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Notation: (a)
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(d)
()

®
8

Information Theory

Random variables are shown in a sans serif typeface. Thus x,X,X denote
a random scalar, vector and matrix respectively. The alphabet of a discrete
random scalar, X, is denoted by X and its size by ‘X‘ :

X,,, denotes the sequence X, X,, -+, X, .
The normal distribution function is denoted by:
N(x;u,0°)= (27:0‘2 ]_I'/: exp(=%4(x - )’ c7%)

@ denotes the exclusive-or operation or, equivalently, addition modulo 2.

logx = in—; denotes logarithm to base 2.
n

P(e) denotes the probability of the discrete event e .

“1.i.d.” denotes “independent identically distributed™
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The Questions

1. (a) If p is an arbitrary probability mass vector and q is a uniform probability mass
vector with the same number of elements, show that H(p) < H(q). You may [3]

assume without proof that D(p||q) = pr Iog(&] >0.
i q;

H

(b) Xx and y are Bernoulli random variables. They are added together to form
Z = X+ y which lies in the range 0 to 2.

(i) By considering the alternative expansions [5]
H(x.y,.zZ)=H(X)+H(y | X)+H(Z|X.y)
=HX)+HZz|x)+H(y|x,2)

Show that if x and y are independent, H(Z2)= H()).

(ii) Demonstrate that the independence criterion is necessary by specifying a
joint distribution for x and y for which H(x)=H(y)=1 but H(z)=0. i3]

(c) A cable connecting two buildings contains 6 indistinguishable wires; in order to
use the cable, you need to determine which wire connects to which. The wires are

labelled A, B, C,D.E,Fatoneendand R, S, T, U, V, W at the other.

The random variable ze {l1:720} indicates which of the 6!=720 possible

connection patterns is true. You propose to determine Z by connecting various

combinations of the wires together at one end while a friend measures the

connectivity between wires at the other.

(i) Give the value of H(Z) if all of the 6! possible connection patterns have [1]
equal probability.

(i) You connect the wires in pairs A=B, C=D, E=F and determine the
connectivity between the six wires R, ..., W. If /m, denotes the result of this [3]

measurement, determine the value of H(Z|m,).

(ili) /m, denotes the result of measuring the connectivity between R, ..., W if [3]
you connect A=B and C=D=E instead of the pairwise connection pattern
given in part (ii). Determine the value of H(z|m,).

(iv) You now connect A=C and B=D=F and measure the connectivity between 2
. . [2]
R, ..., W. If m, denotes the result of this measurement, determine the value

of H(z|m,,m,).
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2. The pixels of a binary-valued image are transmitted as a stream of bits, X,. The

bitstream is modelled as a stationary Markov process with the joint probability,
P(x_.X,) as follows:

Xi

o
x, 006 005
11005 03

The following values of H(p) may be helpful in this question:

p ‘0.0769 0.1429 02462 02857  0.3017 _ 0.4341
H(p)|0.3912 0.5917 0.8051 0.8631 0.8834 0.9875

(a) Determine the probability mass vector for X, and the entropy rate, H(X), of the [4]
process.
(b) A Huffman encoder is used to encode pairs of bits, (X,_;,X,). Design the encoder [4]

and determine the expected number of encoded bits per pixel-pair.

(¢) In a noisy version of the image, y,, each pixel is corrupted independently by [6]
being inverted with probability 0.2. Determine the joint probability functions
P(x.,y,) and P(y,,.Y,).

(d) Calculate H(y,|X,,) and H(y,|y,,)and explain why the entropy rate of the [6]
Hidden Markov process {y,} must lie between these two values.
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3. Figure 3.1 shows two communications channels connected in series. The first connects
the Bernoulli random variables x and y while the second connects )y and Z. The

probabilities that X, y and Zz equal 1 are p,, p,=(-f)p, and
p.=8g+(1-29)p, respectively. The error probabilities are f =0.125 and g=0.1 as
shown.

The following values of H(p) may be helpful in this question:

p ‘0.1 0.2 0394 04377
H(p)|0.469 0.7219  0.9673 0.9888

(a) Considering first the binary symmetric channel linking ) and Z, justify each step
of the following derivation

Q)
I(y;2)=H(Z)-H(z|y)

(i)
= H(Pz)_H(Z|Y :0)(l_py)_}{(z| Y= l)p_v
(ii)
= H(g+(1-2g)p,)-H(g)
Determine (as a numerical value) the value of p, that maximizes this expression [5]
and hence the capacity of the channel.
(b) For the channel linking X and y, derive an expression for /(x:y) interms of f

[7]

and p, . Hence find the capacity of the channel and the value of p, that attains it.
You may assume without proof that @a’(pl = log(p" - l).
p

(c) Calculate the transition probabilities of the combined channel linking X to Z. [7]
Determine the capacity of this channel and the value of p, that attains it.

(d) By how much could the capacity of the combined channel be increased if it was [1]
possible to recode y before transmission through the binary symmetric channel.

0 > > ) —> 'y > ()
g
X Vi Y 5 Z
| i > > 1 > 52 > |
£0.125 2=0.1
Figure 3.1
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4.  In the discrete-time channel of Figure 4.1, X and ) are continuous random variables

and the zero-mean additive noise Z is identically distributed for each use of the
channel and is independent of x . The variance of X is P and the variance of Z is N .

(a) If z is Gaussian, justify each step of the following

(1) (i1)
I(x:y)=h(y)—h(y | X)=h(y)-h(Xx+Z|X)
(1) (iv)
= h(y)-h(zZ| x)=h(y)-h(2)
< log(27(P + N))-Y2log(27N)
P+NJ
JNT

(vi)

=% log(

Hence give the channel capacity, C, and the distribution of x that attains it.

(b) If, now, Z is non-Gaussian and we define the noise entropy power, O, by

Q = (222)--! 22#{2] .

(i) show that the channel capacity satisfies C <% log(}) ;NJ

(ii) using the “power inequality”, 2*"") > 2% 4222 \which you may assume

without proof, derive a lower bound on C in terms of P and Q.

(¢) Suppose now that P =24 and that Zz is uniformly distributed in the range -3 to
+3.

(1)  Evaluate the capacity bounds from parts (b)(i) and (b)(ii).

(i) Determine I(x:y) if x takes the values -6, 0 and +6 with equal
probability.

Figure 4.1
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5.

X and Y are discrete-valued random vectors of length » where each pair (Xx,,y,) is

drawn independently from the joint probability mass function p,, (x,y). The jointly
typical set, J", is the set of vector pairs satisfying the following conditions:
I = {x,y :I—M‘I log(p, (x))— H(X)‘ <e,
~nlog(p, ()~ H(y)|<e,
- nlog(p,, (x.y))- Hx.p)| < €}

where p,(x) and p,(y) are the probability mass functions of X, and y, respectively.
The probability px(x)znpx (x;) and similarly for p,(y) and p, (x.y).

i=1
(a) Justify each of steps (i) to (iv) in the following derivation of an upper bound for

J"|, the size of J”:

(iv)
2--!{!!{){.}’}—!1&' ‘J{n} < 7nH{X.y)+n.€
= e | =<

(i) (i1)
12 Y p, (xy) 2"

; iml
xyed,

(i)
# (n)
min X,V)=> !J
i Py (¥} 2

(b) z is a discrete random vector, independent of X, whose elements are drawn
independently from the same probability mass function as y,, ie.

Pe(%,2)=p,(x)p,(2).

(i) Show that max p,,(x,z) < 27")mepnfiyyme
)i.zEJf."'

(i) Hence derive an upper bound on P(x,z € J:f”).
(c) Now suppose that n=11 and £=0 and that p, (x,y) is given by
‘ Y=Y ¥l
x=0 | 5/11 2/11
x=1 | /11 3/11

We define the typical set 7, = {x =n"'log p,(x)= H(X)}.
(i) Show that Xe 7, if and only if exactly 4 of the X, equal 1.

Hence show that the probability of this is P(Xe T,)=C} (4/11)"(7/11)
where C¥ =n!/(k!(n—k)!) denotes a binomial coefficient.

(i) Explain why P(X,ye J\'" | Xe T,)=C:(2/7)*(5/7)Y°C;(3/4)°(1/4).
(iii) Hence determine the value of P(x,ye J{‘;”’).

(iv) If z is a random vector, independent of X , whose elements are independent
Bernoulli variables with P(Z =1)=5/11, calculate P(X,ZE Jé,“’).
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6. The continuous random variable X has zero mean and variance o’. We define the
information rate-distortion function for X to be R(D)=min I(x;X) where the
minimum is taken over all conditional distributions p(X|Xx) for which
E((X—)?)E)SD. You may assume without proof that h(X)Sh(y)z‘/ziog(2ﬂeo‘2)
where y is Gaussian with variance .

(a) Carefully justify each step in the following bound and given the conditions for (6]
equality in steps (iii) to (v):

I(x: )?)[—i-] h(x)—h(x | X)

2 W) —h(x-%| %)

> hx)-h(x- %)

(1)
> h(x)=" log(Zize Var(X = )?))
3 h(x)~log(2mD)

(b) In the diagram of Figure 6.1, Z is independent of X and is zero-mean Gaussian
with variance kD where k=1-Do ™ for D<o’

. &ci [2]
(i) Show that E((x-X)*)=D.

(i) Show that Var(¥)=c>-D. [2]
(iii) By expanding I(X;X) as A(X)—h(X|X). show that R(D) S‘/zlog(crzD"]). [5]

(¢) If x is uniformly distributed in the interval (=2,+%) and is encoded with 1-bit
per sample as X e {~V,+%}, determine the distortion, D = E((x—)?)z), together

with the bounds defined in parts (a) and (b). Comment on the relationship between [5]
the actual bit-rate and the bounds.

Z

N
X @ o X=kXx+z

Figure 6.1
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2008 E4.40/SO20 Solutions

Key to letters on mark scheme: B=Bookwork, C=New computed example, A=New
analysis

I. (@ If|X|=nthen g,=n"Vi.From the Information Inequality (given in question)

; [3B]
0<D(plle)=)p, log[%}—ﬁ’(p)*-z,p, logn = H(p)<logn=1H(q)
(b) (i) From the question,
HXx)+Hy |x)+Hz|x,y)=HX)+H(Zz|x)+H(y|x.2).
However because Z=x+y, H(Z|x,y)=H(y|x,Z)=0. Also, because
X and y are independent, H(y | X)= H(y). Hence [5A]

HX)+H(y)=HX)+H(Z|Xx)<H(X)+H(2)

where the final inequality follows because conditioning reduces entropy.
Subtracting H(X) from both sides gives the required result.

(i) If x is uniformly distributed and y=1-x, then H(x)=H(y)=1 but [3C]
Z=1so H(2)=0.

() () H(Z)=log720=9.49bits. [1C]

(ii) The six wires R, ..., W will form three pairs but you have no way of telling
which pair is which. Thus there are 6 possible arrangements of the three
pairs and two possible arrangements of the wires within each pair givinga  [3(]
total of 6x2° =48 equally likely possibilities. Thus the entropy of Z is
log48 =5.58 bits .

(iii) You now have three interconnection groups of sizes 1, 2 and 3. Because the
sizes are all different, you can identify which is which and so your only
uncertainty is the arrangement of wires within each group. Thus the number [3C]
of possibilities is now 1X2X3!=12 which gives an entropy of
log12 =3.58 bits .

(iv) This final measurement uniquely identifies the wires since the members of  [2(]
any single group in the previous part are now in different groups. Thus the
entropy is now 0.

Information Theory: E4.40, ISE4.51, SO20 Solutions 2008 Page 1 of 7



2. (a) p,=[0.65 033] [1C]
H(X)=0.65x H(0.05/0.65)+0.35x H(0.05/0.35)
=0.65x H(0.077)+0.35x H(0.143)
=0.65%0.391+0.35x0.592 = 0.461 bits

(b) Huffman Code for inputs [00, 11, 01, 10] with probs [0.6, 0.3, 0.05, 0.05] are  [4C]
[0, 10, 110, 111] giving an expected code length of 1.5 bits.

[3C]

(¢) The joint probability of (x,_,,),) is

o & 05), 0,05 6)_(49 16
Aoy 33 05 L 25 13¢]
and the joint probability of (y,_,.,) is
49 .16 d 025 412 178
0.8 +02 - [3C]
g 25 49 .16 178 232

(d) Wehave
H(y, | x._)=0.65xH(0.16/0.65)+0.35x H(0.1/0.35)
= 0.65x H(0.246)+0.35x H(0.286)
= 0.65%0.8051+0.35x0.8631 =0.8254 [2C]

also, noting that p, = [0.59 0.41],

H(y,|y._)=0.59%H(0.178/0.59)+0.41x H(0.178/0.41)
= 0.59x H(0.302)+0.41x H(0.434) [2C]
=0.59%0.8834+0.41x0.9875 =0.926
For a hidden markov process, we have H(y, |y, .x, )< HW)<H(y,|y,,) for
any j<i—1 and, in particular for j=7i—1. But since y,, depends only on X, [2C]
we have H(Y, |V, . X )=HW, | X.,).
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3. (a) (i) Thisis the definition of mutual information. [1B]

(il) We can decompose conditional entropy as a weighted sum of entropy  [IB]
conditional on specific values.

(iii) Forboth y=0 and y =1, z is a Bernoulli variable with probability vector ~ [1B]
1-¢ g] and so its entropy is H(g).
H(Z)=H(p,) and, as given in the question preamble, p, =g+(1-2g)p, .

The value of I(y;Z) is maximized by making g+(1-2g)p, =0.5 which occurs [2B]
when p, ='.. The channel capacity is therefore 1—H(g)=1-0.469 =0.531 bits.

(b) Ina similar way, we have
I(x:y)=H(y)-H(y|X)
=H(y)-H(y|x=0)1-p,)-H(y|x=1)p,
=H(y)-0-H(f)p, [3A]
=H(p, (- 1))-p.H(f)

Setting the derivative with respect to p, to zero gives

o=dfdp=(1—f)|og(p“(1—f)"-1)—H(f)

=0.875log(1.143p™"' =1)-0.5436
= 1 l43p—1 —I - 20.5436;‘0_875 - 20,6212 - 1 5382

= p=1.143/2.5382 = 0.4503 [2C]
= I= H(0.4503%0.875)—0.4503x0.5436
— H(0.394)—0.2447 = 0.9673—0.2447 = 0.7226 bits [2€]
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(¢) The transition probabilities of the combined channel are

z=( z=1
x=0 1-g=09 g=0.1
=1 | f+g-2fg=02 1-f-g+2fg=0.8

Following the previous derivation, and noting that p, =0.1+0.7p, , the channel 12C]
capacity is

C=H(p,)-p,H(0.2)-(1-p,)H(0.1) [1A]

Setting the derivative w.r.t p, to zero gives
-1
0=4C/ =07 log(p, " =1)-0.7219+0.469

= p;'-1=2"=12846 = p,=04337 [2C]
= p=(0.4377-0.1)/0.7=0.4824

= (C=H(04377)-0.4824x0.7219-0.5176x0.469
=0.9888-0.3483-0.2427 [2C]
=0.3978 bits

(d) It would be possible to increase to the minimum capacity of the sub channels, [1A]
namely 0.531 bits.
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4.

(2)

(b)

(c)

(i)  Definition of mutual information.

(ii) Definition of .

(iii) Trnaslation invariance by a conditional constant.
(iv) Zz isindependent of X .

(v) Gaussian bound for A()) in terms of its variance. Known h(Z) since
Gaussian.

(vi) Algebra

We have equality in step (v) only if y is Gaussian. Since we know that Z is
Gaussian, this implies that x is also Gaussian.

(i) Rearranging the definition of Q gives h(z)='2log272Q and the result
follows if this is inserted into the previous part after step (iv).

(ii) From the previous part, 2*®’ =2mQ and, if we choose X to be Gaussian,
2*"¥) = 2P . Hence the power inequality becomes

22HY) > 2m(P+0) = h(y)2% 10g(27£€(P+ Q))
Hence, from part (a),
I(x:y) = h(y)—h(z)

> Yalog2me(P+Q)—"2log2meQ =Y21og

P+
Q
Thus this is a lower bound on the capacity with Gaussian X so the capacity with

arbitrary X must be at least this large.

(i) For a uniform distribution A(Z2)=log6=2.585. This gives
Q=36(2m)"' =2.1078. The variance of Zz is N =36/12=3. Hence

18153=Ylog L € < <ulog T — 1 8396
Q Q
(i) H(x)=1log3=1.585. In this case, we can achieve error-free decoding since

the inputs are separated by twice the maximum noise amplitude. Hence
H(x|y)=0and I(x;y)=1.585bits.
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5. (a) (i) Total probability cannot exceed 1.

(i) A finite sum cannot exceed the minimum summand multiplied by the
number of summands.

(iii) The minimum value of P(x,y) within the jointly typical set is given in its

definition.
(iv) Algebra [4B]
(b) (i) max P(x,z)= max P(x)P(z) < max P(x) max P(z)< 2 "/xmep-riyime [2B]
x.zeJ " x.ze " x,28J" x,ze S\

(i) We can write

> P(x,z)< [

x,zeJ"

max P(X Z) < 2nH(x_y}+n£2--nH[X)—NH[J/}+2n£
xzeJ" ’ - 148]
¥ £

o an{x,y V-nH (X )-nH () )+3ne

(¢ () HXx)==(7/11)log(7/11)—(4/11)log(4/11). Therefore X e T, if and only
if P(x)=2"""% =(7/11)"(4/11)". This can only happen if exactly 4 of the
x, are equal to 1. The number of ways of choosing 4 out of 11 X, is C, and  [2A]
so the result follows.
(i) If, in addition, X, ye J{'", then we require that y, =1 for 2 out of the 7 i
for which x, =0 and for 3 out of the 4 i for which X, =0. This gives the  [2A]
required expression.
Gii)y Plx.yeJ")=Plx.ye " |xe T )P(xe T,)=0.1345%0.2438=0.0328.  [2A]
(iv) We now have
P(X,ze J{"V | xe T,)=C2(5/11)*(6/11)°C}(5/11)*(6/11) = 0.0429
Which gives

4A
Plx.ze J')=P(x,ye J"|xe T, )P(Xe T, )= 0.0429x0.2438 = 0.0105 Al
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6. (a) (i) Definition of mutual information
(ii) Translation invariance, since X is conditionally constant.

(iii) Conditioning reduces entropy. Equality if the quantization error is
independent of X .

(iv) Gaussian bound for entropy with a given variance. Equality if (X—Xx) is

Gaussian.
&) Var(x—-%)<E((x—%)?)<D and log()is monotonic. Equality if (x-%) 6B
is zero-mean and distortion is maximum allowed.
(b) (i) Since X and Zz are independent and zero mean, we have E(x2 =0 and so
can ignore the cross terms. We have,
E((x-%)")= E(x-kx-2)})=(1-k)*c +kD
[2C]

=(Do?)?6*+(1-Do?)D=D’c*+D-D’c? =D
(i) We have
Var(X) = k> Var(x) + Var(2) = k’c” +kD
— k(ko® + D) =k(1- Do™>)o> + D) 2]
=k(c*-D+D)=ko’=0"-D
(iii) We have
I(x; %)= h(X)=h(X| X)
2 V4log 27e(0” — D)= h(X — X | X)

(ii)

= Vziog2ﬂE’(O’2—D)—h(2’) [SA]
=Y log2me(ko?)—Y2log 2me(kD)
=Y log2mo’ D™

(11)

= R(D)< “%log2mo’D™
(i) because of the Gaussian bound and translation invariance. (ii) because Z
is independent of x. (iii) because R(D) is the minimum and so cannot
exceed any specific example.

(c) We have o®=1/12 and h(x)=log()=0. Also (X-X)e[-%+%] and is 2C]
uniformly distributed so D = E((x - %)?)=1/48.

The lower bound from part (a) is 0—Y2log27m /48 =—Y210g 0.3558 = 0.7454 bits .
[2C]
The upper bound from part (b) is Y2log(48/12) =2 bits.

The actual bit rate is necessarily above the lower bound. It also happens to be  [1(]
below the upper bound although this need not necessarily be true for a block
length of only 1.
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