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EVOLVING RECURRENT NEURAL NETWORK USING CARTESIAN

GENETIC PROGRAMMING TO PREDICT THE TREND IN FOREIGN

CURRENCY EXCHANGE RATES

Faheem Zafari, Gul Muhammad Khan, Mehreen Rehman, and Sahibzada Ali

Mahmud

Centre of Intelligent Systems and Network Research, Electrical Engineering Department,
University of Engineering and Technology Peshawar, Peshawar, Pakistan

� Forecasting the foreign exchange rate is an uphill task. Numerous methods have been used over
the years to develop an efficient and reliable network for forecasting the foreign exchange rate. This
study utilizes recurrent neural networks (RNNs) for forecasting the foreign currency exchange rates.
Cartesian genetic programming (CGP) is used for evolving the artificial neural network (ANN) to
produce the prediction model. RNNs that are evolved through CGP have shown great promise in
time series forecasting. The proposed approach utilizes the trends present in the historical data for
its training purpose. Thirteen different currencies along with the trade-weighted index (TWI) and
special drawing rights (SDR) is used for the performance analysis of recurrent Cartesian genetic
programming-based artificial neural networks (RCGPANN) in comparison with various other pre-
diction models proposed to date. The experimental results show that RCGPANN is not only capable of
obtaining an accurate but also a computationally efficient prediction model for the foreign currency
exchange rates. The results demonstrated a prediction accuracy of 98.872 percent (using 6 neurons
only) for a single-day prediction in advance and, on average, 92% for predicting a 1000 days’
exchange rate in advance based on ten days of data history. The results prove RCGPANN to be the
ultimate choice for any time series data prediction, and its capabilities can be explored in a range of
other fields.

INTRODUCTION

The last couple of decades have witnessed an exponential increase in the
computerization of the world. Forecasting the foreign currency exchange
rates is a challenging issue, which is usually done through financial time
series. The setup of a time series is very noisy and unstable (Phillip, Tofiki,
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598 F. Zafari et al.

and Bidemi 2011). Although there are several statistical models that are cur-
rently used for forecasting the foreign currency exchange rates, they lack
flexibility and efficiency to deal with the highly volatile nature of foreign
exchange data. Financial time series are usually utilized to tackle the issue
of forecasting the foreign currency exchange rate. There is a need for an
efficient technique that can be used to deal with the financial time series.
Research has indicated that the use of artificial neural networks (ANNs)
offer superior performance to other techniques in dealing with time series
forecasting (Refenes et al. 1993; Kadilar, Simsek, and Aladag 2009; Tenti
1996). Because of the data-driven and self-adaptive nature of ANNs, they
can serve as an alternate for forecasting. They have the capability of learning
from the past experience and can obtain the subtle functional relationships
that are present in the data. In the presence of adequate observation of a
specific problem, ANNs can provide us with the solution, even if the solu-
tion is based on information that is difficult to specify (Zhang, Patuwo, and
Hu 1998). In this study we have used recurrent Cartesian genetic program-
ming (CGP) to evolve a recurrent neural network (RNN) model, which can
be used for forecasting the foreign currency exchange rate. As is clear from
the name, the model is recurrent feedback based that is generated using
the CGP. Because the forecasting is to be done for a time series, we have
used historical data of the currency exchange rates to train the model, so
that the model can learn the behavior of the financial time series. Once we
trained the network, we then evaluated its performance using various other
datasets. The obtained experimental results show that the recurrent-CGP-
based artificial neural network (RCGPANN) deals with the unstable financial
time data series with extreme efficiency because of its fast learning ability.
Experimental results also show that the RCGPANN is superior to all other
models utilized up until now in terms of efficiency and the computational
cost of implementation.

The rest of this article is organized as follows: “Literature Review”
presents a review of related work. “Recurrent Neural Networks” discusses
recurrent neural networks, Cartesian genetic programming, and Cartesian
genetic programming evolved artificial neural network. “Recurrent
Cartesian Genetic Programming evolved Artificial Neural Network” dis-
cusses the utilized model. “Experimental Setup” presents the experimental
ambience and scenarios in which they were carried out. “Results and
Analysis” presents the obtained experimental results. “Conclusion and
Future Work” concludes the article and presents future work directions.

LITERATURE REVIEW

There are several models available that have been put forth to deal with
time series forecasting. The models differ in their methodology of predic-
tion and can be differentiated from each other on the basis of their ability to
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EVOL Recurrent CGPANN to Predict Trends in FOREX Rates 599

predict the foreign exchange rates in the future as well as how easily are they
implemented. Despite the promise shown by statistical techniques in deal-
ing with time series forecasting, they are restrained by set of nonlinear data
(Kadilar, Simsek, and Aladag 2009: Dablemont et al. 2003). Artificial neu-
ral networks have been used successfully for time series forecasting (Tenti
1996) and modeling. They have been used for prediction of financial time
series (Bhattacharya, Parlos, and Atiya 2003) along with several other tasks
such as prediction of communication network traffic (Bhattacharya, Parlos,
and Atiya 2003) and forecasting of river flow (Atiya et al. 1999). A neuroevo-
lutionary technique called Cartesian genetic programming evolved artificial
neural network (CGPANN) has also been used in Khan, Khan, and Ullah
(2011) to come up with a model that can predict a peak load 24 hours ahead.
This network can be used to obtain a significantly unique model for every
season because it is trained using annual and quarterly bases. CGPANN is
proposed in Khan, Khan, and Miller (2010a) to deal with control problems
related to nonlinear Markovian and non-Markovian methods. It is applied
to the problem of pole-balancing using both Markovian and non-Markovian
cases. The results show that the CGPANN has the tendency to produce a
neural architecture along with parameters that will be able to tackle the
problems in fewer iterations compared to other neuroevolutionary tech-
niques. The Elman neural network has been used in Marra and Morabito
(2005) for forecasting solar activities. An Elman network uses positive feed-
back in order to build its memory. It does so by adding various recurrent
connections. Although the structures are multilayer perceptrons (MLPs),
there is a difference present as well. The input layer is made up of the input
neurons along with units known as the context units. The context units
accumulate the neurons of the hidden layers, which belong to the previ-
ous time step. These neurons then serve as inputs of the current time step.
The inputs are not supplied with a feedback from the network output. The
number of context units is the same as that of the hidden neurons, a result
of which the outputs of two Elman networks will be different, even if they
have similar weights, biases, and are supplied with the same input at any
given time step. The output is different because of the variation in feed-
back states. A nonparametric method is used in Gradojevic and Yang (2006)
to forecast the Canadian and US dollar exchange rate. The results show that
ANNs outperform the random walk and linear models in terms of root mean
square error (RMSE) and percentage of correctly predicting the variations
in the exchange rate. The performance evaluation and comparison of multi-
layered feed-forward neural network (MLFN) and general regression neural
network (GRNN) is presented in Chen and Leung (2005). The ability of the
networks to predict the currency exchange correlation is empirically eval-
uated for both models on the basis of a number of statistical tests such as
RMSE, mean absolute error (MAE), and so forth. The experimental results
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600 F. Zafari et al.

show that the success of neural networks in forecasting relies on the archi-
tectural design of the model. The use of market timing tests show that both
the models perform efficiently in forecasting the exchange rate correlation.
The RNN seems the optimum approach for modeling, and the forecast-
ing accuracy is also the highest for the RNN. Kaashoek and Dijk (2002)
have proposed a threefold procedure in order to shrink the network size.
This method lacks the numeric intensiveness because the cell contribution
relies on the result of just a single optimization procedure while includ-
ing the variables involved. Because the method is of a descriptive nature,
it is beneficial for explanatory analysis of the data. The network, which is
obtained through cell pruning, can then be utilized for dynamic analysis
and prediction. In Nag and Mitra (2002), a hybrid artificial intelligence
method has been used in order to model the diurnal foreign exchange
rates. The method is based on the use of ANN along with a genetic algo-
rithm (GA), which provides better performance compared to the fixed-size
neural networks. According to Marsh (2000), Markov models can approx-
imate the data properly. As with other linear and nonlinear formulations,
Markov models fit the exchange data rate properly. The Japanese yen, British
pound sterling and the German deutschemark are used for exchange rates
with respect to the US dollar. This model predicts efficiently only within
the estimation period used and applying it outside the estimation period
will not be satisfactory. The reason behind the ineffective forecasting per-
formance is the instability of the parameters. That’s why there is room for
further research in order to carry out the necessary incorporations in the
model. The accuracy of forecasting by the alternative vector auto regressive
models is analyzed in Joseph (2001). The findings conclude that estimation
based on the Bayesian method provides superior forecasting compared to
the ordinary least square (OLS) method, which becomes even more evi-
dent in the case of nonstationary specifications. The predicting ability of
the model is weak. Nonparametric neural network regression and RNNs are
used in Dunis and Huang (2002) for forecasting the foreign exchange of
USD into British pounds and USD into Japanese yen. The RNN seems the
optimum approach for modeling, and the forecasting accuracy is also the
highest for the RNN. Markov switching models are proposed in Parikakis
and Merika (2009) for capturing the volatility dynamics of the exchange
rates as well as evaluating their ability to forecast. It is identified that the
increase of volatility in four different Euro-based exchange rates is because
of the underlying changes in the structure. The findings also show the close
relationship between the currencies during periods of high volatility, dur-
ing which there is a significant increase in cross correlations. The Markov
switching Monte Carlo approach proves to be superior to the random walk
hypothesis. The use of econometric methodology assists in accurate forecast-
ing of exchange rate movements. The model provides better out-of-sample
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EVOL Recurrent CGPANN to Predict Trends in FOREX Rates 601

returns with Euro/US dollar and Euro/British pound; however, it performs
poorly when used with Euro/Brazilian real or Euro/Mexican peso. This fail-
ure is due to the high volatility in Latin American currencies. In Qian and
Rasheed (2010), it is shown that all periods are not equally random. Also,
the accuracy was increased up to 67% by collaboration of various models
such as the ANN, decision tree, naïve Bayesian classifier, and k-nearest neigh-
bor. The analysis in Skintzi and Sisinis (2007) shows that the generalized
autoregressive conditionally heteroskedastic (GARCH) models are better in
accounting for the dynamic structure of correlation in the case of bond
and stock portfolios, however, the simpler specifications such as the histor-
ical mean model deal efficiently with currency portfolios. The predictors
in Rivero and Garcia (2005) perform superior to random walk models in
terms of prediction error and directional forecasts for forecasting periods of
up to five days. The analysis in Farsa and Zolfaghari (2011) is based on the
use of the embedding theorem in combination with artificial intelligence
and residual analysis. The results show that such a combination can provide
better forecasting results for a chaotic time series.

Cartesian Genetic Programming (CGP)

Miller introduced the idea of CGP in 1999. It is the type of genetic
programming in which a computer program or a digital code is gener-
ated by a two-dimensional graphical representation. It is a highly flexible
and efficient technique for genetic programming, which started by evolv-
ing an electronic circuit in 1997 (Vasicek and Sakanina 2010; Rothermich
and Miller 2002). CGP moves a step further by using arrays and a Cartesian
framework, whereas the genetic program relies on the automatic evolution
of digital or computer structures (Khan, Khan, and Miller 2010b). Directed
acyclic graph formats, which work in the feed forward direction, are used to
represent the program in CGP. The grid of programmable nodes are used
to represent the two-dimensional graphs of CGP (Rothermich and Miller
2002).

A combination of a fixed number of arrays of integers, which represent
the network in the form of functions, inputs, outputs, and their interconnec-
tivity, constitutes the genotype. The network connection that exists between
the nodes is limited by the level-back parameter. Nodes can be either active
(i.e., when they are major participants in the network producing the out-
put) or they can be the junk nodes that remain inactive. The product of the
total rows and columns in the network will make the total number of nodes.
Activation functions such as step, tangent-hyperbolic, logical AND, logical
OR, and sigmoid can be assigned to the nodes. Weights are assigned to
the connections between the nodes. This two-dimensional form of computa-
tional nodes, which constitute the network architecture, is termed Cartesian
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602 F. Zafari et al.

genetic programming (Rothermich and Miller 2002; Miller and Harding
2008). The CGP is an efficient and reliable programming method that can
be used to evolve an ANN. The nodes can be implicitly reused because they
allowed connection to previous node outputs present in the graph (Gomez
and Schmidhuber 2008). CGP is also superior to tree-based programming
representations because it can efficiently reuse the noncoding genes and
represent various numbers of outputs. The general form of CGP is shown in
Figure 1.

Recurrent Neural Networks

RNNs are special neural networks because of their dynamic behavior.
They are different from the feed-forward network because of the presence
of at least one feedback path. The feedback can be for a layer or a single
neuron wherein the output is feedback as the input. The feedback pro-
foundly impacts the network’s learning ability. The feedback paths also
use branches with unit delay elements, which cause a nonlinear dynami-
cal behavior due to the nonlinear neuron nature (Toha and Tokhi 2008).
This nonlinear dynamic plays an important role in the storage function
that a recurrent network has (Hayken 1999). Recurrent networks have the
tendency to be sensitive and to adapt to the past inputs. The RNNs with
the feedback connections and internal dynamic elements are superior to
feed-forward networks when it comes to the modeling and control of the
nonlinear systems (Linkens and Nyongesa 1996).

FIGURE 1 General form of Cartesian genetic programming.
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EVOL Recurrent CGPANN to Predict Trends in FOREX Rates 603

For prediction and classification, the RNNs are known for efficiently uti-
lizing the temporal information present in the applied inputs. Once they are
trained, the output can then be produced by processing the interrelation
between the current inputs and the internal states. The learning process
is supervised, during which the target value is used as the second infor-
mation source. The target values also highlight the relevant interrelations
present in the input sequence. The input to the RNNs is in the form of a
time series whereas the target can be a trivial sequence based on constant
value, or it can be a nontrivial time series. In the case of classification, a con-
stant class label is used as the output, whereas for prediction, another time
series constitutes the output (Husken and Stagge 2003). Recently, RNNs
with feedback have also been proposed to be used for temporal process-
ing. An RNN known as the prediction recurrent artificial neural network’s
(PRANN) performance is twofold better than the time-delay (TD) networks.
It is an MLP network that has recurrent connections along with a complete
backpropagation learning rule. The backpropagation learning rule updates
the network’s weights. It is based on the recurrent network that was proposed
by William and Zipser (1989). It can process time series because it has certain
incorporating features. The network utilizes arbitrary dynamics whereas the
backpropagation algorithm is used for reducing the output error. The net-
work topology of PRANN has added a linear output node along with a linear
hidden node to the already existing RNN proposed by William and Zipser
(1989). It can be seen that the weights that connect the nonlinear hidden
layer nodes with the output node are not updated when the William and
Zipser network is recast into a similar topology such as Madhavan (2011).
This is the reason that the PRANN is viewed as the recurrent ANN, which
is fit for processing the time series while updating the weights. PRANN out-
performs the traditional TD neural networks when used for both linear and
nonlinear time series (Madhavan 2011). The RNNs have proved to be bet-
ter than the feed forward networks because they require less training time
and the size of the network is smaller. The results for single-step ahead and
multiple-steps ahead forecasting have been better for the RNNs (Kumar,
Raju, and Sathish 2004). The dynamic recurrent neural network (DRNN;
Aussem, Murtagh, and Sarazin 1995) is another RNN that is obtained by
modeling the synapses in the form of autoregressive filters. The DRNNs use
a system of nonlinear difference equations of internal variables for approx-
imating the laws governing the time series, which is the reason behind the
DRNNs providing history-sensitive forecasts without even using any exter-
nal memory. The temporal recurrent backpropagation model is used for
training the DRNN model. The DRNN has proved to outperform the fuzzy k-
nearest neighbors. The RNNs, due to the feedback mechanism, have proved
to outperform a number of other models.
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604 F. Zafari et al.

The RNNs in Cai et al. (2004) are trained with a training algorithm
that relies on the hybrid of evolutionary algorithm (EA) and particle swarm
optimization (PSO). This combination of the searching ability of the EA
and PSO removes the restriction on the individual’s evolution. Indeed, the
individual with better performance is able to produce offspring in order to
replace the poor-performing individuals. The experimental results showed
that the RNNs that are trained using the hybrid algorithm have the capa-
bility of predicting the missing values in time series keeping the error at a
lesser value compared to the networks that are trained using PSO or EA.
Using the boosting algorithm can also improve the results when applied to
the RNNs in forecasting the values of a time series as shown by the experi-
ments in Boné, Assaad, and Crucianu (2003). The use of weighted median
is also superior to weighted mean when used for combining the learners.

Using the RNNs in combination with symbolic processing can assist in
dealing with the problem of high noise and forecasting of nonstationary
time series (Giles, Lawrence, and Tsoi 2001). The use of symbolic conver-
sion makes the training of RNNs more effective and the symbolic input
assists in extracting the rules from the trained network. The results in Giles,
Lawrence, and Tsoi (2001) show that the meaningful symbolic knowledge
can be obtained from the noisy time series. It is evident that when a robust
learning algorithm in which the outliers are filtered from the data and the
parameters are estimated on the basis of the filtered data is applied to an
RNN, a robust RNN is produced that has many advantages over the tradi-
tional feed forward networks (Connor, Martin, and Atlas 1994). The use
of filtered data for training the neural networks provides the network with
better forecasting skills compared to the networks that are trained with non-
filtered data. Three different recurrent architectures have been analyzed in
Tenti (1996). After the analysis a trading plan is also proposed.

Cartesian Genetic Programming Evolved Artificial Neural Network

(CGPANN)

The Cartesian genetic programming evolved artificial neural network
was proposed by Khan, Khan, and Miller (2010c). It uses CGP representa-
tion to define the evolution of ANN. The basic idea behind CGPANN is that
the topology, weight, and functions are encoded in one genotype, which is
then evolved for the augmented topology, the optimum weights, and func-
tions. The genotype is made up of nodes that correspond to a full ANN. The
topological features are random initially, however, some features might be
removed, or new features might be added with the passage of time. This hap-
pens through the mutation of functions, inputs, weights, connection types,
and outputs. At the start, a genotype—known as the parent genotype—is
used for representation of the network. The parent genotype is mutated for
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EVOL Recurrent CGPANN to Predict Trends in FOREX Rates 605

producing the offspring. The process of producing new offspring continues
until an offspring with desired fitness level is attained. The fittest genotype
is then used for the desired application. The neuron is the basic functional
unit of CGPANN. The number of neurons is dependent on the requirement
for the representation of the network. The system output relies on active
nodes; the junk neurons do not take part in the output of the network.

Initially, genotype population is generated for network representation.
The initial genotype is termed as the parent genotype which produces off-
spring through mutation; 1+ λ evolutionary strategy is used to produce the
offspring, whereas λ shows the number of offspring that are produced. Once
the offspring are obtained by the mutation of the parent genotype that is
the fittest, then the fittest offspring becomes the parent and is mutated to
reproduce new offspring for the next generation. The reproduction of new
offspring continues until the desired level of fitness is attained. The applica-
tion uses the fittest genotype. Figure 3 shows the flow chart, which highlights
the generalized approach for CGPANN.

It should be noted that because CGPANN is based on the topology-and-
weight-evolving artificial neural network (TWEANN), it tends to be both
constructive and destructive (Zhang and Muhlenbein 1993).

RECURRENT CARTESIAN GENETIC PROGRAMMING EVOLVED

ARTIFICIAL NEURAL NETWORK (RCGPANN)

The importance of recurrent networks cannot be denied when it comes
to dealing with a broader domain of dynamic and nonlinear systems. The
RCGPANN presented by Khan, Khan, and Miller 2010a) is the neuroevolu-
tionary algorithm that benefits from the insuperable ability of CGP in the
generation of a recurrent artificial neural architecture. It varies from various
other classes of CGPANN in that it relies on a feedback mechanism (i.e., the
system is fed back with one or many of the outputs). (A neuron structure is

FIGURE 2 Neuron’s structure in CGPANN.
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606 F. Zafari et al.

FIGURE 3 Flow chart for CGPANN.

CGPANN is shown in Figure 2.) RCGPANNs are based on the direct encod-
ing method. In direct encoding, the topology functions and weights are
encoded in one genotype, which are then evolved in order to obtain the opti-
mum weights, functions, along with an augmented topology. The offsprings
are generated by an evolutionary strategy known as the 1+ λ with λ = 9 evo-
lutionary strategy. As with CGPANN, RCGPANN is also based on TWEANN,
hence it is both a destructive and a constructive algorithm. During the evo-
lution of the topological features in RCGPANN, some features are removed
and others are added. Mutation is used to evolve the functions, weights,
inputs, outputs, and connection types. The connections that are disabled
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EVOL Recurrent CGPANN to Predict Trends in FOREX Rates 607

because of mutation are not entirely removed; indeed, there is the probabil-
ity that they might be re-enabled in generations to follow. The architecture
is different compared to the traditional ANN in that the neurons that are
derived by the network are not entirely connected, and all the neurons
in the input layers are not provided with program inputs. This provides
the RCGPANN with the possibility of producing topologies whose hardware
implementation and timing is efficient (Refenes et al. 1993). The geno-
type of RCGPANN is made up of nodes that represent the ANN neurons.
The nodes are based on certain inputs, connections, weights, and functions,
which can be seen in Figure 4. There are three types of inputs: (1) the pro-
gram inputs, (2) the inputs that come from the feedback, and (3) previous
nodes’ inputs. The inputs in the first layer of genotype of the RCGPANN are
recurrent and system inputs only; however, presence of recurrent connec-
tions for the following layers relies on whether the feedback input is chosen
randomly to be used as an node input. A node is considered to be a con-
nected node if the connection has a value of one, and it is considered to be
disconnected if its connection is zero. The generation of weights takes place
randomly between −1 and +1, however, the weight of the feedback input is
always +1. The inputs and weights of all the connected inputs are multiplied
and then summed, then they are forwarded to either a linear or a nonlin-
ear function such as a tangent hyperbolic, linear, sigmoid, or step function
for the production of outputs at every node. The resultant output can then
be used as the input for the next node or system output. The genotype

FIGURE 4 (a) 3 inputs into the RCGPANN node; (b) internal view of the RCGPANN node in (a).
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608 F. Zafari et al.

output(s) can be any node output(s) or the input(s) of the program. In the
case wherein the recurrent input is connected, then the genotype output
is used as the feedback to the nodes. The genotype of the RCGPANN is
then evolved through mutation generation after generation to achieve the
desired fitness. It is worth mentioning that the connections and state unit
weights are not mutated. The obtained genotype is then transformed into
the artificial neural architecture (Khan, Khan, and Miller 2010a).

Figure 4(a) shows the block representation of a RCGPANN node with
3 inputs (I1, I2, R), along with weights (W13, W23, WR3) and the respective
connections. C13, C23, CR3. W13, W23, and WR3 are the weights associated with
the input I1, I2, and R, respectively. R is the input that has been fed back from
the system output and is known as the recurrent input. The weight WR3 is
1 when used for node 3. Initially, R’s value is taken to be 0. The internal view
of the RCGPANN node can be seen in Figure 4(b). The unconnected three
inputs I1, I2, and R are, respectively, multiplied with their corresponding
weights W13, W23, WR3. Their results are summed and then fed into a sigmoid
function, which generates the node 3 output.

Figure 5(a) shows the genotype of a 2 x 2 RCGPANN network, which has
3 inputs (I1, I2, R) along with 2 functions (tanh, sigmoid) and an output
node “6.” The genotype’s block diagram is shown in Figure 5(b), and the
network’s internal view is shown in Figure 5(c). The inputs to node 6 are
provided from I3, I2, and the feedback value, which is taken as zero for the
initial step.

The input I3 is the node 3 output in which the inputs to the node 3 are
I1, I2, and system feedback with the tanh function (the system feedback in

FIGURE 5 (a) A 2 x 2 RCGPANN’s genotype; (b) block representation of the genotype in (a); (c)
graphical representation of the genotype in (a).
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EVOL Recurrent CGPANN to Predict Trends in FOREX Rates 609

this case is the node 6 output). After computing the node 3 output, the
network then processes the result. Once the genotype is obtained, it is then
transformed into the neural architecture of Figure 6.

EXPERIMENTAL SETUP

This study uses the historical data of foreign exchange, which is obtained
from the Australian Reserve Bank, for training the proposed forecasting
model of currency exchange rates. Overall, data of 500 days of the US dollar
is used to train ten networks for five independent seeds. At the initial stages
of the experiment, a random RCGPANN population was generated. The sig-
moid function was used as the activation function. The number of inputs
per node was five. A 10% mutation rate (μr) was chosen because it results in
a better system in less time (Kadilar, Simsek, and Aladag 2009; Huang et al.
2006). We used only a single-row RCGPANN, because the number of gener-
ated graphs is infinite. So the number of both nodes and columns was equal.
The number of inputs and outputs was fixed at ten for the network. After
the mutation of the randomly generated genotype, we obtained a further
ten networks on the basis of 1+ λ evolutionary strategy, where λ was nine in
this case. The mean absolute percentage error (MAPE) was used to evaluate
the fitness of the offspring. The network with the best MAPE parameter was
promoted to the next generation. The same network was then utilized for
the production of nine more networks by using the mutation process. The

FIGURE 6 Phenotype of the genotype in Figure 5(a).
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610 F. Zafari et al.

process kept going until we obtained our desired fitness. During the training
phase, we ran the experiment for one million generations.
The mathematical expression for MAPE value is:

MAPE = 1
N

∑N

i=1

(
Li

F − Li
A

)

Li
A

× 100.

Whereas fitness is given by

Fitness = 100 − MAPE.

The forecasted value is represented by LF ; LA indicates the actual value;
and N represents the number of weeks. Internationally, MAPE is used as
the standard in performance evaluation of algorithms used for time series
prediction whereas fitness or accuracy provides us with the mathematical
measure of the system’s performance. The proposed method’s performance
is also presented in terms of the MSE and RMSE as well.

MSE is the methodology used for quantifying the difference of values
obtained by an estimator and the actual values of the quantity that is being
estimated. Mathematically

MSE(X ) = 1
N

∑N

i=1

(
Li

F − Li
A

)2

Li
A

,

where LF is the estimated and LA is the actual value.
The RMSE is the square root of the MSE, that is,

RMSE =
√√√√ 1

N

∑N

i=1

(
Li

F − Li
A

)2

Li
A

The number of feedbacks was varied. Initially we started with only one
feedback, which was then increased to five and finally ten.

Figure 7 presents the structure of the network for various experiments:
7(a) shows the network with only one feedback path, 7(b) shows the net-
work with five feedback paths, and 7(c) shows the network with ten feedback
paths. Figure 8 shows the sliding-window mechanism. Initially the data of
10 days is used to forecast the data for day 11 and then the window slides
toward day 11 and uses that to forecast for day 12.
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EVOL Recurrent CGPANN to Predict Trends in FOREX Rates 611

FIGURE 7 (a) Single feedback, (b) five feedbacks, and (c) ten feedbacks.

RESULTS AND ANALYSIS

We tested the forecasting capability of the network on a number of
stocks and various sets of data. We also tested the trained network perfor-
mance by monitoring the historical data spanning 1000 days for a number of
foreign currencies. The currencies under observation were Euro, Japanese
yen, GB pound, Canadian dollar, New Zealand dollar, Singapore Dollar,
Taiwanese dollar, Hong Kong dollar, Chinese yuan, South Korean won,
Indonesian rupiah, Malaysian ringgit, and Swiss franc along with trade
weight index (TWI) and special drawing rights (SDR). The TWI is the mul-
tilateral exchange rate index. It is calculated using the weighted average of
exchange rate of home currency against the foreign currency. The weight

D
ow

nl
oa

de
d 

by
 [

K
oc

 U
ni

ve
rs

ity
] 

at
 0

6:
08

 1
6 

Ju
ly

 2
01

4 



612 F. Zafari et al.

FIGURE 8 The sliding window mechanism.

of the foreign currency depends upon the share of the foreign country’s
trade with the home country. The SDRs are defined and maintained by
the International Monetary Fund. They are based on the additional foreign
exchange reserve assets. SDR itself is not a currency, indeed it shows the
claim by an IMF member country to a specific currency for which it can be
exchanged.

During the test phase, the estimation of data over the testing set with
known historical values was executed. Then the network performance was
evaluated by comparing the estimated values with the actual values from the
data. We present the results for the network trained with single feedback,
5 feedback paths, and 10 feedback paths.

Table 1 provides us the training results for the network. The network
was trained for 500 days using USD. It can be seen from the results that
increasing the number of feedback paths provides us with higher accuracy
with fewer nodes.

The testing results of the network with a single feedback and various
numbers of nodes for a number of currencies are presented in terms of
accuracy in Tables 2a and 2b for the prediction of the 11th day on the
basis of the 10 days of data history for a period of 1000 days. For all the
currencies, TWI, and SDR, the most accurate results are with 500 nodes.
Because we have used only one feedback, we obtained the most accurate
results with 500 nodes. It can be clearly seen that we obtained the most accu-
rate results with 500 nodes for the Indonesian rupiah. Figure 9 shows the
pattern for actual and estimated values. Both the waveforms are very close to
each other, highlighting the efficiency of RCGPANN in accurate prediction
of the values.

The testing results of the network with five feedback paths and various
numbers of nodes for a number of currencies are presented in terms of
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EVOL Recurrent CGPANN to Predict Trends in FOREX Rates 613

TABLE 1 Training Results for Various Network Sizes Showing Average Performance in
Terms of Accuracy

Training Table

Nodes Single Feedback 5 Feedbacks 10 Feedbacks

50 98.34 98.43 98.46
100 98.24 98.45 98.42
150 98.31 98.46 98.44
200 98.37 98.46 98.46
250 98.32 98.46 98.44
300 98.36 98.46 97.19
350 98.38 98.45 98.46
400 98.37 98.43 98.37
450 98.45 98.46 98.45
500 98.43 98.42 98.45

TABLE 2a The Testing Results for Various Currencies in Terms of Accuracy of RCGPANN Predicting
the 11th Day on the Basis of 10 Days of Data History with a Single Feedback for a Period of 1000 Days

Nodes 50 100 150 200 250 300 400 450 500

YEN 98.43 98.28 98.39 98.47 98.39 98.65 98.49 98.41 98.69
EURO 97.74 97.64 97.72 97.77 97.72 97.80 97.78 97.74 97.88
GBP 98.02 97.88 97.98 98.06 97.98 98.19 98.08 97.99 98.27
CHF 97.89 97.74 97.85 97.93 97.85 98.18 97.95 97.83 98.25
NZD 98.21 98.16 98.20 98.23 98.20 98.19 98.23 98.23 98.26
CAD 98.25 98.18 98.23 98.27 98.24 98.28 98.28 98.26 98.31
HKD 97.95 97.79 97.91 97.99 97.91 98.39 98.01 97.86 98.39
SGD 98.23 98.06 98.18 98.27 98.18 98.55 98.29 98.17 98.57
MYR 98.07 97.91 98.03 98.11 98.03 98.44 98.13 98.00 98.46
TWD 98.04 97.88 97.99 98.08 97.99 98.32 98.10 97.98 98.37
KRW 98.42 98.34 98.40 98.45 98.41 98.52 98.46 98.43 98.54
IDR 98.67 98.51 98.63 98.71 98.63 98.85 98.73 98.67 98.87
CNY 98.07 97.92 98.03 98.11 98.03 98.40 98.13 98.01 98.43

TABLE 2b The Testing Results for TWI and SDR in Terms of Accuracy of RCGPANN Predicting the 11th
day on the Basis of 10 Days of Data History with a Single Feedback for a Period of 1000 Days

Nodes 50 100 150 200 250 300 400 450 500

TWI 97.98 97.81 97.93 98.03 97.93 98.44 98.05 97.89 98.46
SDR 97.36 97.23 97.32 97.39 97.32 97.74 97.41 97.29 97.71

accuracy in Tables 3a and 3b for the prediction of 11th day on the basis
of the ten days of data history over a period of 1000 days. EURO and GBP
were predicted with highest accuracy using 450 nodes. HKD, TWD, CHF,
SGD, MYR, TWI, SDR, CNY, and KRW are predicted with highest accu-
racy using 50 nodes, whereas 500 nodes presented us with accurate results
for IDR, NZD, and CAD. It is evident that we obtained the most accurate
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614 F. Zafari et al.

FIGURE 9 Graph showing the proximity between the estimated values and actual values for IDR cur-
rency with 98.86% accuracy of a network having 500 nodes and a single-feedback scenario over a period
of 1000 days.

TABLE 3a The Testing Results for Various Currencies in Terms of Accuracy of RCGPANN Predicting the
11th Day on the Basis of 10 Days of Data History with a 5-Feedback Scenario for a Period of 1000 Days

Nodes 50 100 150 200 250 300 400 450 500

YEN 98.70 98.69 98.69 98.69 98.69 98.69 98.69 98.70 98.69
EURO 97.88 97.88 97.88 97.88 97.88 97.88 97.88 97.88 97.88
GBP 98.27 98.27 98.27 98.27 98.27 98.27 98.27 98.27 98.27
CHF 98.26 98.25 98.25 98.25 98.25 98.25 98.25 98.26 98.24
NZD 98.24 98.26 98.26 98.26 98.26 98.26 98.26 98.25 98.27
CAD 98.30 98.31 98.31 98.31 98.31 98.31 98.31 98.31 98.32
HKD 98.43 98.40 98.41 98.41 98.40 98.40 98.40 98.41 98.39
SGD 98.58 98.57 98.57 98.57 98.57 98.57 98.57 98.58 98.56
MYR 98.48 98.46 98.47 98.47 98.46 98.46 98.46 98.47 98.46
TWD 98.38 98.37 98.37 98.37 98.37 98.37 98.37 98.38 98.36
KRW 98.54 98.54 98.54 98.54 98.54 98.54 98.54 98.54 98.54
IDR 98.86 98.87 98.87 98.87 98.87 98.87 98.87 98.86 98.87
CNY 98.45 98.43 98.44 98.44 98.44 98.43 98.43 98.44 98.43

TABLE 3b The Testing Results for TWI and SDR in Terms of Accuracy of RCGPANN Predicting the 11th
Day on the Basis of 10 Days of Data History with a 5-Feedback Scenario for a Period of 1000 Days.

Nodes 50 100 150 200 250 300 400 450 500

TWI 98.49 98.47 98.47 98.48 98.47 98.46 98.47 98.48 98.46
SDR 97.74 97.72 97.72 97.72 97.72 97.71 97.72 97.73 97.71

result with 500 nodes for the Indonesian rupiah. Analyzing Tables 4a and
4b thoroughly and comparing them with Tables 3a and 3b, it is evident that
with the increase in the number of feedback paths we are generally getting
higher accuracy with fewer nodes. Figure 10 shows the pattern for actual
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EVOL Recurrent CGPANN to Predict Trends in FOREX Rates 615

TABLE 4a The Testing Results for Various Currencies in Terms of Accuracy of RCGPANN Predicting the
11th Day on the Basis of 10 Days of Data History with a 10-Feedback Scenario for a Period of 1000 Days.

Nodes 50 100 150 200 250 300 400 450 500

YEN 98.69 98.70 98.69 98.69 98.69 97.54 98.68 98.64 98.69
EURO 97.88 97.88 97.88 97.88 97.88 96.90 97.88 97.79 97.88
GBP 98.27 98.27 98.26 98.27 98.26 96.77 98.26 98.20 98.27
CHF 98.25 98.25 98.24 98.25 98.24 96.12 98.24 98.17 98.25
NZD 98.26 98.24 98.26 98.26 98.25 97.13 98.26 98.17 98.26
CAD 98.31 98.30 98.31 98.31 98.31 97.28 98.31 98.27 98.31
HKD 98.40 98.41 98.40 98.40 98.39 95.60 98.38 98.35 98.39
SGD 98.57 98.58 98.57 98.57 98.57 96.64 98.56 98.52 98.57
MYR 98.46 98.47 98.46 98.46 98.45 96.09 98.45 98.41 98.46
TWD 98.37 98.38 98.37 98.37 98.37 96.52 98.36 98.31 98.37
KRW 98.54 98.54 98.54 98.54 98.54 97.46 98.54 98.50 98.54
IDR 98.87 98.86 98.87 98.87 98.86 97.47 98.87 98.84 98.87
CNY 98.43 98.44 98.43 98.43 98.43 96.23 98.42 98.38 98.43

TABLE 4b The Testing Results for TWI and SDR in Terms of Accuracy of RCGPANN Predicting the 11th
Day on the Basis of 10 Days of Data History with a 10-Feedback Scenario for a Period of 1000 Days.

Nodes 50 100 150 200 250 300 400 450 500

TWI 98.46 98.48 98.46 98.46 98.46 95.78 98.45 98.41 98.46
SDR 97.72 97.74 97.72 97.71 97.72 95.17 97.70 97.73 97.72

and estimated values. Both the waveforms are close to each other, high-
lighting the efficiency of RCGPANN in terms of accurate prediction of the
values.

FIGURE 10 Graph showing the proximity between the estimated values and actual values for IDR cur-
rency with 98.871% accuracy of a network having 500 nodes and a five-feedback scenario over a period
of 1000 days.
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616 F. Zafari et al.

The testing results of the network with 10 feedback paths and various
numbers of nodes for a range of currencies are presented in terms of accu-
racy in Tables 4a and 4b for the prediction of 11th day on the basis of
the 10 days of data history over a span of 1000 days. It is evident that we
obtain the most accurate result with a 400-nodes scenario for the Indonesian
rupiah. Analyzing Tables 4a and 4b thoroughly and comparing them with
Tables 2a, 2b, 3a and 3b, one can conclude that using ten feedback paths pro-
duces more accurate results with fewer nodes. Figure 11 shows the pattern
for actual and estimated values. Both the waveforms lie close to each other,
highlighting the efficiency of RCGPANN in terms of accurate prediction of
the values.

Tables 5a and b present a comparison of RCGPANN with various other
networks in terms of accuracy in Table 5a and the MAPE in Table 5b for
forecasting the foreign currency exchange rates. RCGPANN is superior to
all other models and proves to be better in terms of forecasting accuracy
distribution rates. The use of the feedback in RCGPANN results in much
higher accuracy along with lower computational cost.

FURTHER ANALYSIS

In order to test the capability of the neural network in terms of predic-
tion for more days in advance, we have evaluated it for predicting 10, 50,
100, 300, 500, and 1000 days in advance based on 10 days of data history.
We have selected the best network in all the three scenarios and evaluated
for 10, 50, 100, 300, 500, and 1000 days prediction in advance.

FIGURE 11 Graph showing the proximity between the estimated values and actual values for IDR cur-
rency with 98.872% accuracy of a network having 400 nodes and 10-feedback scenario for a span of
1000 days.
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EVOL Recurrent CGPANN to Predict Trends in FOREX Rates 617

TABLE 5a Comparison of RCGPANN with Other Contemporary Networks in Terms of Accuracy

Network Accuracy (%)

Backpropagation Network (Miller et al. 2008) 62.27
Multineural Network (Miller et al. 2008) 66.82
Hybrid (ANN, Decision Tree, Naïve Bayesian Classifier,

and K-Nearest Neighbor)
67

Hidden Markov foreign exchange rate forecasting model (HFERFM) (Zhang,
Patuwo, and Hu 1998)

69.9

MLP (Taremian 2010) 72
Volterra Network (Taremian 2010) 76
Artificial neural network foreign exchange rate forecasting model (AFERFM)

(Zhang, Patuwo, and Hu 1998)
81.2

RCGPANN (Proposed) 98.872

TABLE 5b Comparison of RCGPANN with Other Contemporary Networks in Terms of MAPE

Network MAPE (%)

Markov model (Refenes et al. 1993) 1.92
Autoregressive integrated moving average (ARIMA) (Phillip, Tofiki, and Bidemi 2011) 1.61
Regression model (Refenes et al. 1993) 1.90
Classification and regression tress (CART) model 1.62
NN model 1.61
RCGPANN (Proposed) 1.12

Table 6a shows the MAPE, MSE, and RMSE results for the proposed
model with a single-feedback scenario in predicting 13 different currencies
over 1000 days. Table 6b provides the MAPE, MSE, and RMSE results for the
proposed network with a single-feedback scenario in forecasting the TWI
and SDR.

Tables 6a and 6b indicate that the model with a greater number of nodes
in the network tends to perform better in terms of accuracy or MAPE. With
increase in the number of nodes, the MAPE value decreases, hence the
prediction becomes more accurate. In most of the cases, the network with
450-node and 500-node scenarios produce an optimum network that per-
forms much better. The observations in Table 6 are for predictions spanning
1000 days in advance based on only ten days of data history. The RCGPANN
network is highly efficient for prediction, having a shorter time horizon;
however, with the increase in time horizon for prediction, the accuracy tends
to decrease.

Figure 12 shows the comparison between the actual values and estab-
lished values of the Taiwanese dollar by using the proposed model of
500 nodes with a single feedback for prediction of 1000 days in advance.
From the figure, it is evident that the network follows the trend in currency
change the best.
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618 F. Zafari et al.

TABLE 6a The MAPE, MSE and RMSE Values for Various Network Sizes with a Single Feedback for
Predicting 1000 Days of Data in Advance

Nodes 50 100 150 200 250 300 350 400 450 500

YEN MAPE 45.87 46.63 45.93 44.62 45.62 46.03 44.44 45.11 12.29 13.70
MSE 0.25 0.25 0.25 0.23 0.24 0.25 0.23 0.24 0.02 0.03

RMSE 0.50 0.50 0.50 0.48 0.49 0.50 0.48 0.49 0.16 0.17
EURO MAPE 47.11 47.86 47.17 45.87 46.86 40.01 45.71 46.35 14.20 15.03

MSE 0.26 0.27 0.26 0.25 0.26 0.20 0.25 0.26 0.03 0.03
RMSE 0.51 0.52 0.51 0.50 0.51 0.45 0.50 0.51 0.17 0.18

GBP MAPE 56.09 56.85 56.16 54.84 55.84 49.35 54.66 55.31 13.40 12.42
MSE 0.34 0.35 0.34 0.33 0.34 0.27 0.33 0.33 0.03 0.02

RMSE 0.59 0.59 0.59 0.57 0.58 0.52 0.57 0.58 0.16 0.15
CHF MAPE 57.74 58.49 57.80 56.49 57.49 52.47 56.32 56.98 12.52 11.56

MSE 0.38 0.38 0.38 0.36 0.37 0.31 0.36 0.37 0.02 0.02
RMSE 0.61 0.62 0.61 0.60 0.61 0.56 0.60 0.61 0.15 0.14

NZD MAPE 28.51 29.25 28.57 27.32 28.27 20.20 27.16 27.76 29.45 30.80
MSE 0.13 0.13 0.13 0.12 0.12 0.07 0.12 0.12 0.13 0.14

RMSE 0.35 0.36 0.36 0.34 0.35 0.27 0.34 0.35 0.36 0.37
CAD MAPE 31.55 32.48 31.66 30.15 31.34 16.97 29.80 29.05 28.94 29.77

MSE 0.14 0.15 0.14 0.14 0.14 0.04 0.13 0.13 0.12 0.12
RMSE 0.38 0.39 0.38 0.37 0.38 0.21 0.37 0.37 0.34 0.35

HKD MAPE 60.94 61.71 61.01 59.69 60.70 60.29 59.52 60.19 10.86 10.10
MSE 0.42 0.43 0.42 0.40 0.42 0.41 0.40 0.41 0.02 0.01

RMSE 0.65 0.65 0.65 0.63 0.64 0.64 0.63 0.64 0.13 0.12
SGD MAPE 57.06 57.82 57.13 55.81 56.81 56.60 55.64 56.30 10.47 9.51

MSE 0.36 0.37 0.36 0.34 0.36 0.35 0.34 0.35 0.02 0.01
RMSE 0.60 0.61 0.60 0.59 0.60 0.59 0.59 0.59 0.12 0.11

MYR MAPE 58.65 59.41 58.71 57.40 58.40 58.02 57.22 57.89 9.49 8.95
MSE 0.39 0.40 0.39 0.37 0.38 0.38 0.37 0.38 0.01 0.01

RMSE 0.62 0.63 0.62 0.61 0.62 0.62 0.61 0.61 0.12 0.11
TWD MAPE 57.07 57.83 57.13 55.82 56.82 57.17 55.64 56.31 8.59 7.96

MSE 0.36 0.37 0.36 0.34 0.36 0.36 0.34 0.35 0.01 0.01
RMSE 0.60 0.61 0.60 0.59 0.60 0.60 0.59 0.59 0.11 0.10

KRW MAPE 35.33 36.08 35.39 34.09 35.08 36.97 33.93 34.58 25.27 25.59
MSE 0.17 0.18 0.17 0.16 0.17 0.18 0.16 0.16 0.09 0.10

RMSE 0.41 0.42 0.41 0.40 0.41 0.43 0.40 0.41 0.31 0.31
IDR MAPE 42.35 43.11 42.42 41.13 42.11 45.32 40.96 41.62 13.52 15.70

MSE 0.23 0.23 0.23 0.22 0.22 0.25 0.21 0.22 0.02 0.03
RMSE 0.48 0.48 0.48 0.46 0.47 0.50 0.46 0.47 0.16 0.18

CNY MAPE 57.92 58.68 57.98 56.67 57.67 57.29 56.50 57.16 9.24 8.79
MSE 0.38 0.39 0.38 0.36 0.37 0.37 0.36 0.37 0.01 0.01

RMSE 0.61 0.62 0.61 0.60 0.61 0.61 0.60 0.61 0.12 0.11

Table 7a presents the MAPE values for a network of 500 nodes with a
single-feedback scenario and currencies for predicting 10, 50, 100, 300, 500,
and 1000 days in advance.

Table 7b presents the MAPE values for a network of 500 nodes and TWI
and SDR, for predicting 10, 50, 100, 300, 500, and 1000 days in advance.
It is evident that the model is highly accurate initially for 10 days, but as the
number of days increase; generally the MAPE also increases, which causes a
decrease in the accuracy of the model.
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EVOL Recurrent CGPANN to Predict Trends in FOREX Rates 619

TABLE 6b The MAPE, MSE and RMSE Values for Various Network Sizes with a Single Feedback for
Predicting 1000 Days of Data in Advance

Nodes 50 100 150 200 250 300 350 400 450 500

TWI MAPE 61.56 62.32 61.62 60.30 61.31 58.18 60.13 60.79 10.73 9.31
MSE 0.42 0.43 0.42 0.40 0.41 0.38 0.40 0.41 0.02 0.01
RMSE 0.65 0.65 0.65 0.63 0.64 0.61 0.63 0.64 0.12 0.11

SDR MAPE 62.77 63.53 62.84 61.52 62.52 58.54 61.34 62.00 12.45 10.97
MSE 0.44 0.45 0.44 0.42 0.43 0.38 0.42 0.43 0.02 0.02
RMSE 0.66 0.67 0.66 0.65 0.66 0.62 0.65 0.65 0.14 0.13

FIGURE 12 The plot for TWD comparison between the real values and the experimental results after
1000 days with 500 nodes and single feedback path.

The network with 5 feedback paths can be seen in Figure 7(b). There
are five different feedback paths, which go from the output back into the
system as the inputs. Table 8a shows the MAPE, MSE, and RMSE values for
various network sizes and 13 different currencies with a 5-feedback scenario
evaluated to predict 1000 days’ data in advance. Table 8b shows the MAPE,
MSE, and RMSE values corresponding to SDR and TWI. The results seem
improved with an increase in the number of feedback paths, especially for
more prediction in advance.

Table 9a presents the MAPE values for the network size of 500 nodes and
different currencies for predicting the number of days in advance. Table 9b
presents the corresponding MAPE values for TWI and SDR. It can be clearly
seen that the model is highly accurate initially for 10 days, but as the number
of days increase; generally the MAPE also increases, which causes a decrease
in the accuracy of the model. Figure 13 shows the comparison between the
actual values and estimated values, for 1000 days, of TWI by using a network
of 500 nodes with a five-feedback paths scenario.

The network with ten feedback paths has been shown in Figure 7(c).
There are ten different feedback paths that arise from the system output
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620 F. Zafari et al.

TABLE 7a The Average MAPE Values of Different Currencies for Predicting 10, 50, 100, 300, 500, and
1000 Days of Data in Advance Using a Single-Feedback Network and a 500-Node Scenario

Number of Days

Currency 10 50 100 300 500 1000

EURO 8.61 10.63 12.37 8.45 16.07 15.03
JPY 2.55 6.67 6.04 11.53 18.23 13.66
GBP 5.14 6.95 10.22 11.87 14.77 12.42
CHF 6.99 9.82 7.35 9.52 13.36 11.56
NZD 7.10 10.56 7.19 13.26 25.30 30.80
CAD 2.35 8.66 15.12 17.90 18.70 29.77
HKD 2.65 7.35 6.95 8.63 9.41 10.10
SGD 2.68 4.90 4.84 9.31 8.60 9.51
MYR 2.65 7.36 6.96 8.85 9.64 8.95
TWD 1.67 5.03 6.44 9.96 9.05 7.96
KRW 3.23 3.73 4.96 10.31 10.82 25.59
IDR 3.85 10.44 15.34 22.90 22.16 15.70
CNY 2.66 7.34 6.95 8.84 9.64 8.79

TABLE 7b The Average MAPE Values of TWI and SDR for Predicting 10, 50, 100, 300, 500, and
1000 Days of Data in Advance Using a Single-Feedback Network and 500-Nodes Scenario

Number of Days

Currency 10 50 100 300 500 1000

TWI 2.93 5.43 5.70 8.81 8.86 9.30
SDR 3.48 5.93 5.30 7.70 8.77 10.97

FIGURE 13 The plot for the TWI comparison between the actual values and the estimated data for
1000 days in advance using 10 days of historical data with 500 nodes and a 5-feedback-paths scenario.
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EVOL Recurrent CGPANN to Predict Trends in FOREX Rates 621

TABLE 8a The MAPE, MSE, and RMSE Values for Various Network Sizes and 13 Different Currencies
with a 5-Feedback Paths Scenario for Predicting 1000 Days of Data in Advance

Nodes 50 100 150 200 250 300 350 400 450 500

YEN MAPE 14.18 11.66 33.20 32.56 31.85 11.41 11.73 12.82 33.33 14.50
MSE 0.03 0.02 0.14 0.14 0.13 0.02 0.02 0.03 0.14 0.03
RMSE 0.18 0.15 0.38 0.37 0.36 0.14 0.15 0.16 0.38 0.18

EURO MAPE 16.33 15.63 34.55 33.92 33.15 17.18 15.72 14.99 34.63 16.24
MSE 0.04 0.03 0.15 0.15 0.14 0.04 0.03 0.03 0.16 0.04
RMSE 0.20 0.19 0.39 0.39 0.38 0.20 0.19 0.18 0.39 0.20

GBP MAPE 15.18 15.60 43.26 42.61 41.84 17.72 15.69 13.44 43.36 14.70
MSE 0.03 0.04 0.21 0.21 0.20 0.05 0.04 0.03 0.21 0.03
RMSE 0.18 0.19 0.46 0.45 0.45 0.22 0.19 0.16 0.46 0.18

CHF MAPE 12.97 14.39 45.11 44.47 43.72 16.60 14.39 12.39 45.21 12.59
MSE 0.02 0.03 0.24 0.23 0.23 0.04 0.03 0.02 0.24 0.02
RMSE 0.16 0.17 0.49 0.48 0.47 0.21 0.17 0.15 0.49 0.15

NZD MAPE 32.71 29.76 19.55 19.29 19.03 28.95 29.89 30.19 19.56 32.82
MSE 0.16 0.13 0.07 0.07 0.06 0.13 0.14 0.14 0.07 0.16
RMSE 0.40 0.37 0.26 0.26 0.25 0.36 0.37 0.37 0.26 0.40

CAD MAPE 32.93 30.11 30.47 31.27 30.65 29.25 30.16 29.45 28.96 32.75
MSE 0.15 0.13 0.13 0.14 0.13 0.12 0.13 0.12 0.12 0.15
RMSE 0.39 0.36 0.36 0.37 0.36 0.35 0.36 0.35 0.34 0.39

HKD MAPE 9.24 12.11 48.37 47.74 47.02 14.84 11.99 10.21 48.48 8.99
MSE 0.01 0.02 0.27 0.27 0.26 0.04 0.02 0.01 0.27 0.01
RMSE 0.11 0.15 0.52 0.52 0.51 0.19 0.15 0.12 0.52 0.11

SGD MAPE 11.35 12.70 44.30 43.65 42.94 15.43 12.70 10.33 44.45 10.91
MSE 0.02 0.03 0.23 0.22 0.21 0.04 0.03 0.01 0.23 0.02
RMSE 0.14 0.16 0.47 0.47 0.46 0.21 0.16 0.12 0.48 0.13

MYR MAPE 9.48 11.09 46.08 45.45 44.72 13.57 11.03 9.26 46.19 9.20
MSE 0.01 0.02 0.25 0.24 0.23 0.04 0.02 0.01 0.25 0.01
RMSE 0.12 0.14 0.50 0.49 0.48 0.19 0.14 0.12 0.50 0.11

TWD MAPE 9.69 10.54 44.33 43.69 42.98 13.05 10.53 8.45 44.48 9.30
MSE 0.01 0.02 0.22 0.22 0.21 0.04 0.02 0.01 0.23 0.01
RMSE 0.12 0.15 0.47 0.47 0.46 0.19 0.15 0.11 0.48 0.12

KRW MAPE 29.55 28.33 24.29 23.90 23.60 29.88 28.49 26.27 24.45 29.11
MSE 0.13 0.11 0.09 0.09 0.09 0.12 0.11 0.10 0.10 0.12
RMSE 0.35 0.33 0.31 0.30 0.30 0.35 0.34 0.32 0.31 0.35

IDR MAPE 15.94 11.38 31.38 30.88 30.16 8.91 11.49 14.65 31.35 16.49
MSE 0.03 0.02 0.13 0.13 0.12 0.01 0.02 0.03 0.13 0.04
RMSE 0.18 0.14 0.36 0.36 0.35 0.10 0.14 0.17 0.36 0.19

CNY MAPE 9.75 10.93 45.34 44.72 43.99 13.35 10.90 9.13 45.46 9.46
MSE 0.01 0.02 0.24 0.23 0.23 0.04 0.02 0.01 0.24 0.01
RMSE 0.12 0.14 0.49 0.48 0.48 0.19 0.14 0.12 0.49 0.11

and are fed back into the system as input. Table 10a shows the MSE, MAPE,
and RMSE values for 13 various currencies and ten different network sizes
with 10 feedback paths to predict 1000 days of data in advance. Table 10b
shows the corresponding results for TWI and SDR. The results indicate that
using the greater number of feedback paths provides us with the advantage
of obtaining more accurate results for predicting more days’ data in advance.

D
ow

nl
oa

de
d 

by
 [

K
oc

 U
ni

ve
rs

ity
] 

at
 0

6:
08

 1
6 

Ju
ly

 2
01

4 



622 F. Zafari et al.

TABLE 8b The MAPE, MSE, and RMSE Values for Various Network Sizes for TWI and SDR with 5-
Feedback Paths Scenario for Predicting 1000 Days of Data in Advance

Nodes 50 100 150 200 250 300 350 400 450 500

TWI MAPE 9.04 12.17 48.78 48.13 47.41 15.08 12.06 9.80 48.91 8.65
MSE 0.01 0.02 0.27 0.26 0.26 0.04 0.02 0.01 0.27 0.01
RMSE 0.11 0.15 0.52 0.51 0.51 0.20 0.15 0.12 0.52 0.11

SDR MAPE 11.35 12.70 44.30 43.65 42.94 15.43 12.70 10.33 44.45 10.91
MSE 0.02 0.03 0.23 0.22 0.21 0.04 0.03 0.01 0.23 0.02
RMSE 0.14 0.16 0.47 0.47 0.46 0.21 0.16 0.12 0.48 0.13

TABLE 9a The Average MAPE Values of Different Currencies for Predicting 10, 50, 100, 300, 500,
1000 Days of Data in Advance, Using 5 Feedback Paths and a Network of 50 Nodes Scenario

Number of Days

Currency 10 50 100 300 500 1000

EURO 8.79 10.36 11.12 7.83 17.23 16.24
YEN 2.73 6.62 5.99 8.56 18.18 14.48
GBP 5.31 7.21 11.46 15.91 18.77 14.70
CHF 7.17 9.61 6.62 12.62 16.69 12.59
NZD 7.26 10.13 7.52 11.29 25.94 32.82
CAD 2.33 7.47 12.79 17.39 19.93 32.75
HKD 2.84 7.27 7.13 9.41 10.35 8.99
SGD 2.86 4.83 5.34 12.30 10.99 10.91
MYR 2.84 7.28 7.14 9.97 10.78 9.20
TWD 1.85 4.98 6.82 11.74 10.67 9.30
KRW 3.41 3.90 5.70 11.54 13.13 29.11
IDR 4.02 10.43 14.62 18.96 21.49 16.49
CNY 2.84 7.27 7.13 9.96 10.77 9.46

TABLE 9b The Average MAPE Values of TWI, SDR, for predicting 10, 50, 100, 300, 500, 1000 Days of
Data in Advance Using 5 Feedback Paths and a Network of 500 Nodes Scenario

Number of Days

Currency 10 50 100 300 500 1000

TWI 3.12 5.32 6.06 11.16 10.93 8.62
SDR 3.60 5.78 5.61 10.50 11.43 10.31

All of these values are based on forecasting data of 1000 days in advance.
Table 11a presents the MAPE values for the network size of 100 nodes with
10 feedbacks and 13 different currencies for 10, 50, 100, 300, 500, and
1000 days data prediction in advance, whereas Table 11b presents the MAPE
values for TWI and SDR. Comparing Tables 11, 9, and 7, it is noted that the
increase in number of feedback paths is providing us with better results.

We forecasted the foreign exchange rate for approximately 1000 days
based on 10 days of data history, and the results proved that RCGPANN

D
ow

nl
oa

de
d 

by
 [

K
oc

 U
ni

ve
rs

ity
] 

at
 0

6:
08

 1
6 

Ju
ly

 2
01

4 



EVOL Recurrent CGPANN to Predict Trends in FOREX Rates 623

TABLE 10a The MAPE, MSE, and RMSE Values for Various Network Sizes and 13 Different Currencies
with 10-Feedback-Paths Scenario for Predicting 1000 Days of Data in Advance

Nodes 50 100 150 200 250 300 350 400 450 500

YEN MAPE 11.48 10.35 11.62 11.44 12.75 34.40 13.48 9.23 11.90 10.72
MSE 0.02 0.03 0.02 0.05 0.03 0.04 0.02 0.02 0.11 0.02
RMSE 0.14 0.18 0.14 0.23 0.16 0.19 0.14 0.15 0.33 0.13

EURO MAPE 14.50 9.11 13.76 34.64 10.29 26.11 24.22 12.37 44.64 15.83
MSE 0.04 0.03 0.04 0.09 0.03 0.04 0.04 0.04 0.12 0.04
RMSE 0.20 0.19 0.19 0.30 0.17 0.21 0.21 0.19 0.35 0.20

GBP MAPE 17.06 15.67 16.46 24.79 14.51 16.96 16.24 16.42 30.01 17.23
MSE 0.05 0.02 0.04 0.13 0.02 0.05 0.07 0.04 0.17 0.05
RMSE 0.21 0.14 0.20 0.35 0.14 0.23 0.26 0.20 0.42 0.22

CHF MAPE 17.48 11.92 16.61 31.15 12.13 20.01 20.21 16.75 38.68 17.58
MSE 0.04 0.02 0.04 0.13 0.02 0.07 0.07 0.03 0.20 0.05
RMSE 0.21 0.14 0.19 0.36 0.14 0.27 0.26 0.18 0.44 0.22

NZD MAPE 16.34 11.39 15.65 30.72 11.72 23.37 20.17 15.03 40.80 16.27
MSE 0.13 0.14 0.13 0.05 0.13 0.05 0.11 0.14 0.05 0.13
RMSE 0.36 0.38 0.36 0.23 0.36 0.23 0.33 0.38 0.22 0.36

CAD MAPE 29.17 31.52 28.79 18.66 29.78 19.43 27.73 30.31 16.80 29.15
MSE 0.12 0.13 0.12 0.12 0.12 0.05 0.11 0.13 0.12 0.13
RMSE 0.35 0.36 0.35 0.35 0.34 0.22 0.34 0.36 0.35 0.36

HKD MAPE 29.58 30.21 29.27 29.62 28.75 17.91 28.16 30.75 29.33 30.19
MSE 0.03 0.01 0.03 0.16 0.02 0.09 0.09 0.03 0.23 0.04
RMSE 0.19 0.12 0.17 0.40 0.13 0.30 0.30 0.16 0.48 0.21

SGD MAPE 14.26 10.16 13.62 34.69 10.96 27.18 24.24 12.31 44.36 15.80
MSE 0.04 0.01 0.03 0.16 0.01 0.06 0.09 0.03 0.19 0.05
RMSE 0.20 0.11 0.18 0.39 0.11 0.25 0.30 0.18 0.44 0.22

MYR MAPE 14.91 9.41 14.02 33.77 9.56 21.63 24.26 13.86 40.27 17.06
MSE 0.03 0.01 0.03 0.16 0.01 0.08 0.09 0.03 0.21 0.04
RMSE 0.18 0.11 0.17 0.40 0.12 0.28 0.30 0.16 0.46 0.21

TWD MAPE 13.08 9.10 12.40 32.62 9.36 24.88 22.63 11.71 42.07 14.84
MSE 0.03 0.01 0.03 0.13 0.01 0.06 0.08 0.03 0.19 0.04
RMSE 0.19 0.10 0.17 0.36 0.10 0.25 0.29 0.16 0.43 0.21

KRW MAPE 12.56 8.03 11.78 30.93 8.07 22.16 21.73 11.64 40.33 14.72
MSE 0.12 0.10 0.12 0.13 0.09 0.04 0.14 0.12 0.08 0.13
RMSE 0.35 0.32 0.34 0.36 0.30 0.21 0.38 0.35 0.29 0.36

IDR MAPE 29.80 25.88 28.84 30.68 24.40 16.93 33.17 30.40 23.53 31.36
MSE 0.01 0.04 0.01 0.07 0.03 0.05 0.02 0.02 0.10 0.01
RMSE 0.11 0.20 0.11 0.27 0.17 0.21 0.15 0.12 0.32 0.10

CNY MAPE 9.29 16.61 9.68 21.22 14.63 17.69 12.54 10.13 27.71 8.44
MSE 0.03 0.01 0.03 0.15 0.01 0.07 0.09 0.03 0.20 0.04
RMSE 0.18 0.11 0.17 0.39 0.12 0.27 0.29 0.16 0.45 0.21

is superior in accuracy and implementation cost to other networks. The
results tabulated highlight the fact that increasing the number of nodes or
using a greater number of feedbacks provides us with accurate results in the
long run. Figure 14 shows the comparison between the actual values and
estimated values, for 1000 days, of TWI by using a network of 100 nodes with
a 10-feedback-paths scenario.
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624 F. Zafari et al.

TABLE 10b The MAPE, MSE, and RMSE Values for Various Network Sizes and TWI and SDR with 10-
Feedback-Paths Scenario for Predicting 1000 Days of Data in Advance

Nodes 50 100 150 200 250 300 350 400 450 500

TWI MAPE 5.13 6.99 4.39 5.13 8.06 3.96 6.01 5.11 4.97 4.66
MSE 0.04 0.01 0.03 0.16 0.01 0.08 0.09 0.03 0.23 0.05
RMSE 0.19 0.11 0.18 0.40 0.12 0.29 0.29 0.16 0.48 0.21

SDR MAPE 12.89 8.98 12.18 32.11 9.06 24.15 22.25 11.70 41.34 14.70
MSE 0.04 0.02 0.03 0.16 0.02 0.09 0.09 0.03 0.24 0.05
RMSE 0.20 0.13 0.19 0.40 0.14 0.31 0.29 0.17 0.49 0.22

TABLE 11a The Average MAPE Values for Various Currencies for 10, 50, 100, 300, 500, and 1000 Days
of Data in Advance, Using 5 Feedback Paths and a Network of 500 Nodes Scenario

Number of Days

Currency 10 50 100 300 500 1000

EURO 9.63 12.30 14.75 10.07 17.21 15.67
YEN 3.38 8.04 7.59 13.29 19.51 14.36
GBP 6.14 6.96 8.69 9.91 13.77 11.92
CHF 7.97 11.42 9.52 9.04 13.23 11.39
NZD 8.17 12.32 8.69 14.71 26.38 31.52
CAD 3.16 9.76 16.08 18.24 19.06 30.21
HKD 3.51 8.77 8.08 9.43 9.93 10.16
SGD 3.54 6.31 5.10 8.90 8.40 9.41
MYR 3.52 8.78 8.09 9.55 10.10 9.10
TWD 2.51 6.34 6.77 10.10 9.16 8.03
KRW 4.03 4.03 4.11 10.13 10.88 25.88
IDR 4.60 11.72 17.34 25.28 23.80 16.61
CNY 3.52 8.77 8.09 9.55 10.10 8.98

TABLE 11b The Average MAPE Values of Different Currencies for 10, 50, 100, 300, 500, and 1000 Days
of Data in Advance, Using 5 Feedback Paths and a Network of 500 Nodes Scenario

Number of Days

Currency 10 50 100 300 500 1000

TWI 3.85 6.85 6.20 8.86 8.93 9.11
SDR 4.30 7.31 6.15 7.78 8.90 10.80

Figure 15 shows the best RCGPANN network obtained from 500 nodes
with 10 feedback paths. From the figure it is evident that the ultimate net-
work uses only two inputs and a single feedback in the final optimum model.
Also, only six neurons are active out of 500 evolved, thus resulting in a com-
putationally efficient model. This is the beauty of RCGPANN, which results
in this optimum model.

D
ow

nl
oa

de
d 

by
 [

K
oc

 U
ni

ve
rs

ity
] 

at
 0

6:
08

 1
6 

Ju
ly

 2
01

4 



EVOL Recurrent CGPANN to Predict Trends in FOREX Rates 625

FIGURE 14 The plot for TWI comparison between the actual values and the estimated values for
predicting 1000 days of data with 100 nodes and a 10-feedback-paths scenario.

FIGURE 15 The RCGPANN Network with 500 nodes and 10 feedback paths for prediction of TWI.

CONCLUSION AND FUTURE WORK

We have presented a novel algorithm to evolve a recurrent neural net-
work for obtaining a computationally efficient and accurate prediction
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626 F. Zafari et al.

model. We have trained the network on 500 days of data from an histor-
ical data set to predict the 11th day exchange rates based on the 10 days
of data history, tested it on thirteen various currencies, the trade weighted
index (TWI), and special drawing rights (SDR) to do the same task, pro-
ducing 98.872 percent accurate results, outperforming all the contemporary
networks that exist in the field. We have evaluated three different cases of
RCGPANN with single, five, and ten feedbacks and evaluated the system per-
formance with the ten-feedback network performing better than all others.
We have evaluated the network further by exploring its capabilities to predict
more than a single day’s data rate in advance. We have evaluated all the three
cases with various network sizes and trained networks on a range of indepen-
dent seeds. The networks’ performances are evaluated to predict 10, 50, 100,
300, 500, and 1000 days of data rates in advance. The results are tabulated
and presented, and the detailed analysis demonstrated that RCGPANN per-
forms better than other prediction models, even to predict data rates for
more days in advance, especially predicting currencies’ exchange rates cor-
rectly for up to 1000 days (4 years) in advance with 92 percent accuracy. The
results demonstrate that RCGPANN is superior to other networks in terms
of accuracy and computational cost. RCGPANN is not restricted to mere for-
eign exchange rates; indeed it can be applied to various fields in which data
can be forecasted on the basis of the historical record. Numerous fields such
as load forecasting, river flow forecasting, weather forecasting, and various
other fields can be forecasted not only accurately but also computationally
efficiently using RCGPANN. RCGPANN is significant in the sense that it uti-
lizes a minimum amount of past data for forecasting. Indeed, RCGPANN has
great potential for exploration in a range of fields and will be able to unlock
various problems in the upcoming years.
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