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Motivation

@ Energy is one of the fundamental limitations of sensors
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@ Energy is one of the fundamental limitations of sensors
@ Sensors are responsible and consume energy for
e Communication
o Computation
e Caching
@ Tradeoffs among communication, computation and caching energy
costs
o Computation (e.g. compression) consumes energy, but may reduce

communication energy cost
e Caching reduces communication cost but also consumes energy
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The Big Question?

To achieve desirable tradeoffs

@ How much data compression is needed?

@ Where to cache data optimally?
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Importance of C3 tradeoffs to DAIS-ITA/P1?

@ Coalition infrastructure includes the C3 resources which we need to
use efficiently
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Importance of C3 tradeoffs to DAIS-ITA/P1?

@ Coalition infrastructure includes the C3 resources which we need to
use efficiently

@ Sensor networks often have limited energy supply = important to
optimize energy usage

@ We developed optimization solution for C3 tradeoffs that can be
applied to other problems
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System Model

@ Tree network is modeled as a
directed graph G = (V, E)
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Syste odel

@ Tree network is modeled as a
directed graph G = (V, E)

@ K C V : the set of leaf nodes
(data source) with | K| = K

@ Only leaf nodes k € K can
generate data of yy bits

@ Data is transmitted from a leaf . N
node towards the sink node s / ’ hilq

@ Data of leaf node k can be
compressed before further
transmission with &y ;
reduction factor

Data movement direction

Data source
nodes

@ Leaf node data can be cached

at most in one node along the Tree-Structured Network
path towards sink node s
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System Model

@ The caching capacity at node
veV:S,
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System Model
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System Model

@ The caching capacity at node
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Syste odel

@ The caching capacity at node %“
veV:Ss, = >

---- " A
@ Caching decision variable for 1
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and computation energy cost: i = ’ hiti]3
&vT, EvR, and g,¢, define i
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Data source
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@ During a time period T, Ry
requests for data yx generated

by leaf node k Tree-Structured Network
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Energy Efficiency Optimization

° Ekc: energy for data received, transmitted, and possibly compressed
by all nodes on the path from leaf node k to sink node s

h(k) h(k)
Ef = Z}/kf(ék,i) l_l Ok,m (1)
i=0 m=i+1
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Energy Efficiency Optimization

° Ekc: energy for data received, transmitted, and possibly compressed
by all nodes on the path from leaf node k to sink node s

h(k) h(k)

Ef = Zka(5k,i) l_l Sk,m (1)

i=0 m=i+1

° EkR : the total energy consumed in responding to the subsequent
(R — 1) requests

h(k) h(k) i-1
ER = Z yk(Rk — 1){f(5k,i) 1_[ 5k,m(1 - bk,f)
i=0 m=i+1 Jj=0
h(k)
Wea T
+ (Dék,m)bk,;(m‘F«?kT)}- (2)
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Energy Efficiency Optimization

Eoelo.b) £ ) (EC+ EF) (3)

keK
Non-convex Mixed Integer Nonlinear Programming (MINLP)

- total
I’:S'],Itl;l E** (6, b)

h(k)
s.t. Z Yk l_[ Oki 2 Vs
keK =0
bri€1{0,1},Vk e K,i=0,---, h(k),
h(v)
Z b.hv) Y 1—[ Okj < S,VveyV,
keC, Jj=h(k)
h(k)
Zbk,i <LVkeXK. (4)
i=0
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Part 1: Solving the Non-Convex MINLP Problem using

our Variant of Spatial Branch and Bound Algorithm
(V-SBB)
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Symbolic Reformulation

Reformulated Problem

Non-Convex MINLP problem min - Wop;
w
_ st. Aw=b
min Y (X,Y) / u
G(X Y) <0 w <w<siw
.t. , <
s yelvh....vY]
HX,Y)=0 wi = wiwj ¥ (i), k) € Tpy
L V) i
X-<X<XYXeR sz% Yo (1), k) €T
L U J
YE[Y,...,Y] =l Y ik
) k_Wi (l, ,n)eTet
wg = fn(w;) YV (i, k) € Ty
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Spatial Branch-and-Bound

Region S, Region S, Region S, Region S,

______ T; 5,18>5,UB
/7 s,upper !

S, ower  bound

bound

BBM example (taken from https:
//optimization.mccormick.northwestern.edu/index.php/File:SBB.png)
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V-SBB

Algorithm 1 Variant of Spatial Branch-and-Bound (V-SBB)
Step 1: Initialize ¢ := c0 and L to a single domain
Step 2: Choose a subregion R € L using least lower bound rule
if L=0orVReL, ¢®'is infeasible then Go to Step 6
if ¢®! > ¢” — € then Go to Step 5
Step 3: Obtain the upper bound ¢*¥
if upper bound cannot be obtained or if ¥ > ¢ then Go to Step 4
else ¢! :=¢®Y and, from the list £, delete all subregions S € £ such that
¢S,l > ¢u —€
if p%¢ — p®! < ¢ then Go to Step 5
Step 4: Partition R into new subregions Ryight and Rieft
Step 5: Delete R from £ and go to Step 2
Step 6: Terminate Search
if " = co then Problem is infeasible
else ¢" is e-global optimal

Decomposes non-linear functions of the original problem symbolically and
recursively with simple operators into simple functions
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Evaluation

Parameters used in

simulations
Parameter Value
Vi 1000
i 100
Wea 1.88 x 10°°
T 10s
EVR 50 X 1077
eyt 200 X 1077
R 80 x 10°°
Y 11, ker Ykl

Zafari

©
experiments

C3 Energy Optimization
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Candidate network topologies used in the
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Evaluations

The Best Solution to the Objective Function (Obj.) and Convergence time for
Seven-node network (y is the required Qol threshold)

Method 7 =1 7 = 1000 y = 2000 7 = 3000 ¥ = 4000
Obj. Time (s) Ob;j. Time (s) Obj. Time (s) Obj. Time (s) Ob;j. Time (s)
Bonmin 0.0002 0.214 0.039 0.164 0.078 0.593 0.117 0.167 0.156 0.212
NOMAD [ 0.004 433.988 0.121 | 381.293 0.108 | 203.696 0.158 | 61.093 0.181 | 26.031
GA 0.043 44.538 0.096 | 30.605 0.164 | 44.970 0.226 | 17.307 0.303 | 28.820
V-SBB 0.0001 1871 0.039 25.101 0.078 30.425 0.117 23.706 0.156 19.125

Summary of Results

@ V-SBB outperforms all other algorithms in terms of obtaining better
objective value

@ Bonmin is faster but it has infeasibility issue and poor performance for some
cases - - -
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Evaluations

Infeasibility: Not being able to find a solution when it exists

Infeasibility of Bonmin for different networks

Networks (a) (b) (c) (d)
Number of testing y values 1000 2000 2000 4000
Number of infeasible solutions 0 0 1 216
Infeasibility (%) 0 0 0.05 5.4

Comparison between V-SBB and Bonmin for small y values in seven-node network

= =3 =50
Method OB T Time ) | Ob;. L e T OB Time
Bonmin 0.0002 | 0.214 0.0003 | 0.224 | 0.0021 | 0.364
V-SBB 0.00011 | 1671 0.00010 | 1243 | 0.0020 | 3325
Imp. (%) 52.45 50.30 4.62
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Importance of C3 over C2 tradeoffs

Comparison of C3 with C2
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Comparison of C3 and C2 optimization for the seven nodes network.
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Conclusions

@ Formulated energy tradeoffs among communication, computation and
caching with Qol guarantee as non-convex MINLP optimization
problem
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Conclusions

@ Formulated energy tradeoffs among communication, computation and
caching with Qol guarantee as non-convex MINLP optimization
problem

@ Proposed a variant of spatial branch-and-bound (V-SBB) algorithm,
which can solve the MINLP with e-optimality guarantee

@ Observed that C3 optimization improves energy efficiency by as much
as 88% compared with either of the C2 optimizations
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Ongoing Work

@ New formulation: minimize latency with energy constraints
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Ongoing Work

@ New formulation: minimize latency with energy constraints
@ Design approximate algorithms to these non-convex MINLP problems
to achieve a constant approximation ratio in polynomial time
© Formulate Multi-Objective Optimization (MOO) for Software Defined
Coalitions (SDC)
e Apply Cooperative Game Theory to coalition environment
o Explore Trust based regions
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Thank you!
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Backup Slides
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S m Model

@ E, : the total energy consumption at node v

EVZ vR+EvT+EvC+Ev’ (5)

E,r = yveyr is the reception cost

E,1T = y,&,T76, is the transmission cost

E,c = yvevcl, (6,) is the computation cost

E,s = weayy T is the storage cost

I,(6,) :a decreasing differentiable function of the reduction rate, e.g.,
l(6,) = 5_1‘/ -1t

@ During a time period of T, Ry requests for the data yx generated by
leaf node k

LEswaran, Sharanya, et al. " Adaptive in-network processing for bandwidth and
energy constrained mission-oriented multihop wireless networks.” IEEE Transactions on
Mobile Computing 11.9 (2012): 1484-1498.
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Symbolic Reformulation

We consider k =1 and h(k) =1 in (4), i.e., one leaf node and one sink node. Then (1) and (2) reduce to

ES = y1f (61,0011 + y1f(61.1),

Ef =yi(Ri-1) [f(51 0)01,1 +01,001,1b10(-—5—= + 81T)]

T
(R iy
(6)

+y1(Ri - 1) [f(51 DA =biro) +611b11(-—= +&17) |,

T
(F\> D

r(r;it? E®?(6,b) = ES + EF

st. y1610011 27,
by,0. b1,1 € {0, 1},
b1,0y161,001,1 < So,
bi1y1611 < 51,
bio+ b1 <1 (7)
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Symbolic Reformulation

min - Wep;

bt
st. yiwgg 27,
bt Ift
bl,O, bl,l € {0’ 1}, Wobj = y181R51,1 + 81Ty1W1’0 + y181CW1’0 - y181C(51,1
—bt
wio < So, +y1€1R + E1T7Y101,1 + Y1€1¢/01,1 — Y1€1C
~ bt
Wt < S bt Ift
i1 L +y1(Ri—1) [81R51,1 +E1TWL g + E1cWy o — 1011
bio+by1 <1,

—b —b
W byyx by e TWEG/(RL = 1)+ et WG| +ya(Ry - D)1

Ift ~ bt
wi'y = 61,1/61,0. + 011817 + €1¢/01,1 — €1¢ — €1Rb1,0 — €17 Wy
—bt _ b . .

Wi = bio X wyy, - alcwllfg +ée1chbro + Wlb'i(Wca T/(Ri—-1)+ 51T)]
~ bt
W1 = b1 X611, (8)

~ bt
Wio = 01,1 X b1,

Ll
Wy = bro/d11,
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Evaluations

Increase in Total Energy Cost with Number of Requests
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Total Energy Costs vs. Number of Requests.
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