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Outline

◦ Challenges in Big Data analytics

◦ Big Data and Machine Intelligence

◦ Data structures: From a scalar to a tensor

◦ Some basic operations on tensors

◦ Tensorisation # a key step in tensor decompositions

◦ Canonical Polyadic Decomposition (CPD) and its applications

◦ Links between the CPD and Tucker decomposition

◦ Partial Least Squares (PLS) and Higher-Order PLS (HOPLS)

◦ Tensor networks and their applications
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Big data processing # current status

◦ Computers excel at algorithmic tasks (well-posed mathematical
problems)

◦ Biological systems are superior to digital systems for ill-posed problems
with noisy data

◦ Pigeon: ∼ 109 neurons, cycle time ∼ 0.1 seconds. Each neuron sends 2
bits to ∼ 1,000 other neurons. This is equivalent to 2× 1013 bit
operations per second

◦ Old PC: ∼ 107 gates, cycle time 10−7 seconds, connectivity = 2
# 1015 bit operations per second

◦ Both have similar raw processing capability, but pigeons are better at
recognition tasks

◦ Is there a way to present large date streams to computers in a more
physically meaningful manner # to make sense from Big Data?
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Some facts about Big Data opportunities

According to “Big Data: The next frontier for innovation, competition,
and productivity”, published by McKinsey Global Institute in May 2011:

◦ It would cost USD 600 to by a disk drive which can store all off the
music in the world

◦ In 2010, there were 4 billion mobile phone users in the world

◦ There is more than 30 billion pieces of content shared on social
networks every month

◦ There is a predicted 40 % growth in global data generated per year
versus a 5 % growth in global IT spending

◦ This all tells us that there are big opportunities for us working in
Adaptive Signal Processing and Machine Intelligence
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The four V’s of big data: Volume, Variety, Velocity, Veracity
Other V’s may include Visualisation, Variability, Value (quality of data), ...
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Signal processing an machine learning for big data
Challenges and opportunities
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A brief history of Tensors

◦ The term “tensor” comes from the Latin word tendere: to stretch

◦ Tensors are geometric objects used in Engineering, Mathematics, and
Physics as an extension of scalars, vectors, and matrices

◦ The notion of tensors was first used in the 19th century by William
Hamilton to describe concepts of quaternion algebra

◦ Tensor calculus was introduced in 1900 by Italian mathematician
Gregorio Ricci-Curbastro and his PhD student Tullio Levi-Civita

◦ In 1915, Albert Einstein used tensors in his theory of general relativity
for explaining the structure of space-time

◦ These were later extended by pioneers such as Raymond Cattell and
Ledyard Tucker from the 1940s to the 1970s

◦ American mathematician Frank Hitchcock introduced Tensor
Decompositions in 1927

◦ Other pioneers, Raymond Cattell and Ledyard Tucker, 1940s – 1970s
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Types of data: From a scalar to a tensor
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For example, a 4th-order tensor is a vector of 3rd-order tensors (top right)
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Tensor construction from images
# pixelX × pixelY × base color
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Sub-structures within tensors
order-1 tensor = a vector order-2 tensor = a matrix dimensions = modes

Horizontal Slices Lateral Slices Frontal Slices

X(i,:,:) X(:, j,:)

X(:,:,k)

Column (Mode-1)
Fibers

Row (Mode-2)
Fibers

Tube (Mode-3)
Fibers

(:,3,1)

(1,:,3)

(1,3,:)

X

X

X

R a fiber is produced by fixing two indices and varying one, e.g. X(1, 3, :)
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Reshaping of data structures: General concept
Vector, matrix or small-scale tensor # higher-order tensor is referred to as folding

◦ One of the advantages
of tensors is the
flexibility they offer in
manipulating data.

◦ Depending on the
application, a tensor can
be converted (reshaped)
into a matrix, a vector,
or another tensor of a
different order.

◦ This is very useful and
allows us to apply matrix
linear algebra in addition
to multi-linear algebra for
tensors.
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Deterministic folding techniques for structured data #
Hankel folding operator

y1 y2 y3
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◦ Consider a sampled exponential signal z[k] = azk, which produces a data stream[
a az az2 az3 · · ·

]
(1)

◦ It can be re-arranged into a Hankel matrix, H, of rank-1 as follows:

H =


a az az2 · · ·
az az2 az3 · · ·
az2 az3 az4 · · ·

... ... ...

 = a


1

z

z2
...

 [1 z z2 · · ·
]
= a z ◦ z (2)

◦ For multivariate data, each data channel, i, can be mapped into a Hankel matrix, Hi

◦ These channel-wise Hankel matrices can then be stacked together into a tensor H
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Towards tensor networks: Tensorisation # blessing of
dimensionality

Vector

x∊ 8K

Matrix

X∊
4K×2

3rd-order tensor

X ∊
2K×2×2

3

4th-order tensor

X ∊RK×2×2×2
4 IRIRIRI

Tensorization (creation of a tensor from a vector of a matrix) can be performed through:

◦ Re-arrangement of lower-dimensional data. One-way exponential sig. x(k) = azk

can be folded into a rank-1 Hankel matrix, thus introducing redundancy (Slide 56)

◦ Mathematical construction. Through e.g. time x frequency x channel representation

◦ Experimental design. EEG data over I channels, J subjects, K trials (Slides 15-16)

◦ Natural tensor data. In HDTV, RGB color images are generated as 3rd-order tensors

of size 1920× 1080× 3. Similar situation exists in hyperspectral imaging (Slide 44)
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Example 1: From a matrix to a 3D array
Example of a video clip

Each frame is 1,000 pixels by 1,000 pixels Xi ∈ R1,000×1,000

20 seconds of recording with 50 FPS rate = 1,000 frames

A video clip can be seen as a short & wide matrix X ∈ R1,000×1,000,000

Analysis of all frames at once in this way is not informative or compact

◦ Significant difference in dimensions # processing is computationally
expensive, difficult and not physically intuitive

◦ Any PCA-type solution would require a matrix of size 106 × 106

◦ This is a perfect scenario for low-rank tensor approximations and the
inherent super-compression capability of tensor representations

R Reshape this awkward-to-analyse data into a compact 3D array
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Example 1a: Tensor construction from different channels
# channel × frequency × time
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Example 1d: Putting it all together, construction of a 4D
tensor with modes channel × trial × frequency × time

◦ Each data channel is a matrix of channels × time. Multiple trials form a 3D array

◦ Time frequency representation (TFR) yields a 4D multi-way array of data. If we

include the # Subject, then we have a 5th-order tensor, and so on
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Curse of dimensionality

◦ The term curse of dimensionality was coined by Bellman (1961) to indicate that the

number of samples needed to estimate an arbitrary function with a given level of

accuracy grows exponentially with the number of variables, that is, with the

dimensionality of the function

◦ In other words, curse of dimensionality refers to an exponentially increasing number of

parameters required to describe an extremely large number of degrees of freedom

◦ In the context of tensors, the number of elements, IN , of an Nth-order tensor of size

I × I × · · · × I grows exponentially with the tensor order, N
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Example 2: Scientific computing
For computational purposes we often need

to sample a multidimensional function on

a grid (e.g. brain scans)

◦ For a tri-variate function (N=3, left)

sampled at I=1000 points, this will give

IN = 10003 = 109 samples

◦ For N=4 and I=10,000 this gives I4 =

1016 samples
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Remedy: Canonical Polyadic Decomposition (CPD)
Top: Singular Value Decomposition (SVD) for matrices

Bottom: Canonical Polyadic Decomposition (CPD) for tensors # tensor rank = R
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◦ Top: A ’flat-view’ matrix X can be decomposed into a sum of rank-1 matrices Xi

◦ An 3rd-order tensor X captures 3 dimensions (modes) and can be factorised in the

same way # as sum of rank-1 tensors Xi = ai ◦ bi ◦ ci, i = 1, 2, . . . , R

◦ This is procedure is referred to as the Canonical Polyadic Decomposition
CanonicalR the minimal (rank-1) structure (minimum number of factors)

PolyadicR the structure is formed by N elements (outer product of N vectors)
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Example 3: CPD applied to our video-clip example
Inherent compression within the CPD # storage and computational advantages

After tensorizing the video clip, tensor order N = 3, the dimension in every
mode I = 1000, and the tensor rank is R. Typically R≪ I.
with length(ai)=1000, length(bi)=1000, length(ci)=1000, i = 1, 2, . . . , R

◦ Raw data format # IN = 1000× 1000× 1000 = 109 pixels = 1 Giga-pixel

◦ In the CPD format, this becomes N × I ×R = 3× 1000× 10 = 30, 000 pixels

(for R=10), that is, compression of almost 5 orders of magnitude

◦ In scientific computing, if we sample a cube at I = 10, 000 points, then IN = 1012

raw samples become N × I × R = 3× 105 samples in CPD

For N=4, I=104, R=10, the IN = 1016 raw samples  4× 105 samples in CPD
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From matrix rank to tensor rank
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Example 4: Intuition behind the tensor rank

Color ensemble

= rank-1

Base color 1

cR

+ rank-1

Base color 2

cG
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Base color 3

cB

◦ All colors are just combination of three base colors: red, green and blue # rank = 3

◦ Vectors cR, cG, cB represent intensity, i.e. each value characterises how much of the

base color there is in the corresponding slice
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Tucker Decomposition (TKD)
TKD with imposed orthogonality constrains # Higher-Order SVD (HOSVD)

The TKD is not unique, but the subspaces defined by U(1),U(2),U(3) are unique

◦ Eeach vector of U(1) is associated with every vector of U(2) and U(3) through the

core tensor S # X ≈
R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

Sr1r2r3
· u(3)

r1
◦ u(2)

r2
◦ u(3)

r3

◦ By imposing orthogonality constrains on each factor matrix, we arrive at the natural

generalisation of the matrix SVD, the higher-order SVD (HOSVD)

◦ Low-rank approximation (truncation) is then implemented in analogy with SVD, but

separately for each mode, as shown above, where R1, R2, R3 are the truncated ranks
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Tensor decompositions # Blessing of dimensionality
From left to right: CPD, Tucker decomposition, Tensor train

◦ Can represent tensors with fewer parameters

◦ Overcome storage issues

◦ Allow the application of algorithms which would otherwise be prohibitive, to the

extremely high computational cost
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Block Term Decomposition (BTD)
Combination of the CPD and TKD concepts # modeling of complex components

Top: CPD  sum of rank-1 tensors Bottom: BTD  generalization of CPD

◦ Complexity of basis images varies according to their ranks. Rank-1 # local structures.

Full-rank # more complex structures related to global information
◦ Combination of basis images with different ranks # structures with a range of

complexity levels that represent local and global features at the same time

◦ The BTD is as a sum of tensors with different ranks # flexible estimation of data

◦ Each basic sub-tensor in the sum captures a similar structure (regarding dimensions,

sparsity profile and constraints) among all examples in a dataset

◦ With the same number of features, the BTD approximates data better than the CPD
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Example 5: Tensor completion (missing data recovery)
A type of BTD (Kronecker BTD) recovers an image with even 90 % missing data

a) original b) 40% missing c) recovered d) 90% missing e) recovered

◦ Missing data may arise due to faulty or unrealiable sensors (Veracity, see Slide 5)

◦ Missing data recovery is based on the available information (inpainting)

◦ The RGB image is a natural tensor (see Slide 13), in this case of size 512× 512× 3

◦ For data with structure, like the above image, TDs can peform missing data recovery

whereby the missing pixels are recovered through a Kronecker product of available

pixels and an “indicator tensor” (binary mask determined by available/mixing pixels)

◦ Observe good results with even 90% of missing pixels

◦ The problem of data reconstruction from incomplete information is closely related to

the Compressed Sensing paradigm (see Slide 44)
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Beyond standard regression # Tensor-valued PLS
The Higher-Order Partial Least Squares (HOPLS)

◦ Goal: to predict a tensor Y from a tensor X

◦ Approach: to extract the common latent variables between Y and X

◦ Advantages: ability to model interactions between complex latent components of

both the tensor of predictors, X, and the tensor of responses, Y
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Example 6: Prediction of arm movement from brain activity
Predictors: Brain activity (EEG). Responses: 3-D arm movement trajectory (X,Y,Z)
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Advanced concepts: Tensor train (TT) decomposition
Curse of dimensionality can be eliminated through tensor network representations
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◦ More degrees of freedom  more latent dependencies need to be preserved

◦ This inevitably leads to curse of dimensionality (CoD) (see Slide 17) # the number

of elements grows exponentially with the the tensor order (number of dimensions)

◦ TT decomposition represents an Nth-order tensor via two factor matrices, A and B,

and (N − 2) small core tensors, Gi. These are connected through tensor contractions

◦ This allows for a distributed representation of very large data on multiple computers
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Other types of tensor networks (TNs)
The number of free edges determines the order of a core tensor (usually 3 or 4)
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◦ Tensor network architectures can be with or without loops # the Matrix Product

State (MPS), Tree Tensor Network State (TTNS), Projected Entangled-Pair States

(PEPS), Hierarchical Tucker (HT)

◦ TNs decompose a very high-order tensor into sparsely (weakly) connected low-order

and small-size core tensors (red circles) # computational and storage benefits
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Super-compression inherent to TNs
Exponential complexity for the raw data format  linear complexity for TDs

Data format length(moden)=10 length(moden)=10m General case

103 103m IJK
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R · 3 · 10 R · 3 · 10m R(I+J+K)

(I1×I2×I3×I4×I5×I6)

106 106m
6∏

n=1

In

I1 I1
I2 I2

I3 I3

I4 I4

I5 I5
I6 I6

R · 6 · 10 R · 6 · 10m R
6∑

n=1

In

◦ R is the rank of a tensor X # CPD is a sum of R rank-1 terms. On practice R� In

◦ For an N th-order tensor all IN elements are efficiently represented through the CPD

as a linear (instead of exponential) function of number of elements in each mode

© D. P. Mandic International Neural Networks Sosciety, INNS BDDL’19 30



Opening the DNN blackbox # From neural networks to
tensors and tensor networks

       Deep 
Neural Network

(DNN)
Tensor Network

(TN)

Reduced TN
Reduced
  DNN

Transform to a
tensor network

Rounding 
(recompression)
of TN ranks
Canonicalization

Transform TN 
back to DNN

Depth efficiency # DNNs can implement with polynomial size
computations that would require super-polynomial size for shallow NNs.

R As a consequence, the deeper the network the better the performance

Problem: It is unclear to what extent convolutional neural networks
leverage depth efficiency, what is the size of a deep network to perform
computations not achievable by shallow networks?
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Opening the black box of Neural Networks
Cohen and Shashua: Shallow and deep networks vs. tensors

The weight tensor A of this shallow network is given by the standard CPD

A =

r0∑
γ=1

a1,1,yγ a0,1,γ ◦ a0,2,γ ◦ · · · ◦ a0,N,γ

The weight tensor A of this deep network is a tensor train (HTD)
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Applications across data science

◦ Civil engineering # condition monitoring in structures

◦ Social networks # analysis of information content and information spread

◦ Multiscale volume visualization # integration of tensor decompositions into

interactive large-scale volume rendering

◦ Transportation systems # traffic planning and management in intelligent

transportation

◦ Environmental monitoring # distributed analysis of ecological parameter spreading at

different locations and times

◦ Internet of things # analysis of massive amounts of data captured by embedded

devices in large-scale autonomous systems

◦ Video surveillance # crowd density estimation and motion recognition for detection of

abnormal activities

◦ Data fusion # combining multiple and diverse data sources to make informed

decisions # ’1 + 1 > 2’

◦ User/topic clustering in text # a general tensor model may involve the dimensions

e.g. User × Keyword × Time

◦ Network security # anomaly via a model Source IP × Target IP × Port × Time
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Currently available software for multilinear analysis

◦ HOTTBOX: Higher Order Tensors ToolBOX. Python library for tensor
decompositions, statistical analysis, visualisation, feature extraction,
regression and non-linear classification of multi-dimensional data.
(Under active development, contact ik1614@ic.ac.uk, d.mandic@imperial.ac.uk)

◦ TensorLab: the toolbox builds upon the complex optimization
framework and offers numerical algorithms for computing the CPD,
BTD, and TKD; the toolbox includes a library of constraints (e.g.,
non-negativity and orthogonality) and the possibility to combine and
jointly factorize dense, sparse, and incomplete tensors

◦ TensorLy: is a fast and simple Python library for tensor learning

◦ Tensor Train (TT) -Toolbox: contains several important packages for
working with the TT-format. It is able to do TT-interpolation, solve
linear systems, eigenproblems, solve dynamical problems.
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Conclusions

◦ Multiway data representation and the associated multilinear algebra are
a natural way to approach the Big Data paradigm

◦ Representation of data through higher-order tensors is both physically
meaningful and yields storage and computational advantages

◦ A particular emphasis has been on tensor decompositions (Canonical
Polyadic, Tucker) and their applications

◦ The associated low-rank tensor approximations enable
super-compression in tensor formats, thus aleviating or completely
eliminating the curse of dimensionality associated with Big Data

◦ With tensors, the complexity of storage becomes linear, O(NIR),
instead of the exponential, O(IN), complexity in the raw data format,
where N is the number of dimensions in data, R the rank of a tensor,
and I the size of the dimensions (modes)

◦ Tensor networks # distributed storage and computing of otherwise
unmanageable volumes of data

◦ Applications  video analytics, biomedical eng., social networks, ...
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Some supporting material
Check out our two-part monograph on Tensor Networks (Now Publishers, 2016, 2017)
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Tensors: Final Note

Thank you for your attention.

For the second part, please long onto the link

www.github.com/IlyaKisil/inns-2019
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Comparison of multidimensional decompositions

CPD Tucker
C

X A G

( )´ ´I J K ( )´ ´Q R P( )´I R ( )´R J

( )´K P

T
B@

Tensor Train

A

G
(1)

B

1 1
( )´I R

1 2 2
( )´ ´R I R

2 3 3
( )´ ´R I R

3 4 4
( )´ ´R I R

54
( )´R I

G
(2)

G
(3)

G
(3)

G
(1)

storage complexity

O(NIR) O(NIR + RN) Depends on a choosen type

inherent structure
Represented through rank-1

terms
Represented through core

tensors and factor matrices
Represented through tensor

contractions

uniqueness conditions
Very soft and depend on the

CPD structure
Constrains should be imposed

on factor matrices
N/A
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Relation between the CPD and TKD
CPD = TKD with a diagonal core
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Example 7: Linked Multiway Component Analysis
(LMWCA) for classification applications

all categories

same category

◦ Data fusion concerns the joint

analysis of an ensemble of data sets

◦ Images of objects from different

viewpoints can be grouped together

and naturally linked as multi-block

tensor data

◦ Such data blocks share common

information, and at the same time

this also allows for individual data

features to be maintained

◦ An extracted set of common

features is more discriminative #
better suited for classification
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More complex tensor networks (TNs)
Representing a high order tensor as a set of matrices and lower order tensors

◦ The number of edges on any core

tensor represents its order

◦ The number of free edges of the

TN represent the order of the

tensor being represented

◦ TNs have the main advantages

of

– being suited to deal with the

curse of dimensionality

– performing inherent feature

extraction

◦ Tensor network architectures can

be with or without loops # the

Matrix Product State (MPS),

Tree Tensor Network State

(TTNS), Projected Entangled-

Pair States(PEPS), Hierarchical

Tucker (HT)

R1 R2

K1

I1

G
(2)

G
( -1)N

G
(1)

G
( )N

J1

I2 IN-1
K2J2

IN
JN KN

RN-2 RN-1

JN-1 KN-1

I1

J1

K1

I2

J2

K2

IN-1

JN-1

KN-1

IN

JN

KN

I1

J1

K1

I2

J2

K2

IN-1

JN-1

KN-1

IN

JN

KN
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Comparison of multidimensional decompositions

CPD Tucker
C

X A G

( )´ ´I J K ( )´ ´Q R P( )´I R ( )´R J

( )´K P

T
B@

Tensor Train

A

G
(1)

B

1 1
( )´I R

1 2 2
( )´ ´R I R

2 3 3
( )´ ´R I R

3 4 4
( )´ ´R I R

54
( )´R I

G
(2)

G
(3)

G
(3)

G
(1)

storage complexity

O(NIR) O(NIR + RN) Depends on a choosen type

inherent structure
Represented through rank-1

terms
Represented through core

tensors and factor matrices
Represented through tensor

contractions

uniqueness conditions
Very soft and depend on the

CPD structure
Constrains should be imposed

on factor matrices
N/A
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Example 9: Higher-order compressed sensing

CS signal reconstruction when the set

of measurements is much smaller than

the original data

Top: Measurement scenario

Top right: Original huge hyperspectral

image

Bottom: The hyperspectral image

of affordable size, reconstructed using

HO-CS
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Example 8: SSVEP recognition in EEG based on Linked
Multiway Component Analysis (LMWCA)

◦ Steady-state visual evoked potentials

(SSVEP) are periodic neural responses in

EEG, which are elicited at the same

frequency as a blinking visual stimulus

◦ EEG data recorded at the same

stimulus frequency should share some

common features, reflecting this frequency

information

◦ Such common features extracted from EEG

bear real SSVEP characteristics # more

qualified as references for SSVEP recognition

◦ The LMWCA identifies and separates the

common and individual features from multi-

block tensor data, and can be a very effective

tool for solving classification problems

◦ The LMWCA ignores variances of common

components # weak features can be

detected
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Example 9a: Tensor construction from a video clip
# pixelX × pixelY × frame

10
00

p
ix

el
s

1,000,000 pixels

1,000 fra
mes

1,
00

0
p

ix
el

s

1,000 pixels

◦ A simple re-arrangement of frames (stacking into a cube) transforms the matrix of

1,000 × 1,000,000 pixels into a 3-way tensor of size 1,000 × 1,000 × 1,000

© D. P. Mandic International Neural Networks Sosciety, INNS BDDL’19 46



Unfolding of a tensor in different modes
Converts a higher-order tensor into a smaller tensor, matrix, or vector

I2

I1

I3

I1

I2

I3

I1

I3

I2

I1

I2

I3

I3

I1

I2

I1

I2

I3

A A(1)

A

∈

A

I1 × I2 I3

I I1 I32

I I1 I23

×

×

R

A(2) ∈ R

A(2) ∈ R

mode-1 unfolding

mode-2 unfolding

mode-3 unfolding

◦ This operation maps tensor entries into a matrix, in e.g. a ’slice-by-slice’ manner

◦ Such flattening (unfolding) prior to data analysis breaks the inherent structure in data

and obscures latent dependencies between the modes
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Multilinear operations and definitions

Mode-n unfolding

Mode-n product

Outeproduct

◦ The order of a tensor is a number of dimensions

X ∈ RI1×···×IN

◦ The mode-n unfolding of a tensor:

X→ X(n)

◦ The mode-n product:

Y = X×n U⇔ Y(n) = UX(n)

◦ The outer product of N vectors results in a

rank-1 tensor of order N :

a1 ◦ a2 ◦ · · · ◦ aN = X ∈ RI1×···×IN
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Example 9: The outer product in three dimensions

Consider the vectors a =
[
1 1 1

]T
, b =

[
1 2 3

]T
, c =

[
1 10 100

]T
.

a ◦ b ◦ c = ? (3)

© D. P. Mandic International Neural Networks Sosciety, INNS BDDL’19 49



Tensors # ability to maintain original data structure,
and to perform high-level feature extraction
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Unfolding of a tensor in different modes
Converts a higher-order tensor into a smaller tensor, matrix, or vector

I2

I1

I3

I1

I2

I3

I1

I3

I2

I1

I2

I3

I3

I1

I2

I1

I2

I3

A A(1)

A

∈

A

I1 × I2 I3

I I1 I32

I I1 I23

×

×

R

A(2) ∈ R

A(2) ∈ R

mode-1 unfolding

mode-2 unfolding

mode-3 unfolding

◦ This operation maps tensor entries into a matrix, in e.g. a ’slice-by-slice’ manner

◦ Such flattening (unfolding) prior to data analysis breaks the inherent structure in data

and obscures latent dependencies between the modes
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Example 10: Video clip # compact tensor representation

distance is huge

dista
nce is the same as frame dimension

As compared to a

matrix case (top row),

we have the same

number of data points

1000× 1000× 1000,

but arranged in a much

more informative way.

This provides a more

intuitive and compact

data representation

and better statistical

inference.
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Tensorisation: Multi-way representation of multichannel
biomedical data

◦ The electroencephalogram

(EEG) is one of the

fundamental tools for

functional brain imaging, as

it is non-invasive and has

high temporal resolution

◦ Brain signals contain latent

features which are much

more likely to be found

from recordings across a

large number of recording

channels, multiple trials,

multiple subjects, multiple

stimuli, ...

◦ The EEG recordings

are therefore inherently

multi-dimensional (many

channels), and multi-way
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Example 11b: Tensor construction from different trials
# trial × frequency × time

Trial1

Trial2

TrialN

Raw signal
O

n
e

ch
an

n
el

of
in

terest,
m

u
ltip

le
trials

F
req

u
en

cy
d

om
ain

Time domain

Tria
ls

Time intervals

F
re

q
u

en
cy

ra
n

ge
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Example 11c: Tensor construction from different subjects
# subject × frequency × time

Subject1

Subject2

SubjectN

Raw signal

O
n

e
ch

an
n

el
of

in
terest,

several
su

b
jects

F
req

u
en

cy
d

om
ain

Time domain

Subjects

Time intervals

F
re

q
u

en
cy

ra
n

ge
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Deterministic folding techniques for structured data:
The Hankel folding operator

y1 y2 y3

I1 I I 3

L=I1+ I2 + I 3 -2
2

I1

I2

I3

y1

y2

y3
y

◦ Consider a sampled exponential signal z[k] = azk, which produces a data stream[
a az az2 az3 · · ·

]
(4)

◦ It can be re-arranged into a Hankel matrix, H, of rank-1 as follows:

H =


a az az2 · · ·
az az2 az3 · · ·
az2 az3 az4 · · ·

... ... ...

 = a


1

z

z2
...

 [1 z z2 · · ·
]
= a z ◦ z (5)

◦ For multivariate data, each data channel, i, can be mapped into a Hankel matrix, Hi

◦ These channel-wise Hankel matrices can then be stacked together into a tensor H
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Deterministic folding techniques for structured data:
The Toeplitz folding operator

◦ Consider the discrete convolution of two vectors, x and y, of respective lengths I and

L > I, given by
z = x ∗ y (6)

◦ The entries zI:L can be represented in a linear algebraic form as

zI:L = Y
T
x =


y(I) y(I − 1) y(I − 2) · · · y(1)

y(I + 1) y(I) y(I − 1) · · · y(2)

y(I + 2) y(I + 1) y(I) · · · y(3)
... ... ... . . . ...

y(L) y(L− 1) y(L− 2) · · · y(J)




x(1)

x(2)

x(3)
...

x(I)

 (7)

◦ A linear matrix operator, Y, is called the Toeplitz matrix of the generating vector y

◦ The convolution of three or more vectors allows us to construct a higher-order tensor

z = x1 ∗ x2 ∗ y (8)

◦ First, a Toeplitz matrix Y is obtained from x1 ∗ x2 as shown in Eq. (7)

◦ Each row of Y(k, :), when convolved with a generating vector y, produces its own

Toeplitz matrix Yk, k = 1, . . . , J

◦ Finally, stacking all Yk along e.g. the third mode, gives the tensor Y = [Y1, . . . ,YJ]
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Intuition and physical meaning behind the CPD

time course

frequency content

distribution over channels

◦ Components b
(1)
i , b

(2)
i , b

(3)
i (factor 1) are associated with one another (linked)

◦ However, none of them is associated with any other set of such components (factors)

for i 6= j, e.g. with b
(1)
R , b

(2)
R , b

(3)
R

◦ Every ’basis’ vector has an associated physical meaning, in its respective dimension

◦ Vectors b
(1)
1 , b

(1)
2 , . . . , b

(1)
R can be combined into a factor matrix B(1) etc., to give

X =

R∑
r=1

λr · b(1)
r ◦ b

(2)
r ◦ b

(3)
r = JD;B

(1)
,B

(2)
,B

(3)K (9)
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Intuition and physical meaning behind the CPD
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Intuition and physical meaning behind the CPD

1 = 105 + 1012 + 1015
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Super-compression inherent to CPD
Exponential complexity for the raw data format  linear complexity for TDs

Data format length(moden)=10 length(moden)=10m General case

103 103m IJK

N
u

m
b

er
of

el
em

en
ts

in
a

d
at

a
fo

rm
at

R · 3 · 10 R · 3 · 10m R(I+J+K)

(I1×I2×I3×I4×I5×I6)

106 106m
6∏

n=1

In

I1 I1
I2 I2

I3 I3

I4 I4

I5 I5
I6 I6

R · 6 · 10 R · 6 · 10m R
6∑

n=1

In

◦ R is the rank of a tensor X # CPD is a sum of R rank-1 terms. On practice R� In

◦ For an N th-order tensor all IN elements are efficiently represented through the CPD

as a linear (instead of exponential) function of number of elements in each mode
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Notes

◦
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Notes

◦
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