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Abstract—Indoor localization can provide a number of dif-
ferent services such as location-aware advertisement, indoor
navigation and automating different appliances based on the user
location. A number of different techniques such as Angle-of-
Arrival (AoA), Time-of-Flight (ToF), Time Difference of Arrival
(TDoA) and Received Signal Strength Indicator (RSSI) have been
used to provide Location Based Services (LBS). RSSI is one of the
widely used methods as it is cost efficient and easy to implement.
However, RSSI’s performance is limited by multipath fading
and indoor noise. Particle Filter (PF) is an accurate Bayesian
Filtering algorithm that can improve the performance of RSSI-
based indoor localization. However, PF is not able to satisfy the
high accuracy requirement (possibly 10cm) of indoor localization.
In this paper, we present Particle Filter-Extended Kalman Filter
(PFEKF) cascaded algorithm that combines PF and EKF in
series to reduce the impact of multipath effects and noise on
the RSSI. Our experimental results show that PFEKF improves
the localization accuracy by 31.3% and 33.9% in 3D and 2D
environments respectively when compared with using only a PF.

Index Terms—Location Based Services, RSSI, Bayesian Filter-
ing, iBeacons

I. INTRODUCTION

The wide-scale use of smartphones, tablets and other wire-
less devices by multiple users can be leveraged to infer the
location of these users and different entities. It can then be used
to provide a suite of Location based services, services provided
to the users based on their location, to the users [1]. However,
the presence of different obstacles that can cause multipath
fading as well as the existence of noise in indoor environments
presents a challenge for accurate indoor localization and
tracking. Numerous technologies such as WiFi, Bluetooth,
Ultra Wideband (UWB), Acoustic signals, Ultrasound, and
Radio Frequency Identification (RFID) and techniques such
as Angle-of-Arrival (AoA), Time-of-Flight (ToF), Return Time
of Flight (RTOF), Received Signal Strength Indicator (RSSI)
and Time Difference of Arrival have been used to obtain an
accurate localization system [2]. RSSI is one of the widely
used techniques for localization purposes as it is fairly simple
to use and does not require complex hardware. However, it is
prone to the aforementioned challenges of indoor localization
i.e. RSSI is affected by multipath effects and noise [2].

A number of techniques and algorithms have been proposed
in the literature to handle the limitations of RSSI and improve

its performance in an indoor environment. RSSI fingerprinting
is one such technique that relies on a “pre-flight” offline phase
site survey to obtain fiducial RSSI values at different points
in an indoor environment that are then stored in a database.
During the online phase when the user device analyzes the
surrounding wireless environment to compute the RSSI values,
it compares sensed RSSI values with the fiducial RSSI values
from the database. If the sensed RSSI values match with the
offline fiducial collected RSSI values, then the user is classified
to be located in the position affiliated with the offline RSSI
values. However, site surveying to establish fiducial RSSI
values and maps is laborious and is not reliable. Especially
if the configuration of the indoor environment changes, then
there is a concomitant need for another survey as the radio
environment changes with the changes in the environment.
Bayesian filtering techniques such as Particle Filters (PF),
Kalman Filters (KF) and Extended Kalman Filters (EKF) have
been used with RSSI based localization and have resulted in
improved localization performance. However, the increased
demand for high localization accuracy has challenged the
research community. Therefore, there is a need for novel
algorithms that can improve the localization accuracy of
RSSI-based localization systems without incurring significant
hardware costs.

In this paper, we present a Particle Filter-Extended Kalman
Filter (PFEKF) cascaded algorithm that combines PF and EKF
in series to reduce the impact of multipath effects and noise
on the RSSI. The main contributions of this paper are

• We present a novel cascaded algorithm, Particle Filter-
Extended Kalman Filter, that improves localization accu-
racy by 31.3% and 33.9% in 3D and 2D environments
respectively when compared with using only a PF.

• We evaluated our algorithm using an iBeacon based
prototype that offloads the energy expensive computations
to a server to save energy on the user device.

• We also compare our algorithm with our prior work [3]
and show that our current algorithm provides encouraging
results.

The paper is further structured as: Section II provides a
discussion on some of the existing work related to RSSI based
indoor localization. Section III describes our algorithm and
discusses the indoor tracking model and the Bayesian filters we



used. Section IV discusses the experimental setup and provides
the results. Section V concludes the paper.

II. RELATED WORK

A number of different indoor localization systems have
been proposed over the last couple of years that rely on
different wireless technologies and techniques [4], [5], [6],
[7], [8]. However, we primarily focus on RSSI based indoor
localization systems.

RSSI based indoor localization systems can be classified
into either fingerprinting or non-fingerprinting based local-
ization systems. Fingerprinting based approaches rely on
an offline step in which fiducial RSSI measurements from
different reference nodes are stored for use as reference
measurements later on. For example, WiFi Access Points,
whose position is usually fixed and know to the system. Once
the RSSI database is populated, then in the online phase, the
sensed RSSI values from reference nodes are compared with
the offline fiducial measurements to infer the user position
based on the similarity between sensed online and offline
measurements. Horus, proposed by Youssef et al. [9], is an
RSSI (collected from WiFi APs) based localization system that
relies on an extensive site survey and fingerprinting. During
the offline phase, a radio map of the building is constructed.
During the online phase, probabilistic methods are used to
obtain an estimate of the user location. Horus attains a median
localization accuracy as high as 39 cm in one of the assessed
testbeds. Guvenc et al. [10] also used Kalman Filter (KF) to
refine the RSSI values of WiFi APs, which resulted in an
improved indoor localization accuracy. Their system also relies
on fingerprinting to obtain the radio map. The authors show
that KF outperforms the moving average method and achieved
a median accuracy of 2.5m. RADAR, proposed by Bahl et al.
[11], is a pioneering work that used RSSI fingerprinting to
infer the user’s location. While Youssef [9] and Guvenc [10]
collected the RSSI values from WiFi APs on a user device
to calculate the user location, RADAR collects RSSI values
from the user device at the APs to estimate user location i.e.
the data packets transmitted by the user devices are collected
at AP to estimate the RSSI value and user location. Martin et
al. [12] also used an RSSI and fingerprinting mechanism to
locate any user. An Android phone application installed on the
user device collects the RSSI from different WiFi APs present
in the environment. Martin’s approach is one of the first that
uses the same device for both the offline and online phases.
A localization error as high as 1.5m was reported.

Non-fingerprinting based approaches do not require a labo-
rious “pre-flight” site survey. Small scale calibrations required
to obtain the path-loss coefficient are carried out by the
localization system administrator. The path-loss coefficient is
used in the log-normal shadowing model described by Kumar
et al. [7] to map the RSSI values into distance. In our prior
work [13], we used Particle Filters to improve the performance
of iBeacons for indoor localization. Using the RSSI values
of the beacon message, we used n-point trilateration in con-
junction with the PF. We attained a localization accuracy as

high as 0.97 meters. In our prior work [14], [3], we used
the RSSI values of iBeacons for estimating user proximity
to any Point of Interest (PoI). Using moving average and
Kalman Filters, iBeacon’s proximity detection accuracy was
improved by 29% and 32% respectively in comparison with
current approach adopted by iBeacon protocol. In our recent
work [3], we use a Kalman filter (KF) in cascade with PF to
improve the localization accuracy of an iBeacon based indoor
localization system by 28.16% and 25.59% in 2D and 3D
localization respectively when compared with using only PF.
In contrast with other related work previously discussed in
this section [10], [9], [11], [12], our PFEKF approach does
not require any extensive fingerprinting, resulting in a less
complex approach. Furthermore, we achieve a comparable
localization accuracy. In contrast with our previous efforts
[13], our new PFEKF approach achieves a comparatively
higher accuracy. Furthermore, we are also able to track the user
device in 3D with a much lower energy cost by offloading the
computationally expensive aspect of the localization process
to a server. While in our prior work [14], we only dealt
with proximity detection, PFEKF can provide user location
and easily be extended for proximity detection. PFEKF also
outperforms our KFPF algorithm described in our prior work
in [3] and improves the localization accuracy by 7.6% and 8%
in 3D and 2D environments respectively.

III. PARTICLE FILTER-EXTENDED KALMAN FILTER
(PFEKF)

Before we discuss the PFEKF algorithm in detail, we first
describe the indoor localization model that we use to track the
user, and discuss PF and EKF.

A. Indoor Localization Model

We model the indoor localization problem as posed by
Arulampalam et al. [15] and used in our prior work [13], [3].
Since we seek to estimate the user position/state under a set of
measurements obtained in a typical noisy indoor environment,
Bayesian filtering is an attractive approach for such problems.
However, Bayesian filtering requires the following two models.

1) System Model: A system model describes the variation of
the state (user position in our case) with time. The system
model relates the position vector yi with the process noise
mi and previous state.

2) Measurement Model: A measurement model relates the
noisy measurements (RSSI for PF and the user position
for EKF) with the state/position.

We construct the posterior probability density function (pdf)
of the state by using all the available information, including
the measurements from the reference nodes (iBeacons in our
case). The pdf is considered as the complete solution to the
state estimation problem, since it contains all the required
information. Our problem involves recursively estimating the
user state/position as we receive measurements from the
sensor. Therefore, we require a recursive filter. Recursive filters
consist of the prediction and update stage in which the state
is predicted and then updated once the measurements are



available. The presence of noise in indoor settings affects
the position calculation so the pdf is usually distorted. The
obtained measurements in the update state are used to modify
the prediction pdf using Bayes theorem.

Mathematically, state yi at time i is a function of the state
at time step (i − 1) as well as the process noise mi−1 [16] as
described in Equation (1):

yi = fi(yi−1,mi−1) (1)

fi : <ny x <nm → <ny is the non-linear function (as
indoor localization is a non-linear problem) that relates the
previous state yi−1 and process noise mi−1 with the current
state yi as described by Arulampalam et al. [15]. The sequence
{mi, i ∈ ℵ} represents an independent, identically distributed
(i.i.d) process noise sequence. The integers ny and nm repre-
sent the state and process noise vector dimensions respectively.
ℵ represents the set of Natural numbers. The measurement
model relates the obtained measurement xi to the state y and
measurement noise n at time i [16] as given in Equation (2):

xi = hi(yi, ni) (2)
The mapping function hi : <ny x <nn → <nx can be either
linear or non-linear. Both functions fi , and hi relies on the
laws of motion/physics. The sequence {ni, i ∈ ℵ} is an i.i.d
measurement noise sequence. The integers nx and nn represent
the measurement and measurement noise vectors dimension
respectively.

Recursively calculating the pdf p(yi |x1:i) allows us to con-
tinuously calculate the belief in the state yi at any particular
time instance i in the presence of noisy measurements. The
initial pdf p(yo |x0) is assumed to be equivalent to state vector’s
prior p(y0) [15]. We assume that the prior is available. The
available information is enough to calculate the pdf p(yi |x1:i)
recursively in the prediction and update stages. In the pre-
diction stage if the pdf p(yi−1 |x1:i−1) is available, we can
use Chapman-Kolmogorov equation given in Equation (3) to
obtain the prior pdf of the state at any time instance i.

p(yi |x1:i−1) =

∫
p(yi |yi−1)p(yk−1 |x1:i−1)dyi−1 (3)

At any time instance i, we collect the observations xi from the
sensors to update the prior using Bayes rule given in Equation
(4) [15]. The denominator in Equation (4) is explained in
Equation (5).

p(yi |x1:i) =
p(xi |yi)p(yi |x1:i−1)

p(xi |xi−1)
(4)

p(xi |xi−1) =

∫
p(xi |yi)p(yi |xi−1)dyi (5)

The collected measurements xi in the update stage are then
used to update the prior density, resulting in the required cur-
rent state’s posterior density. Recursively updating the system
using Equations (3) and (4) result in an optimal Bayesian
solution. However analytically, it is not possible to obtain the
recursive propagation of posterior probability density as done
in Equations (3) and (4). Therefore, a number of different
algorithms including PF and EKF are used to obtain a solution.
Below we discuss the theory of PF and EKF from localization
perspective.

B. Particle Filter

Particle filters is widely used for indoor localization and
tracking [17]. The basic idea behind particle filters is that
the posterior probability distribution is represented using a set
of weighted random samples that are used for computing the
estimates [15]. An increase in the number of samples cause
the filter to perform optimally. To understand the algorithm
in detail, first we offer the following summary of the ap-
proach. Let

{
yk0:i,w

k
i

}
be the set of random measures that

characterize the posterior pdf p(y0:i |x1:i).
{
yk0:i, k = 0, .....Ns

}
is the set of support points whereas the weight are given
by

{
wk
i , k = 0, .....Ns

}
. y0:i where

{
yj, j = 0, .....i

}
is the set

of the states up to i. The weights are normalized using∑
min w

k
i = 1. After the normalization, the posterior density

at i is approximated, as given by [15], using

p(y0:i |x1:i) ≈

Ns∑
k=1

wk
i δ(y0:i − yk0:i) (6)

Equation (6) is the discrete weighted approximation of the
true posterior probability distribution p(y0:i |x1:i). Importance
sampling [18] is used to choose the weights associated with
each particle [15]. For importance sampling, assume that
p(y) ∝ π(y) is the probability density from which drawing
particles is tedious. However, π(y) can be evaluated for the
probability density. Let yk ∼ d(y) where k ∈ [1, ..., Ms] be the
samples generated from the proposal d(.) known as importance
density. Then the probability density p(.) can be approximated
as given by [15]

p(y) ≈
Ms∑
k=1

wkδ(y − yk) (7)

where as the normalized weight of the k th particle can be
obtained using Equation (8)

wk ∝
π(yk)

d(yk)
(8)

If the samples yk0:i are taken from the importance density
d(yk0:i |x1:i), then the weights used in Equation (6) are given
by

wk
i ∝

p(yk0:i |x1:i)

d(yk0:i |x1:i)
(9)

Due to the sequential nature of the process, at every single iter-
ation, there could be samples that approximate the conditional
probability p(y0:i−1 |x1:i−1), and the goal is to approximate
p(y0:i |x1:i) conditional probability using new samples. The
importance density must be chosen for factorizing such that

d(y0:i |x1:i) = p(yi |y0:i−1, xi:i)d(y0:i−1 |x1:i−1) (10)
Then the samples yk0:i ∼ d(y0:i |x1:i) can be obtained by
incorporating the existing samples yk0:i−1 ∼ d(y0:i−1 |x1:i−1) into
the recently obtained state yki ∼ d(yi |y0:i−1, x1:i). The weights
must be updated using the update Equation (4) that can be
derived by first representing p(y0:i |x1:i) in terms of p(xi |yi),
p(yi |yi−1) and p(y0:i−1 |x1:i−1) that can be mathematically, as
described by Arulampalam et al. [15], given by



p(y0:i |x1:i) =
p(xi |y0:i |x0:i−1)p(y0:i |x1:i−1)

p(xi |x1:i−1)

=
p(xi |y0:i |x0:i−1)p(y0:i |y0:i−1 |x1:i−1)

p(xi |x1:i−1)

× p(y0:i−1 |x1:i−1)

(11)

=
p(xi |yi)p(yi |yi−1)

p(xi |x1:i−1)
p(y0:i−1 |x1:i−1)

∝ p(xi |yi)p(yi |yi−1)p(y0:i−1 |x1:i−1)

(12)

The weights computed using Equation (9) can be updated by
substituting Equation (10) and (12) into it, so Equation (9)
becomes

wk
i ∝

p(xi |yki )p(y
k
i |y

k
i−1)p(y

k
0:i−1 |x1:i−1)

d(yki |y
k
1:i−1, x1:i)d(yk0:i−1 |x1:i−1)

= wk
i−1

p(xi |yki ))p(y
k
i |y

k
i−1)

d(yki |y
k
1:i−1, x1:i)

(13)

Also the importance density function would be only dependent
on yi−1 xi if d(yi |y1:i−1, x1:i) = d(yi |yi−1, xi). This facilitates
when only a filtered estimate of p(yi |x1:i) is needed at each
time step. In such cases, only the state yki would need to
be stored. The weights are then modified, as described by
Arulampalam et al. [15], into

wk
i ∝ wk

i−1
p(xi |yki ))p(y

k
i |y

k
i−1)

d(yki |y
k
i−1, xi)

(14)

while the filtered posterior probability density becomes

p(yi |x1:i) ≈

Ns∑
k=1

wk
i δ(yi − yki ) (15)

The aforementioned algorithm (SIS) is a recursive algorithm
in which the weights and support points are recursively propa-
gated with the reception of every single measurement. Particle
Filters are optimal for indoor localization since they assume
the system to be non-linear and noise to be Non-Gaussian
which is a realistic assumption for indoor environments.

C. Extended Kalman Filter

While Kalman filter relies on the assumption that the
functions given in Equations (1) and (2) are linear, it is not
always the case particularly in an indoor environment. So
in such cases we need a local linearization of the equations
can approximate the non-linearity condition. This is the core
essence of Extended Kalman Filters (EKF) as they locally
linearize non-linear functions by taking the Jacobian of the
non-linear f (.) and h(.) functions listed in Equations (1)
and (2) respectively. Let F̄ and H̄ are the locally linearized
functions obtained through the Jacobian of f (.) and g(.)
functions. EKF assumes that the probability p(yi |x1:i) can be
approximated using Gaussian as given in Equations (16)-(18)
by [15]

p(yi−1 |x1:i−1) ≈ N(yi−1; mi−1 |i−1, Pi−1 |i−1) (16)
p(yi |x1:i−1) ≈ N(yi; mi |i−1, Pi |i−1) (17)

p(yi |x1:i) ≈ N(yi; mi |i, Pi |i) (18)
where N(y; m, P) is a Gaussian Probability Density and has
arguments state y, mean m and covariance P. Similarly (taken

from [15])

mi |i−1 = fi(mi−1 |i−1) (19)
Pi |i−1 = Qi−1 + F̄iPi−1 |i F̄T

i (20)
mi |i = mi |i−1 + Ki(xi − hi(mi |i−1)) (21)

Pi |i = Pi |i−1 − KiH̄iPi:i−1 (22)
The recursive prediction and update steps for EKF are
• Predict:

Ȳi−1 = FYi−1 (23)
P̄i−1 = FPi−1FT +Q (24)

• Update:
Ki = P̄i−1HT (HP̄i−1HT + R)

−1
(25)

Ȳi = Ȳi−1 + Ki(Xi − HȲi−1) (26)
Pi = P̄i−1(1 − KH) (27)

In Section IV, we will provide values of different variables
used in our experiments.

D. Our Algorithm

We first use the PF algorithm to obtain the user location
through the noisy RSSI values. The user location (2D or 3D)
obtained using PF is then used as an input into a EKF that
reduces the fluctuation in the position estimate resulting in
a stable user location estimate. Algorithm 1 summarizes our
PFEKF algorithm.

Algorithm 1 Particle Filter-Extended Kalman Filter (PFEKF)
1: procedure PFEKF CASCADE
2: Obtain RSSIrecv . Obtain RSSI values
3: RSSI ← RSSIrecv
4: RSSI f ilt ← 0 . Filtered RSSI
5: Li ← (0, 0) or (0, 0, 0) . Initialize user location
6: while RSSI , 0 do
7: Li ← ParticleFilter(RSSI)
8: Li, f ilt ← E xtendedKalmanFilter(Li)

9: Print Li, f ilt

10: end

IV. EXPERIMENTAL SETUP AND RESULTS

To evaluate the performance of our algorithm, we implement
an end-to-end prototype that uses the RSSI values of gimbal
iBeacons to obtain an estimate of the user location. We used
our prototype iOS application [13] on an iPhone 6s plus
to receive the messages from the iBeacons and retrieve the
RSSI values. The user device then forwarded the observed
RSSI values to a local Apache Tomcat Server. The particle
filtering algorithm running on the server estimated the user’s
location (the particles with the highest probability are used to
obtain the estimate of the user’s location). The PF estimated
x and y coordinates were then used as input into the EKF
algorithm. Figure 1 shows the architecture of our prototype.
Table I provides information about the equipment used in our
experiment. Below we present the mathematical model for the
EKF model used in our experiments.



Fig. 1. Our prototype system

TABLE I
SUMMARY OF DEVICE PARAMETERS

Server Apache Tomcat
Java version Java 1.8
User Device Apple iPhone 6s plus
Wireless Interface Bluetooth V4.2 / 2.4GHz
Operating System iOS 9.2
Beacons Gimbal Series 10
Gimbal range 50 meters
Transmission Frequency 100 ms
Major Value Yes
Minor Value Yes

A. Mathematical Model for EKF

We use the widely used Position-Velocity (PV) model
[19], [20] for EKF modeling. Our state Yi consists of the
current x coordinate, y coordinate, the horizontal velocity Vxi

component, and the vertical velocity Vyi component.
Yi =

[
xi yi Vxi Vyi

]T
The state equation for the PV model as given by [20], [19] is
given below by Equation (28).

xi
yi

Vxi

Vyi

 =

1 0 δt 0
0 1 0 δt
0 0 1 0
0 0 0 1




xi−1
yi−1

Vxi−1
Vyi−1

 +


mx
i

my
i

mVxi

i

mVyi

i

 (28)

where the matrix given below is the process noise matrix.[
mx
i my

i mVx

i mVy

i

]T
Hence the Jacobian matrix F is given by

F =


1 0 δt 0
0 1 0 δt
0 0 1 0
0 0 0 1


The parameter δt is the time interval over which the velocity
is constant. Since we obtain the measurements after every one
second, we used δt = 1. Similarly the measurement model in
Equation (2) can be written as

[
xi
yi

]
=

[
1 0 0 0
0 1 0 0

] 
xi
yi

Vxi

Vyi

 +
[
nx
i

nyi

]
(29)

where the Jacobian matrix H is given by

H =
[
1 0 0 0
0 1 0 0

]
Parameters P (error covariance), Q (process noise covariance)
and R (measurement noise covariance) that are fundamental to

accurate performance of the EKF were obtained by trial and
error approach in our experiment space and are given below.

P = 100I44 Q = 0.001I44 R = 0.10I22
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Fig. 2. Average 2D localization error vs number of Beacons in 7m × 6m
environment with our PFEKF algorithm on the server side.
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Fig. 3. Average 2D localization error of PF vs. PFEKF in 7m × 6m
environment for a different number of beacons

Use of the Extended Kalman Filter involves recursively
predicting and updating the state vector as discussed in Section
III. We performed our experiments in a 7m x 6m space that
contained a number of obstacles such as wooden and metallic
cupboards, chairs, tables, and humans, replicating a typical
indoor setting. Due to space constraints, the floor plan for the
experimental space is relegated to [add arxiv reference]. In
our experiments, we increased the number of particles in PF
from 400 to 2000 with 200 step size. Furthermore, we also
varied the total beacons used from three to eight (the point
where adding more iBeacons did not improve the performance
or deteriorated it in worst case). The beacons were placed on
the walls and cupboards, and were 2m above the ground. The
phone was placed in a static position at different reference
points (points whose location is known) during the experiment.
The estimated location obtained through our algorithm was
compared with original location of the point. Figure 2 high-



TABLE II
2D LOCALIZATION PERFORMANCE OF PFEKF FOR DIFFERENT NUMBER OF BEACONS IN 7M × 6M ENVIRONMENT.

Particles 3 Beacons 4 Beacons 5 Beacons 6 Beacons 7 Beacons 8 Beacons
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

400 0.995 0.659 0.874 0.385 0.892 0.536 0.836 0.403 1.032 0.480 0.969 0.619
600 1.039 0.579 1.044 0.468 0.838 0.512 0.796 0.384 1.057 0.478 1.086 0.749
800 1.120 0.507 1.246 0.648 0.797 0.485 0.765 0.331 0.750 0.576 1.120 0.447
1000 1.118 0.607 1.222 0.717 0.822 0.471 0.756 0.280 0.920 0.505 1.015 0.524
1200 1.079 0.713 1.209 0.751 0.867 0.614 0.720 0.310 0.889 0.608 1.007 0.598
1400 1.112 0.682 1.111 0.628 0.827 0.559 0.793 0.424 0.849 0.567 1.062 0.532
1600 1.155 0.707 1.128 0.734 0.800 0.423 0.760 0.391 0.878 0.606 0.932 0.634
1800 1.153 0.594 1.109 0.813 0.845 0.479 0.788 0.346 0.862 0.561 0.902 0.482
2000 1.116 0.583 1.064 0.637 0.722 0.359 0.800 0.398 0.869 0.570 0.889 0.517

lights the average 2D localization error for varying number
of beacons used in the 7m × 6m environment with server
side PFEKF algorithm. In comparison with both PF and KFPF
in our prior work [3], [13], the PFEKF has a lower average
localization error. Figure 3 compares the PF vs PFEKF for
2D Localization where PFEKF performs better than PF. PF
performs optimally in terms of localization error when the
number of iBeacons is 7 while PFEKF performs the best with
6 beacons. Hence, PFEKF is more cost efficient as it requires
a smaller number of iBeacons.
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Fig. 4. Average 3D error vs number of Beacons in 7m × 6m environment
with our PFEKF algorithm on server side.

Table II provides the average 2D localization error vs.
a range of different number of particles using our PFEKF
algorithm. The highest localization accuracy was achieved
using 6 beacons and 1200 particles. Table III shows the
average 3D localization error vs. a range of different number
of particles using our PFEKF algorithm. The optimal result
was obtained using 7 beacons and 800 particles. It is evident
from Figures 3 and 5 that our PFEKF algorithm performs
better than using only a PF for RSSI-based indoor localization.
In our experiments, the PFEKF improved the localization
accuracy by 31.3% and 33.9% in 3D and 2D environments
respectively when compared with using only a PF. We also
compare PFEKF’s performance with KFPF [3]. Figures 6
and 7 compares the performance of KFPF and PFEKF for
2D and 3D localization respectively. While on average the
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Fig. 5. Average 3D localization error of PF vs. PFEKF in 7m × 6m
environment for different number of beacons.

PFEKF outperforms KFPF by 7.6% and 8% in 3D and 2D
environments respectively, KFPF performs well if the number
of beacons are more than 6. This means that KFPF requires
more beacons to perform well because KF is optimal filter
for linear models, while indoor localization is non-linear in
nature. So increasing the number of beacons provides more
reference signals for localization. Furthermore, the lowest
localization error is achieved with PFEKF both in 2D and 3D
environments, highlighting the fact that PFEKF is preferable
over KFPF as KF assumes that the system is linear while in
reality, it is non-linear.

V. CONCLUSION

Indoor localization, due to the wide range of applications
that it can be provide, has recently seen an increase in interest.
While different techniques can be used for indoor localization,
RSSI is one of the widely used techniques as it is cost efficient
and easy to use. However, the presence of multipath fading
and noise in indoor environments affects its performance. In
this paper, we proposed the PFEKF algorithm that combines
PF and EKF in cascade to enhance accuracy of RSSI-based
indoor localization. PFEKF improved the localization accuracy
by 31.3% and 33.9% in 3D and 2D environments respectively
when compared with using only a PF and by 7.6% and 8%
in 3D and 2D environments respectively when compared with
using KFPF.



TABLE III
3D LOCALIZATION PERFORMANCE OF PFEKF FOR DIFFERENT NUMBER OF BEACONS IN 7M × 6M ENVIRONMENT.

Particles 3 Beacons 4 Beacons 5 Beacons 6 Beacons 7 Beacons 8 Beacons
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

400 1.336 0.625 1.101 0.356 1.023 0.556 1.089 0.421 1.032 0.480 0.969 0.619
600 1.313 0.590 1.331 0.292 1.081 0.583 1.061 0.404 1.057 0.478 1.086 0.749
800 1.403 0.530 1.462 0.509 0.998 0.465 1.050 0.335 0.750 0.576 1.120 0.447
1000 1.440 0.548 1.451 0.576 1.038 0.522 1.080 0.379 0.920 0.505 1.015 0.524
1200 1.373 0.625 1.453 0.644 1.066 0.638 1.073 0.356 0.889 0.608 1.007 0.598
1400 1.396 0.602 1.351 0.496 1.022 0.582 1.145 0.464 0.849 0.567 1.062 0.532
1600 1.434 0.619 1.394 0.603 1.011 0.407 1.180 0.369 0.878 0.606 0.932 0.634
1800 1.429 0.505 1.403 0.673 1.008 0.526 1.204 0.392 0.862 0.561 0.902 0.482
2000 1.409 0.497 1.315 0.456 0.902 0.410 1.192 0.326 0.869 0.570 0.889 0.517
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Fig. 6. Average 2D localization error of KFPF vs. PFEKF in 7m × 6m
environment for different number of beacons.
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Fig. 7. Average 3D localization error of KFPF vs. PFEKF in 7m × 6m
environment for different number of beacons.
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