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ABSTRACT

The components obtained using the time-frequency algorithm

empirical mode decomposition (EMD) enable unique advantages in

the context of noise removal. In this paper, recent EMD-based de-

noising methods are reviewed and similarities with a more conven-

tional class of techniques – subspace denoising – are illustrated.

Standard subspace approaches which are based on the factorisation

of covariance matrices are unsuitable for nonstationary data. By

comparison, EMD facilitates a signal representation which enables

denoising using short spatio/temporal windows. It is highlighted

how the EMD property of local orthogonality can be extended via

multivariate operations, and a denoising scheme is proposed and

compared with standard methods in electroencephalogram (EEG)

artefact-removal using a novel multimodal sensor.

Index Terms— empirical mode decomposition, electroen-

cephalography, signal denoising, multimodal sensors

1. INTRODUCTION

The miniaturisation of recording platforms and battery technology

has greatly expanded the opportunities for electroencephalogram

(EEG) monitoring in real-world environments (wearable EEG [1])

critical for e.g. monitoring seizures and diagnosing sleep disorders.

Despite advances, EEG artefacts are still a major problem and cause

significant signal degradation making real-time analysis in uncon-

trolled environments challenging. A primary source of artefacts

is motion between the skin and the electrode caused by e.g. user

movement. Potentials from motion artefacts are often much larger

in amplitude than the observable potentials from the brain.

Methods that perform artefact removal primarily cater for sce-

narios where many channels of EEG are recorded at multiple lo-

cations across the scalp [2, 3, 4]. In this way, there are sufficient

data statistics available to identify and discard the artefact using e.g.

wavelet decompositions and independent component analysis [4].

However, recent advances in wearable EEG [5, 6] have highlighted

the practical appeal of platforms which utilise only a single (or small

number of) electrode(s). To this end, we have developed a mul-

timodal sensor that records both electrical and mechanical activity

from the same site. The mechanical output is designed to detect mo-

tion only at the location of the sensor; this enables unique insight

into any interference within the electrical output (voltage fluctua-

tions proportional to skin-electrode motion). We seek a denoising

scheme that is capable of performing single-channel EEG denois-

ing, obtained via the electrical modality of the sensor, based on the

mechanical modality.

The concept of subspace denoising is ideally suited to the prob-

lem at hand; the goal is to perform a decomposition of the single-

channel electrical component, or some representation of the signal,

which enables a separation of the desired EEG and the electrical in-

terference or noise. Those decomposition components spanning the

noise subspace may be determined via the mechanical output of the

sensor. Subspace approaches based on well-known matrix factori-

sation techniques are the most established, and are widely used in

speech processing applications in particular [7]. The disadvantage

of standard techniques is that they are unsuitable for nonstationary

signals as they are typically based on analysis of the covariance ma-

trices and require a sufficient number of data samples to operate.

The components generated via empirical mode decomposition

(EMD), originally developed for time-frequency analysis [8], pose a

number of advantages for denoising such as local orthogonality and

a suitability for nonstationary data. In this paper, we highlight some

similarities between EMD denoising schemes and conventional sub-

space methods. It is shown how a property unique to multivariate

extensions of EMD enables a novel denoising algorithm which can

outperform standard subspace methods, and is suitable for emerging

multimodal sensor technologies.

2. A NOVEL MULTIMODAL SENSOR

We have developed a novel sensor which is capable of generating

two outputs of different modalities from the same location. This

was achieved by insulating an inertia-free mechanical transducer –

a condenser microphone (Sonion 9723 GX) – with a thin layer of

sealant, and depositing a thin layer of conductive material over the

sound hole of the microphone. In this way, the conductive mate-

rial acts as an electrode for measuring electrical potential (modality

a), while the transducer component measures motion between the

electrode and skin (modality b). Compared to recent work on EEG

denoising with the aid of an accelerometer [9], the inertia-free nature

of the transducer means that it only detects activity directly linked to

electrode/skin motions and disregards large-scale whole-body move-

ments which do not cause artefacts.

Preliminary recordings demonstrate that the mechanical compo-

nent is sensitive to motion artefacts caused by subject movement and

muscle activity. Fig. 1 shows the operation of the sensor, where the

black line in the first panel is the electrical output with the sensor

located on the forehead.1 The electrical ground truth (desired EEG)

was established by placing four standard electrodes around the sen-

sor at equal distances (3 cm) and obtaining the averaged waveform, 2

this is plotted in the same panel as a red line. A motion interference

was induced in the electrical output of the sensor from time 7 s by

pushing the sensor against the skin (motion artefact). This interfer-

ence is evident from the first panel in Fig. 1, where there is a clear

difference between the electrical output and the ground truth from

time 7 s, and in the second panel where the error signal is plotted.

The mechanical output of the sensor is shown in the third panel; ob-

serve a clear similarity with the error (interference).

1The sensor was referenced to the left earlobe and the sampling frequency
was 256 Hz.

2Each of the four standard electrodes were referenced to the right earlobe
and the sampling frequency was 256Hz.



3. PROBLEM FORMULATION

Consider recordings of the same process via two different modalities

ya = xa + va (1)

yb = xb + vb (2)

where ya, xa and va are L×1 column vectors which denote respec-

tively the recorded signal, the desired signal and the interference sig-

nal for modality a. Similarly yb, xb and vb are the respective signals

for modality b. In the considered scenario, modality a reflects elec-

trical activity and b mechanical activity. Specifically, ya denotes the

electrical signal obtained from the scalp via a bipolar recording (dif-

ference in potential between two electrodes). The desired signal xa

is the EEG and the interference va reflects any underlying voltage

fluctuations caused by motion between the electrode and skin. The

signal yb is of a different modality (mechanical) but obtained at the

same location as the compromised electrode. We assume that there

exists a component in the recording (xb) which is approximately

equal, after linear scaling, to the interference within the electrical

modality (va) as well as some additional mechanical noise compo-

nent (vb). In summary, we assume that va ≈ αxb where α is a

scalar. If the mechanical noise is low (E{xT
b xb} > E{vT

b vb},

where E{·} is the expected value and assuming zero mean) then

va ≈ αyb. In the sequel the algorithms are derived on the assump-

tion that α = 1, that is, it is assumed that some prior knowledge

exists to scale the b modality appropriately before denoising.
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Fig. 1. Operation of multimodal sensor. The electrical output di-

verges from desired signal (panels 1,2) with motion-interference

from 7 s which is also reflected by the mechanical output (panel 3).

3.1. Subspace Denoising

Subspace methods rely on a decomposition of the noisy signal, or

some representation of the signal (covariance matrix), to obtain a

subspace that is primarily occupied by the desired/clean signal and a

subspace that is primarily occupied by the noise/interference signal;

the desired signal can thus be obtained by nulling the noise subspace

component. We let

x̂a = fyb
(ya) (3)

denote an estimate of xa, the desired signal from modality a, where

fyb
(ya) is a linear operation on ya, or some decomposition of ya,

based on knowledge of yb using the same decomposition method.3

The method must be appropriate for different noise types (coloured,

white) and for data nonstationarity.

3The mechanical component is not treated as a regressor (i.e. enabling
the mixing of electrical and mechanical components directly) as (i) they are
of different modalities (the mechanical modality has not yet been fully char-
acterised) and (ii) the mechanical component may exhibit additional noise.

4. CLASSIC SUBSPACE APPROACHES

The most established subspace methods are those based on matrix

factorisation techniques, in particular singular value decomposition

(SVD) or eigenvector-eigenvalue decomposition (EVD), and we

here consider an approach based on the EVD of the signal covari-

ance matrices. Typically, a matrix W is sought which performs

linear estimation of the desired signal as follows

x̂a = fyb
(ya) = Wya. (4)

The error of the estimator is given by e = x̂a−xa = Wya−xa and

the well-known solution (Wiener) which minimises the mean square

error (E{eT
e}) is given by [7]

Wopt = Rxa
(Rxa

+Ryb
)−1

(5)

where Rxa
denotes the covariance matrix of xa (i.e. Rxa

=
E{xax

T
a }) and Ryb

the covariance matrix of yb. Recall that unlike

conventional approaches developed for single modalities [7], we

are assuming that yb approximates the interference in modality a

(Ryb
≈ Rva

). Of course, Rxa
is not known in practice and various

algorithms have been proposed which seek to exploit properties of

the covariance matrices (Rya
= Rxa

+ Ryb
). One solution to (5)

suitable for coloured noise is based on the observation that Rxa
and

Ryb
can be diagonalised in the following way [10, 11]

V
T
Rxa

V = ∆, V
T
Ryb

V = I (6)

where V and ∆ are the eigenvector and eigenvalue matrices for Σ =
(Ryb

)−1Rxa
= (Ryb

)−1(Rya
− Ryb

) respectively and I is the

identity matrix. Thus, the optimal estimator can be rewritten as [11]

Wopt = V
−T∆(∆+ I)−1

V
T

(7)

where the eigenvalues in∆ corresponding to eigenvectors in V span-

ning the noise subpsace have been set to zero.4 The above algorithm

is typically applied in an overlapping window fashion (window size

N ). That is, the matrix Wopt is calculated from the P -order covari-

ance matrices estimated for ya and yb within the window, and over-

lapping estimates of xa within sub-windows (length P ) are com-

bined. Larger values for N and P enable the observation of more

statistics about the signals and better estimates of covariance matri-

ces, but hinder performance when the data is nonstationary.

5. EMD-BASED DENOISING APPROACHES

5.1. The EMD Algorithm and Multivariate Extensions

The univariate EMD algorithm [8] was proposed as a means of

enabling highly localised time-frequency analysis of nonlinear

and nonstationary signals. Unlike projection-based schemes (e.g.

Fourier) which must sacrifice time localisation for frequency lo-

calisation, or vice versa, the Hilbert transform obtains a physically

meaningful estimate of frequency at each time instant (instanta-

neous frequency) if the input satisfies narrow-band criteria. The

principle of the EMD operation is to decompose any vector into

a set of AM/FM components which satisfy such criteria. These

components, called intrinsic mode functions (IMFs), represent the

oscillation modes embedded in the data. The EMD algorithm de-

composes an input as x =
∑M

i=1
Xi, where {Xi, i = 1, . . . ,M}

4The solution in eqn. (7) is a realisation of the time-domain-constrained
algorithm (with µ = 1) described in [11], assuming Ryb

≈ Rva
.



denotes the IMFs (the column vectors of the IMF matrix X) ex-

tracted via the sifting process (refer to [8]). The lowest index IMFs

(e.g. X1) contain the highest frequency dynamics and the higher in-

dex IMFs (e.g. XM ) contain the lowest frequency dynamics (trend).

We define the IMF space as the vector space spanned by the IMFs.

5.1.1. Multivariate EMD (MEMD) & Noise-Assisted MEMD

A drawback associated with univariate EMD is that IMFs obtained

for different signals with similar statistics may differ in their fre-

quency content or even their number (problem of uniqueness [12]),

this is a consequence of the data-driven nature of the algorithm and

makes IMF-by-IMF comparisons unfeasible. Although ensemble

EMD [13] alleviates the problem, this comes at the cost of great

computational complexity. Instead, two or more signal components

can be combined as a single bivariate/multivariate entity and de-

composed using bivariate [14] or multivariate [15, 16] extensions of

EMD; studies have shown [12, 16] how this enables mode alignment

– the phenomenon whereby similar modes within multiple channels

are aligned in frequency at the same IMF level. The operation can be

further enhanced by placing white Gaussian noise (WGN) in adjoin-

ing channels and, owing to the mode alignment property of MEMD,

the noise channels enforce dyadic structure within the signal chan-

nels (noise-assisted MEMD (NA-MEMD), refer to [17]).

5.2. Review of Existing EMD Denoising Methods

An approach that utilised the EMD for denoising was proposed in

2004 [18]. Following the behaviour of EMD as a dyadic filter bank

for WGN [19, 20], and that the IMF log-variance follows a simple

linear model controlled by the Hurst exponent, the method employed

confidence intervals to discard IMFs dominated by noise. Although

effective, the approach was not based on an optimality criterion. A

solution which combined the IMFs to obtain the best estimate of the

original signal in the least squares sense (Wiener solution) was pro-

posed in 2007 [21]. This was followed by a method that combined

the IMFs in a more adaptive fashion based on a standard adaptive

filtering architecture in 2008 [22]. It was shown that, within the IMF

domain, short window sizes were sufficient to obtain high perfor-

mances. Based on wavelet-thresholding algorithms and EMD fil-

terbank properties for WGN, a class of soft and hard thresholding

approaches were developed for EMD which are suitable for WGN

scenarios in 2009 [23]. In recent years EMD has been combined

with conventional denoising methods. For instance it was used to

generate, from a univariate signal, a set of components to perform in-

dependent component analysis (ICA) [24] and canonical component

analysis (CCA) [25] to enhance the performance of the algorithms

for single-channel scenarios in EEG artefact removal. In 2012, it was

shown how MEMD could be used to identify and discard IMFs dom-

inated by electrooculogram (EOG) artefacts [26]. It was illustrated

in [27] how coloured noises, particularly ones which are difficult to

isolate using standard subspace methods (pink, babble), are better

separated using EMD in the context of speech denoising.

5.3. MEMD-Based Subspace Denoising

Denoising approaches based on EMD share some similarities with

standard subspace algorithms. Just as a subset of the eigenvectors

obtained from the covariance matrices are assumed to span the de-

sired signal subspace, it can be assumed (under some conditions)

that a subset of the IMFs span a similar space. A difference is that

the eigenvectors can be orthogonal (e.g. if obtained from a real

and symmetric matrix), while the IMFs are approximately orthog-

onal over short spatio/temporal windows (local orthogonality). The

EMD method was designed to obtain a sparse time-frequency signal

representation so that the number of IMF components is typically

very small compared to the signal length. Given the small number

of IMFs and the property of local orthogonality, it is expected that

the method will perform denoising optimally over short windows. In

summary, the IMFs obtained via standard EMD enable the following

advantages for denoising:

• Suitability for nonstationary data. By design, the method caters

for data nonstationarity. This was highlighted in [22] where it was

shown that optimal prediction and denoising in the IMF space can

be achieved over short temporal windows.

• Local orthogonality. While the IMFs are not strictly orthogonal,

they reflect data-driven independent frequency components and

are locally orthogonal [8].

• Physical interpretability. Standard subspace methods have an

established relationship with standard spectral estimation theory,

but each of the IMF components has a well defined interpretation

based on instantaneous frequency – a framework more suitable

for nonlinear and nonstationary signal content [8].

Consider two signals (x,y), in which the IMFs have been obtained

via MEMD (or NA-MEMD) {Xi, Yi, i = 1, . . . ,M}, we can now

revise the local orthogonality property as follows:

• Multivariate local orthogonality. Exploiting the mode align-

ment property of MEMD (and NA-MEMD), we can state that

an independence exists, in the EMD sense, not only between the

IMFs of x, but also between IMFs of x and y. Letting Xi⊥LYj

denote the estimation of the local orthogonality between Xi and

Yj we can state that Xi⊥LYj = 0, ∀ i, j = 1, . . . ,M(i 6= j).

5.3.1. The Proposed Algorithm

Let Ya and Yb denote respectively the L × M IMF matrices for ya

and yb obtained via NA-MEMD, and Xa denote the (unknown) IMF

matrix for xa. We propose the following scheme to estimate xa

x̂a = fyb
(ya) = Yaw (8)

where w = [w1, . . . , wM ]T denotes a M × 1 vector. Due to the

property of multivariate local orthogonality, a solution for each IMF

level can be sought independently. That is, we can assume that the

overall error can be minimised by solving for ei = Yaiwi −Xai =
Yaiwi − (Yai − Ybi), i = 1, . . . ,M . We seek the solution which

minimises the mean square error (E{eT
i ei}). Taking the derivative

of E{eT
i ei} with respect to wi and setting it to zero gives

2
[
wi(Y

T
aiYai)− ((Y T

aiYai)− (Y T
aiYbi))

]
= 0. (9)

Rearranging and applying constraints gives the solution

wi = min

[
max

[
(Y T

aiYai)− (Y T
aiYbi), 0

]

(Y T
aiYai)

, 1

]
. (10)

The weights wi in (10) are continuous in the range [0, 1], we also

consider a binary weighting scheme w̃ = [w̃1, . . . , w̃M ]T where

w̃i =

{
1 if wi ≥ δ

0 if wi < δ
(11)

where δ is some threshold. In simulations the proposed algorithm,

with both weighting schemes, was applied in a similar fashion to

conventional subspace methods. A single NA-MEMD operation was

applied to ya and yb, but within the resulting IMF space x̂a was

calculated in an overlapping window fashion (window size N ).



5.3.2. Differences with Previous Work

A key difference between the proposed algorithm and previous

EMD-based methods is how it exploits the property of multivariate

local orthogonality, essential for IMF-by-IMF comparisons between

two or more signals. Unlike other works which rely on this property,

such as the binary weighting scheme in [26], the proposed approach

is based on an optimality criterion and enables both binary and con-

tinuous weighting schemes. Also, unlike schemes which utilise the

properties of EMD to condition the input to other algorithms and

thus enhance their performance, e.g. ICA [24] or CCA [25], the aim

here is to explore the denoising advantages of the multivariate IMF

space via a conceptually simple algorithm.

6. SIMULATION RESULTS

6.1. Removal of Simulated Artefacts

To recreate noisy EEG, segments of clean EEG were linearly mixed

with artefacts. Ten EEG signals of length 50 s were obtained from

an electrode placed at a frontal position of the head (AFz referenced

to mastoid) while the subject remained still and made no eye move-

ments or blinks, see first panel of Fig. 2. Separately, artefacts were

recorded (vertical EOG), and were used to generate random artefact

signals with some constraints (e.g. no overlapping of artifact seg-

ments), see second panel of Fig. 2. The artefact signals were linearly

mixed with a randomly selected segment of EEG to obtain compro-

mised EEG signals where the ground truth was known.5
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Fig. 2. Clean EEG recording (panel 1), an artificial interference sig-

nal generated from recorded EOG artefacts (panel 2), a mixture of

the EEG and EOG (panel 3).

In the considered context, xa is the clean EEG signal and va

is the artefact signal (see Fig. 2). We approximate the mechanical

modality by letting xb = va and approximate mechanical noise by

letting vb be WGN. Both the standard (EVD-based) and MEMD ap-

proaches were applied to estimate xa based on the overlapping win-

dow scheme described previously, with varying levels of simulated

mechanical noise set by the signal-to-noise-ratio6 (SNR). The mean

squared error (MSE) for the EVD and MEMD approach with contin-

uous weights, based on (10), for high SNRs were similar, both out-

performing the MEMD method with binary weights based on (11);

however, the MEMD approaches were found to perform optimally

for smaller values of N . The MSE for a low mechanical SNR of

−2 dB, averaged over 50 realisations for ya, is plotted in Fig. 3,

showing how the MEMD approaches achieved better performances

and with smaller window sizes (N ). The better performance of the

5Both the EEG and artefact signals were bandpass filtered within the
range 1−30Hz (standard EEG range of interest) before mixing.

6The mechanical SNR is given by 10 log10
∑

n(xb(n))
2/

∑
n(vb(n))

2

where vb is WGN, and xb(n) and vb(n), n = 1, . . . , L, denote the elements
of xb and vb respectively.

MEMD approaches for low SNRs is as expected as the weights are

based on the cross-correlation of the modalities (within the IMF do-

main), a feature for which the EVD approach does not account. The

results also show that the more restricted form of the MEMD de-

noising approach using binary weights was again outperformed by

the one with continuous weights. This indicates that some IMFs span

both the signal and noise space and simply nulling MEMD compo-

nents is not sufficient for optimal denoising.
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Fig. 3. Removal of simulated artefacts. The MSE of the EVD- and

MEMD-based algorithms for different window sizes (N ).

6.2. Removal of Motion Artefacts Using Multimodal Sensor

EEG artefact removal was performed for a recording obtained us-

ing the multimodal sensor, similar to that depicted in Fig. 1. Prior

knowledge of the variance of xa was assumed to enable the cor-

rect scaling of the mechanical component (α) before applying each

of the algorithms. For a 60 s recording, which contained approxi-

mately 30 s of motion artefacts, the EVD and MEMD (continuous

weights only) approaches achieved a similar MSE, segments of the

denoised signals are shown in Fig. 4. Crucially, optimal performance

was achieved for the EVD approach with N = 128 compared with

N = 32 for the MEMD approach – highlighting its appeal in nonsta-

tionary analysis. This result conforms with those of previous studies

for univariate EMD [22].
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Fig. 4. Removal of motion artefacts using multimodal sensor. For

a compromised EEG recording obtained using the electrical com-

ponent (ya), the upper and lower panels show, respectively, the

artefact-free estimates using the EVD- and MEMD-based (contin-

uous weights) approaches (denoted by x̂a).

7. CONCLUSION

We propose a method based on multivariate extensions of empirical

mode decomposition (MEMD) which utilises observations of an in-

terference process to perform denoising of physiological data. Com-

pared with a standard subspace algorithm, the proposed scheme can

better cater for nonstationarity and for conditions where the interfer-

ence observation is itself compromised. Its operation is illustrated

for the removal of simulated and real-world motion artefacts based

on EEG recordings obtained from a novel multimodal sensor.
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