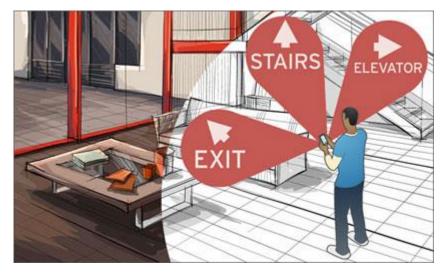
ENHANCENCE BEACON BASED MC-LOCATEONOTE PARTICLE FLITEBLE

Faheem Zafari- Ioannis Papapanagiotou

Computer & Information Technology

Purdue University


faheem0@purdue.edu

ipapapa@ncsu.edu

Indoor Localization

- Challenging due to inherent environment complexities.
- Can be leveraged to provide a number of location based services.

Taken from today.duke.edu

BEACONS

•iBeacons

- Apple's protocol for Bluetooth Low Energy (BLE) Devices.
 - Proximity based services
- Utilizes 2.4 GHz.
- Device with iOS 7.0+ and Android 4.3+ pick beacon signals
- Message consists of
 - 16 bytes mandatory Universally Unique Identifier (UUID) field.
 - 2 byte optional major field.
 - 2 byte optional major field.

BEAGON BASED PROXIMITY SERVICES

• User device contacts a server for information about the message.

- Indoor localization requires high accuracy.
 - \rightarrow Current systems are not accurate enough.
- Beacons poised for wide-scale proliferation.
 → In current state, only used for proximity based services.
- Beacons have not been used for indoor localization.
 - \rightarrow Not accurate without any filtering algorithm.

Need a filtered ibeacon based localization system

- Design an ibeacon based indoor localization system using particle filtering:
 - 1. Formulate tracking problem as non-linear Bayesian tracking problem.
 - 2. Develop an iOS mobile application with particle filtering.
 - 3. Utilize ibeacons for indoor localization.
 - 4. Reduce the localization error.

TRACKING PROBLEM FORMULATION

- y_i , where $i \in N$ is the target's state sequence at time i.
 - $y_i = g_i(y_{i-1}, m_{i-1})$ where
 - g_i is a non-linear function
 - m_{i-1} is the *i.i.d* process noise
- z_i is the obtained measurement at time i.
 - $z_i = h_i(y_i, n_i)$ where
 - h_i is a non-linear function
 - *n_i* is *i.i.d* measurement noise.
- Working Principle:
 - Recursively calculate the belief in state y_i at time i using measurements $z_{1:i}$ obtained up to time i.

- Prediction Stage
 - Predict the next state of the user using Chapman-Kolmogorov equation.

 $p(y_i|z_{1:i-1}) = \int p(y_i|y_{i-1}) p(y_{i-1}|z_{1:i-1}) dy_{i-1}$

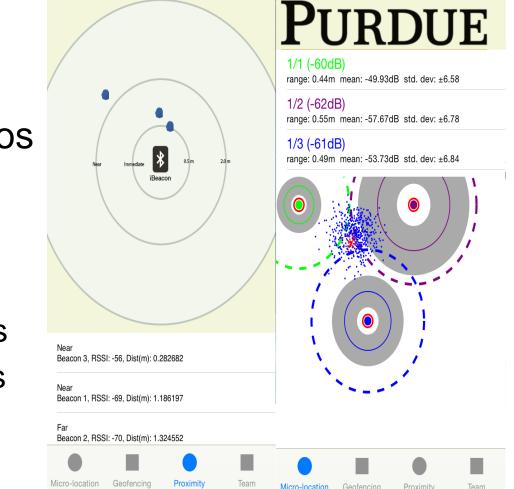
- Update Stage
 - Update the prediction based on obtained measurements.

$$p(y_i|z_{1:i}) = \frac{p(z_i|y_i)p(y_i|z_{1:i-1})}{p(z_i|z_{i-1})}$$

where

$$p(z_i|z_{i-1}) = \int p(z_i|y_i)p(y_i|z_{i-1})dy_i$$

TRACKING PROBLEM FORMULATION


SUB-OPTIMAL SOLUTION: PARTICLE FILTERING

- The prediction and update state are computationally exhaustive
 - Not feasible for real-time processing.
- Particle filtering is a discrete approximation of the problem
 - Particles to represent the state (pmf)
 - Assign weights to particles based on probability. $p(y_i|z_{1:i}) \approx \sum_{k=1}^{Ns} w_i^k \delta(y_i - y_i^k)$

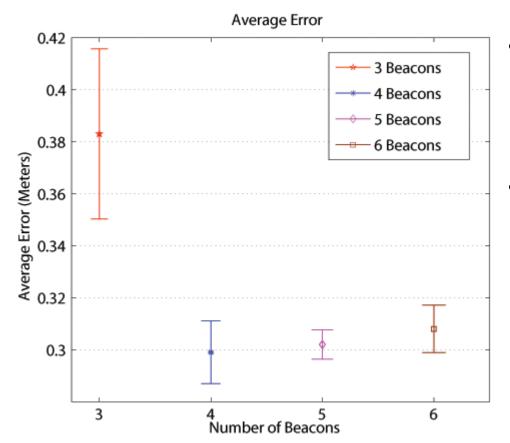
EXPERIMENTALSETUP

- An iOS application developed.
- Two different scenarios
 - 1m x 1m
 - 11m x 6m
- Variables
 - Number of beacons
 - Number of particles
 - Tracking area

EXPERIMENTALSETUP

• Compare the estimated location of user with actual position

$$< Error > = \frac{\sum_{i=1}^{n} \sqrt{(X_i - X_{})^2 + (Y_i - Y_{})^2}}{n}$$


• Experimental parameters

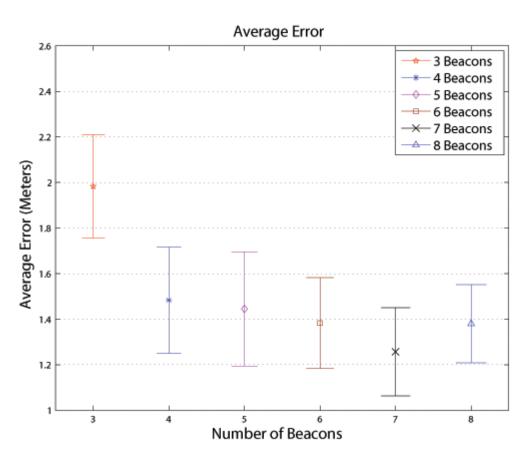
Device	Apple iPhone 4s
Wireless Interface	Bluetooth V4.0/ 2.GHz
Operating System	iOS 8.1
Beacons	Gimbal Series 10
Gimbal Range	50 meters
Transmission Frequency	100ms
Major Value	Yes
Minor Value	Yes

AVERAGE ERROR (RESULTS)

• 1mx1m scenario

- Increasing the number of beacons, up to a threshold, improves performance.
- After reaching certain number of beacons (5), the performance degrades
 - Due to selfinterference

AVERAGE ERROR (RESULTS)


• 1mx1m scenario: Localization error in meters

Particles	Beacons					
	3	4	5	6		
400	0.308	0.290	0.303	0.301		
600	0.356	0.308	0.312	0.302		
800	0.396	0.301	0.302	0.31		
1000	0.384	0.276	0.298	0.316		
1200	0.400	0.299	0.293	0.318		
1400	0.403	0.289	0.307	0.315		
1600	0.385	0.314	0.306	0.316		
1800	0.407	0.298	0.299	0.291		
2000	0.411	0.312	0.300	0.304		

- Highest accuracy attained with 4 beacons and 1000 particles.
- A certain set of beacons works optimally for a specific number of particles
 - e.g. 5 beacons work best with 1200 particles

• 11mx6m scenario

- Increase in number of beacons, to a threshold, improves performance.
- After reaching certain number of beacons (7), the performance degrades
 - Due to selfinterference

AVERAGEERRORGRESUITSJ

• 11mx6m scenario: Localization error in meters

Doutidoo	Beacons					
Particles	3	4	5	6	7	8
400	2.195	1.486	1.720	1.590	1.385	1.492
600	2.167	1.074	1.159	1.422	1.200	1.595
800	2.152	1.729	1.721	1.598	1.345	1.623
1000	1.736	1.802	0.975	1.284	1.220	1.432
1200	1.843	1.678	1.531	1.126	1.008	1.275
1400	2.262	1.507	1.575	1.639	1.442	1.180
1600	2.049	1.251	1.455	1.149	1.339	1.245
1800	1.774	1.368	1.540	1.208	1.362	1.168
2000	1.668	1.451	1.328	1.430	1.017	1.411

- Highest accuracy attained with 5 beacons and 1000 particles.
- A certain set of beacons works optimally for a specific number of particles
 - e.g. 4 beacons work best with 600 particles

DEPLOYMENT SUGGESTIONS

- Increasing number of beacons to a certain number 'n' will improve performance.
 - 'n' depends on space and environment.
 - Going beyond 'n' causes self-interference hence degrading performance.
- For every deployment environment, there is an optimal number of beacons and particles.
- Beacons should be placed at higher altitudes and in areas where there it is less prone to interference.

- We developed an iBeacon based indoor localization system.
 - Provided mathematical formulation.
 - Utilized particle filtering algorithm for better accuracy.
- The proposed system results in an accuracy of
 - 0.27 meters in 1m x 1m environment
 - 0.97 meters in 11m x 6m environment.
- We provided deployment suggestions based on real-time experiments.

- Implement particle filtering on a server side
- Utilize different filtering algorithms for improving the accuracy of
 - Beacon based indoor localization
 - Beacon based proximity services
- Open sourced the code for public use.
 - <u>https://github.com/ipapapa/IoT-</u> <u>MicroLocation</u>

faheem0@purdue.edu ipapapa@ncsu.edu