the ten 

day's load data history. 

 

 

  

 

Table II. Testing Results for Various Node Numbers (Neurons) scenarios for Various seasons of three years and yearly prediction. 

 

 

Table III. Comparison of RCGPANN with other methods 

 

IV.   CONCLUSION AND FUTURE WORK 

A Neuro-evolutionary technique called RCGPANN was 

used in this paper for daily peak load forecasting. The load 

data acquired was used to train the Artificial Neural 

Network for forecasting based on quarterly and annual basis 

and subsequently testing was done for peak load 

forecasting. The testing result shows that in comparison to 

previous models, RCGPANN produces more accurate 

results. Since the only input to the learning model is that of 

the peak load, in the future, other factors such as 

environmental conditions can be incorporated as inputs to 

produce even more Accurate results. 
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