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Motivation

Energy is one of the fundamental limitations of sensors

Sensors are responsible and consume energy for

Communication
Computation
Caching

Tradeoffs among communication, computation and caching energy
costs

Computation (e.g. compression) consumes energy, but may reduce
communication energy cost
Caching reduces communication cost but also consumes energy
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The Big Question?

To achieve desirable tradeoffs

How much data compression is needed?

Where to cache data optimally?
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Importance of C3 tradeoffs to DAIS-ITA/P1?

Coalition infrastructure includes the C3 resources which we need to
use efficiently

Sensor networks often have limited energy supply =⇒ important to
optimize energy usage

We developed optimization solution for C3 tradeoffs that can be
applied to other problems
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System Model

Tree network is modeled as a
directed graph G = (V ,E )

K ⊆ V : the set of leaf nodes
(data source) with |K | = K

Only leaf nodes k ∈ K can
generate data of yk bits

Data is transmitted from a leaf
node towards the sink node s

Data of leaf node k can be
compressed before further
transmission with δk,i
reduction factor

Leaf node data can be cached
at most in one node along the
path towards sink node s
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System Model

The caching capacity at node
v ∈ V : Sv

Caching decision variable for
leaf node data k at depth i :
bk,i ∈ {0, 1}

Per-bit transmission, reception
and computation energy cost:
εvT , εvR , and εvC , define
f (δv ) =
εvR + εvT δk,i + εkC ( 1

δk, i
− 1)

During a time period T , Rk

requests for data yk generated
by leaf node k
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Energy Efficiency Optimization

EC
k : energy for data received, transmitted, and possibly compressed

by all nodes on the path from leaf node k to sink node s

EC
k =

h(k )∑
i=0

yk f (δk,i )
h(k )∏

m=i+1

δk,m (1)

ER
k : the total energy consumed in responding to the subsequent

(Rk − 1) requests

ER
k =

h(k )∑
i=0

yk (Rk − 1)
{
f (δk,i )

h(k )∏
m=i+1

δk,m

(
1 −

i−1∑
j=0

bk,j

)

+

( h(k )∏
m=i

δk,m

)
bk,i (

wcaT

(Rk − 1)
+ εkT )

}
. (2)
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Energy Efficiency Optimization

E total(δ, b) ,
∑
k ∈K

(
EC
k + E

R
k

)
(3)

Non-convex Mixed Integer Nonlinear Programming (MINLP)

min
δ,b

E total(δ, b)

s.t.
∑
k ∈K

yk

h(k )∏
i=0

δk,i ≥ γ,

bk,i ∈ {0, 1},∀k ∈ K , i = 0, · · · , h(k ),∑
k ∈Cv

bk,h(v )yk

h(v )∏
j=h(k )

δk,j ≤ Sv,∀ v ∈ V ,

h(k )∑
i=0

bk,i ≤ 1,∀k ∈ K . (4)
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Part 1: Solving the Non-Convex MINLP Problem using
our Variant of Spatial Branch and Bound Algorithm

(V-SBB)
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Symbolic Reformulation

Non-Convex MINLP problem

min ψ(X,Y )

s.t. G (X,Y ) ≤ 0

H (X,Y ) = 0

X L ≤ X ≤ XU,X ∈ R

Y ∈ [Y L, . . . ,Y U ]

Reformulated Problem

min
w

wobj

s.t. Aw = b

w l ≤ w ≤ wu

Y ∈ [Y L, . . . ,YU ]

wk ≡ wiwj ∀ (i, j, k ) ∈ τbt

wk ≡
wi

wj
∀ (i, j, k ) ∈ τlft

wk ≡ wn
i ∀ (i, k, n) ∈ τet

wk ≡ fn(wi ) ∀ (i, k ) ∈ τuft
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Spatial Branch-and-Bound

BBM example (taken from https:

//optimization.mccormick.northwestern.edu/index.php/File:SBB.png)
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V-SBB

Algorithm 1 Variant of Spatial Branch-and-Bound (V-SBB)

Step 1: Initialize φu := ∞ and L to a single domain
Step 2: Choose a subregion R ∈ L using least lower bound rule
if L = ∅ or ∀ R ∈ L, φR,l is infeasible then Go to Step 6

if φR,l ≥ φu − ε then Go to Step 5

Step 3: Obtain the upper bound φR,u

if upper bound cannot be obtained or if φR,u > φu then Go to Step 4
else φu :=φR,u and, from the list L, delete all subregions S ∈ L such that
φS,l ≥ φu − ε

if φR,u − φR,l ≤ ε then Go to Step 5

Step 4: Partition R into new subregions Rright and Rleft

Step 5: Delete R from L and go to Step 2
Step 6: Terminate Search
if φu = ∞ then Problem is infeasible
else φu is ε-global optimal

Decomposes non-linear functions of the original problem symbolically and
recursively with simple operators into simple functions
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Evaluation

Parameters used in
simulations

Parameter Value
yk 1000
Rk 100

wca 1.88 × 10−6

T 10s

εvR 50 × 10−9

εvT 200 × 10−9

εcR 80 × 10−9

γ [1,
∑
k∈K yk ]

Candidate network topologies used in the
experiments
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Evaluations

The Best Solution to the Objective Function (Obj.) and Convergence time for
Seven-node network (γ is the required QoI threshold)

Method
γ = 1 γ = 1000 γ = 2000 γ = 3000 γ = 4000

Obj. Time (s) Obj. Time (s) Obj. Time (s) Obj. Time (s) Obj. Time (s)
Bonmin 0.0002 0.214 0.039 0.164 0.078 0.593 0.117 0.167 0.156 0.212
NOMAD 0.004 433.988 0.121 381.293 0.108 203.696 0.158 61.093 0.181 26.031
GA 0.043 44.538 0.096 30.605 0.164 44.970 0.226 17.307 0.303 28.820
V-SBB 0.0001 1871 0.039 25.101 0.078 30.425 0.117 23.706 0.156 19.125

Summary of Results

V-SBB outperforms all other algorithms in terms of obtaining better
objective value

Bonmin is faster but it has infeasibility issue and poor performance for some
cases · · ·
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Evaluations

Infeasibility: Not being able to find a solution when it exists

Infeasibility of Bonmin for different networks

Networks (a) (b) (c) (d)
Number of testing γ values 1000 2000 2000 4000

Number of infeasible solutions 0 0 1 216
Infeasibility (%) 0 0 0.05 5.4

Comparison between V-SBB and Bonmin for small γ values in seven-node network

Method
γ =1 γ =5 γ =50

Obj. Time (s) Obj. Time Obj. Time
Bonmin 0.0002 0.214 0.0003 0.224 0.0021 0.364
V-SBB 0.00011 1871 0.00019 1243 0.0020 3325
Imp. (%) 52.45 50.30 4.62
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Importance of C3 over C2 tradeoffs
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Conclusions

Formulated energy tradeoffs among communication, computation and
caching with QoI guarantee as non-convex MINLP optimization
problem

Proposed a variant of spatial branch-and-bound (V-SBB) algorithm,
which can solve the MINLP with ε-optimality guarantee

Observed that C3 optimization improves energy efficiency by as much
as 88% compared with either of the C2 optimizations
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Ongoing Work

1 New formulation: minimize latency with energy constraints

2 Design approximate algorithms to these non-convex MINLP problems
to achieve a constant approximation ratio in polynomial time

3 Formulate Multi-Objective Optimization (MOO) for Software Defined
Coalitions (SDC)

Apply Cooperative Game Theory to coalition environment
Explore Trust based regions
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Thank you!
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Backup Slides
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System Model

Ev : the total energy consumption at node v

Ev = EvR + EvT + EvC + EvS, (5)

EvR = yvεvR is the reception cost
EvT = yvεvT δv is the transmission cost
EvC = yvεvC lv (δv ) is the computation cost
EvS = wcayvT is the storage cost
lv (δv ) :a decreasing differentiable function of the reduction rate, e.g.,
lv (δv ) = 1

δv
− 11

During a time period of T , Rk requests for the data yk generated by
leaf node k

1Eswaran, Sharanya, et al. ”Adaptive in-network processing for bandwidth and
energy constrained mission-oriented multihop wireless networks.” IEEE Transactions on
Mobile Computing 11.9 (2012): 1484-1498.
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Symbolic Reformulation

Example
We consider k = 1 and h(k ) = 1 in (4), i.e., one leaf node and one sink node. Then (1) and (2) reduce to

EC
1 = y1f (δ1,0)δ1,1 + y1f (δ1,1),

ER
1 = y1(R1 − 1)

[
f (δ1,0)δ1,1 + δ1,0δ1,1b1,0(

wcaT

(R1 − 1)
+ ε1T )

]

+ y1(R1 − 1)
[
f (δ1,1)(1 − b1,0) + δ1,1b1,1(

wcaT

(R1 − 1)
+ ε1T )

]
, (6)

min
δ,b

E total(δ, b) = EC
1 + E

R
1

s.t. y1δ1,0δ1,1 ≥ γ,

b1,0, b1,1 ∈ {0, 1},

b1,0y1δ1,0δ1,1 ≤ S0,

b1,1y1δ1,1 ≤ S1,

b1,0 + b1,1 ≤ 1. (7)
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Symbolic Reformulation

min
δ,b

wobj

s.t. y1w
bt
1,0 ≥ γ,

b1,0, b1,1 ∈ {0, 1},

y1w
bt
1,0 ≤ S0,

y1w̃
bt
1,1 ≤ S1,

b1,0 + b1,1 ≤ 1,

wbt
1,0 = δ1,1 × δ1,0,

w lft
1,0 = δ1,1/δ1,0,

wbt
1,0 = b1,0 × w

b
1,0,

w̃bt
1,1 = b1,1 × δ1,1,

w̃bt
1,0 = δ1,1 × b1,0,

w̃ lft
1,0 = b1,0/δ1,1,

wobj = y1ε1Rδ1,1 + ε1T y1w
bt
1,0 + y1ε1Cw

lft
1,0 − y1ε1C δ1,1

+ y1ε1R + ε1T y1δ1,1 + y1ε1C/δ1,1 − y1ε1C

+ y1(R1 − 1)
[
ε1Rδ1,1 + ε1Tw

bt
1,0 + ε1Cw

lft
1,0 − ε1C δ1,1

+ wcaTwbt
1,0/(R1 − 1) + ε1Twbt

1,0

]
+ y1(R1 − 1)

[
ε1R

+ δ1,1ε1T + ε1C/δ1,1 − ε1C − ε1Rb1,0 − ε1T w̃
bt
1,0

− ε1C w̃
lft
1,0 + ε1Cb1,0 + w̃

bt
1,1

(
wcaT/(R1 − 1) + ε1T

)]

(8)
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Evaluations
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