
Resource Management in Software Defined

Coalitions (SDC) through Slicing

Athanasios Gkelias∗, Nitish K. Panigrahy†, Mohammad Mobayenjarihani†, Kin K. Leung∗, Don Towsley†,

Patrick J. Baker‡, Olwen Worthington§,Laurence Fowkes¶,
∗Imperial College London, UK. † University of Massachusetts Amherst, USA. ‡ Royal Air Force, UK

§ Defence Science and Technology Laboratory, UK ¶ Strategic Command, Defence Digital, UK

Email: agkelias@imperial.ac.uk, nitish@cs.umass.edu, mobayen@cs.umass.edu, kin.leung@imperial.ac.uk,

towsley@cs.umass.edu, pbaker@dstl.gov.uk, olworthington@dstl.gov.uk, laurence.fowkes903@mod.gov.uk

Abstract—Future defence infrastructure systems will require
increased flexibility and agility to respond to changing application
goals, external threats and complex environments. A key enabler
for such agility is Software Defined Coalitions (SDC), where
the network comprise multiple domains of resources owned by
different defence units (partners) but dynamically joined together
to form an infrastructure for communications and computation.

Software Defined (SD) Slicing aims to enable agile and near-
real-time provision and configuration of “slices” of the infras-
tructure resources for supporting future communications and
computing applications. An SD slice, makes use of the allocated
resources distributed across several domains to support a set of
applications including distributed analytic services.

We present a 3-level control architecture with a global SD-slice
controller at the top, domain controllers (DC) in the middle, and
dynamic, end-to-end flow controllers at the bottom. Associated
with each DC is a domain inference engine whose function is
to estimate availability of various resources in that domain.
Based on the inferred resource availability in domains, the global
controller determines the feasibility of supporting a new SD slice
and if so, allocates resources to achieve/maintain the required
performance of all slices. Based on the resources allocated by the
global controller, the slice controller is responsible for sharing
the resources across domains among data/processing flows to
optimize resource utility. The end-to-end flow controllers then
allocate resources to data flows or processing tasks according to
dynamic conditions of resources for efficiency and robustness.

Index Terms—Software Define Networking, Software Defined
Slicing, resource allocation

I. INTRODUCTION

Software Defined Coalitions (SDC) architecture aims to

enable agile and near-real-time provision and configuration

of “slices” of resources needed to support military coalition

missions. Each mission requires a set of distributed analytic

services and at its inception an SDC slice is created to provide

to and manage resources for a mission. These resources in-

clude processing, communications, storage, data-analytics, and

sensing resources in various domains belonging to different

coalition partners which may be both geographically and

system physically separated, and in some cases with different

use policies. Multiple SDC slices execute concurrently using

and sharing the set of infrastructure assets. Hence resources

must be carefully monitored and allocated to these slices.

Research was sponsored by the U.S. Army Research Laboratory and the
U.K. Ministry of Defence under Agreement Number W911NF-16- 3-0001.

Here we introduce a modular 3-level control architecture for

the formation, resource management and optimisation of such

slices, hereinafter referred to as SD slices (SDS). The proposed

SDS control architecture comprises a global controller (GC)

for all slices at the top, domain controllers (DCs) at the

middle and dynamic flow controllers (DFCs) at the bottom.

Associated with each DC is a domain inference engine (IE)

whose function is to estimate availability of various resources

in that domain. Based on the inferred resource availability in

the domains, the GC determines the feasibility of supporting a

new SD slice and if so, allocates resources to achieve/maintain

required performance of all slices. Each slice will execute a

collection of tasks and the slice controller (SC) is responsible

for allocating its resources to these tasks by creating DFCs,

one for each task (including data flow), that dynamically

allocate resources to each task according to time-varying

conditions of resources for efficiency and robustness.

The key enabler for SDS is Software Defined Networking

(SDN), a concept that emerged over a decade ago as a

networking architecture to enable networks to be intelligently

and centrally controlled in order to improve performance,

interoperability, flexibility and agility. The driving principle of

SDN is the separation of the control plane from the underlying

routers and switches that forward the data traffic (i.e., the data

plane). In this way, network switches become simple forward-

ing devices and network control is held with software-based

controllers, which are (at least logically) centralised. Recently,

the concept of SDN has been generalised beyond network

communication components and functionalities. Specifically,

the DAIS ITA team has extended SDN to include other

software defined capabilities and resources such as storage and

computation to form the Software Defined Coalitions (SDC)

architecture (see https://dais-ita.org/pub). The idea of Software

Defined Environments (SDE) by bringing together software

defined compute, network and storage under a unified control

plane are also discussed in [6].

In the defence/military sector, SDN has been considered

as the technology enabler for the development of Federated

Mission Networks (FMN), based on the NATO Protected Core

Networking (PCN) architecture, with the goal of supporting

secure information sharing among coalition nations [3]. In

PCN, a coalition core network is established by intercon-



necting network equipment and/or services provided by each

participating network. The SDC architecture also represents a

generalization of the PCN concept to include all type of coali-

tion resources such as communication, storage, computation,

databases, sensors, etc. The emphasis of the SDC has shifted

from a single data center/enterprise domain environment to

multiple coalition domain networks. For instance, [1] examines

the application of software defined concepts to coalition oper-

ations and evaluates the key performance metrics of different

SDC architectures, while [2] suggests a common architecture

that allows SDN and Policy Based Management to coexist and

work synergistically in SDC environments.

This paper further extends previous SDC related works

by introducing a novel and robust way to formulate “slices”

(i.e., SDS) and optimally manage coalition resources in such

SDC environments. Our contribution is threefold: (1) we

propose a 3-layer control architecture for SDS formation, re-

source allocation and optimisation; (2) we develop a machine-

learning-based resource IE that estimates resource availability

by capturing inter-dependencies among different resources

and spatiotemporal network characteristics in each domain,

and assists the GC to accept/reject new multi-domain slice

requests; and (3) we develop a SC that manages tasks within

the slice and determines their optimal data/task rates, and

DFCs that enforce these rates while providing robustness to

network changes, uncertainties and imperfect knowledge of

resource availability.

The remainder of this paper is organized as follows. Sec-

tion II presents the proposed 3-layer control architecture for

SDS. The functionalities of the Domain Controller and the

Inference Engine are described in sections III and IV, respec-

tively. The Slice Controller and the Dynamic Flow Controller

are presented in Section V, while conclusions are drawn in

Section VI.

II. SDC ARCHITECTURE

A coalition network is established by interconnecting do-

mains of resources, such as communication, storage, com-

putation, databases, sensors, etc., provided by participating

coalition partners. A Software Defined Slice (SDS) is a group

of resources and Virtual Network Functions (VNFs) spanning

two or more coalition domains, which are reserved and used

for the duration of a requesting coalition mission. In order

to initiate a multi-domain slice formation, different domains

need to communicate and negotiate the amounts and types of

available resources they are willing to contribute (i.e., share

with the other coalition partners). In our proposed architecture

a logically centralised global controller (GC) coordinates

resource sharing among SD slices across different domains.

Using resource information from all domains and the resource

requirements of a new SD slice request, the GC decides

(e.g., by trying to optimise some utility function or based on

predefined policies agreed on among the coalition partners)

whether it is feasible to accept the new slice request. If so,

the GC allocates resources across domains and requests the

Figure 1: SDC architecture: GC, DC and IE interactions.

Figure 2: Slice Controller architecture.

domain controllers (DCs) to reserve the allocated resources

for the new SD slice accordingly.

The GC may not need to know the exact network topology

of the SDC infrastructure, nor how the corresponding domains

distribute their resources among their components. In other

words, the GC operates based on the knowledge of the

aggregated available resources in each domain, which are

estimated by resource inference engines (IEs) associated with

the domain controller (DC) of the domain. Without revealing

domain details, the IE learns and reports the available capacity

of aggregated resources (e.g., a set resources that are used in

highly correlated manners) to the GC.

The domain controller (DC) has precise knowledge of

network topology and the distribution of the resources among

all components within the associated domain. The DC re-

ceives the slice resource reservation request from the GC

and decides whether the domain can provide the requested

resources or not (i.e., admit or reject a proposed slice from

the prospective of that domain). If a new slice is accepted,

the DC enforces the resource reservation within its domain

according to its resource-allocation mechanisms. The precise

network and resource distribution information, collected and

maintained by the DC, is used as input to the IE for the

domain. In this way, the IE processes the detailed resource

domain information and estimates the aggregated available

resources in the corresponding domain.

After all DCs for the domains involved in the SD slice



accept the corresponding resource requests from the GC, a

new slice controller (SC) is set up. For each slice, the unique

SC is responsible for accepting or rejecting tasks within the

slice and for optimal allocation of resources to the accepted

tasks. The slice and the associated SC will be terminated when

the military mission is completed. A dynamic flow controller

(DFC) is activated for each accepted task. The DFC aims to

achieve the optimal data/processing rates determined by the

SC, while providing dynamic adjustment and robustness over

network changes, uncertainties and imperfect knowledge of

resource availability.

III. DOMAIN CONTROLLER (DC)

The DC serves two main functions related to resource man-

agement: (1) to accept or reject resource reservation requests

from the GC and enforce resource reservations determined by

the GC for the accepted slices in the corresponding domain;

and (2) to assist the IE to generate estimates of the aggregated

available domain resources for the GC to make inter-domain

resource reservation decisions for slices. Compared to the

admission control in traditional networks (e.g., [5]) or in SDN

where resource sharing between slices is allowed, the resource-

reservation approach has the following two advantages:

(1) Acceptance or rejection of resource-reservation requests

at the DC is based on the amount of already reserved resources

in the domain, which remain unchanged for the whole duration

of a slice, and not on the current resource usage, which is

usually stochastic and depends on the underlying tasks running

on the slice. Note that slices may not operate at their maximum

resource utilisation. Slice resource utilisation depends on the

number and type of running tasks in the slice, managed by the

SC. Therefore, information about the reserved resources needs

to be updated only when a slice is admitted or terminated, and

not when new tasks on a slice are generated or terminated.

(2) The DC has precise knowledge of the network topology

and status for the associated domain. It decides for every new

slice how, when, where and what resources in the domain

will be reserved (if the slice request is accepted by the

GC). Therefore, the DC possesses all information required for

assisting the GC in slice admission decisions and resource

reservation centrally and at any given time, without the need

for the network nodes to signal their remaining resources status

back to the DC. In a nutshell, the DC always has a precise and

overall picture of the resource reservations at every network

component within its domain, and is the one which approves,

coordinates and tracks any changes.

IV. INFERENCE ENGINE (IE)

Efficient resource allocation requires knowledge of the

interdependence among different resources. For instance, con-

sider the simple network topology in Fig. 3, comprising

two servers, C1 and C2 with 10 and 1 MIPS computation

power, respectively; two network gateways (i.e., A and B);

and links that support different maximum data rates. If we

access the network only through gateway A, the aggregated

network resource capacity will be calculated either as {10

MIPS computation power, accessible at 15Mbps} or {11 MIPS

computation power, accessible at 5Mbps}. However, if we

access the network only through gateway B, the aggregated

network resources will be calculated as {11 MIPS computation

power, accessible at 1Mbps}. As networks increase in size and

Figure 3: Example network topology to demonstrate the interdepen-
dencies among different resources.

complexity and we consider various types of resources (e.g.,

storage, energy, etc.) and resource performance properties

(e.g., packet delay, outage probability, etc.), capturing such

resource interdependencies becomes increasingly difficult. It

becomes evident that the aggregated remaining resources in a

domain cannot be captured by a single vector, but rather by

a multidimensional manifold of values (where the number of

dimensions equals the number of different types of resources

and resource properties under consideration).

To select the optimal amounts and types of resources each

domain has to allocate to a new slice, the GC needs to

know all of the combinations of resources that each domain

can contribute. In other words, the GC needs to know the

aforementioned manifold for each domain. However, the DC,

which maintains the up-to-date information of the resource

distributions in its domain (i.e., network status), can only

respond to a specific request of resource combination from the

GC, and accept/reject it following DC’s own admission control

decision. In other words, the DC can only calculate (upon

GC’s request) a single point on the overall resource manifold.

To overcome this issue, we propose the IE associated with

each DC, which utilizes the DC’s admission control decisions

to calculate the remaining resource manifold for the current

domain network status. The GC will admit a slice only if the

corresponding DCs are able to admit the individual partial slice

resource requests (by the GC) in their own domains.

A. Inference Engine

Unreserved resources at every network component are easily

summarised in a single vector, hereinafter referred to as

domain status vector (DSV). The DSV is a snapshot of the

remaining capacities of all resources in the domain at any

given time, and is updated by the corresponding DC every

time a new slice is admitted or terminated. A similar vector

is used to represent slice resource requests, hereafter referred

to as resource request vector (RRV). The RRV consists of

the amounts of requested resources and for the slice spanning

multiple domains, the IDs of the nodes which serve as ingress

and egress points to the slice’s data traffic in the corresponding



domain. Note that in some cases the ingress and egress points

may be the same). For instance, consider the network of six

Figure 4: Network topology considered in our simulations

nodes in Fig. 4. Nodes 4, 5 and 6 have computing power and

data forwarding capabilities, while nodes 1, 2 and 3 serve as

domain gateways and can only forward data. The throughput

and computation power values in the figure represent the

remaining/unreserved resources at the corresponding links and

nodes The DSV is [50, 5, 40, 10, 10, 30, 60, 10, 10], where the

first 6 values correspond to the remaining link capacities in

Mbps and the following 3 values to the computing power in

MIPS at nodes 4,5 and 6, respectively. For a slice resource

request of 9 Mbps throughput and 35 MIPS computation

power, to be served between gateway nodes 1 and 3, the

corresponding RRV is [9, 35, 1, 3]. The IE concatenates DSV

Figure 5: IE classification training data/vectors and labels (top).
Classification output (bottom).

and RRV into a single vector labeled ‘1’ if the slice re-

quested resources have been accepted and ‘0’ if they have

been rejected. This dataset is used to train a deep learning

classifier that can predict whether the resource request of

a new slice request can be satisfied by the domain (given

the current network state), thus to admit or reject a future

request. In essence, this machine-based-IE captures the inter-

dependencies among different resources and spatiotemporal

network characteristics to predict the next resource-allocation

decision by the DC. Therefore, for any given network state,

we can estimate the capacities of the aggregated available

resources by identifying the boundaries between these two

classes (i.e., ‘0’ and ‘1’), as demonstrated in Fig. 5.

B. Simulation Platform

In order to demonstrate the feasibility of the proposed IE,

we have developed a simulation platform. The purpose of this

simulation platform is twofold, i) to generate data for the

training of the machine-learning-based IE, and ii) to evaluate

the performance of the engine. Without loss of generality,

we consider a single domain topology represented by the

graph in Fig. 4. Vertices (nodes) represent routers, some of

them (i.e., nodes 4, 5 and 6) are equipped with data servers

for computation. Edges represent communication links. Link

and processing capacities are predefined and remain constant

throughout the simulation. New slice requests, which requires

reservation of communication and computation resources, are

generated according to a Poisson process. The start and

end nodes for each slice are randomly selected among the

network gateways (i.e., nodes 1, 2 and 3). Data throughput

and possible computational requirements for each slice are

randomly chosen from a uniform distribution.

If a slice request is accepted the slice reserves its allocated

resources for a time duration randomly chosen from a uni-

form distribution. The DC assumes the following procedure

to select the processing node and data route for the new

slice. For slices that request only communication resources,

it selects the minimum hop-count route that can satisfy the

throughput requirement of the new slice from the start to end

nodes. If a slice requests both communication and computing

resources, the DC first selects the node with the maximum

available/unreserved computational power to meet the compu-

tational requirement. Then, it finds the shortest path from the

start node to the selected processing node, and then another

shortest path from the processing node to the end node that

satisfies the throughput requirements. We assume that compu-

tation generates additional data, so the throughput requirement

after the processing node is higher than that leading to the

node, and is given by T ′
req = (1 +

Creq

C0

)Treq (where Treq

and T ′
req are the throughput requirements before and after

the processing nodes, creq is the computing requirement and

C0 > Creq a fixed system parameter). A new slice request

is admitted only if the above procedure can identify such a

server and route that satisfy the computing and throughput

requirements for the slice; otherwise, the slice request is

rejected. Let us assume that we want to calculate the frontier

of the remaining throughput and computing power between

nodes 1 and 3 for the given network state in Fig. 4. First

we generate and input a number of vectors to the already

trained IE. The vectors consist of the network state, followed

by some requested throughput Treq and computation power

Creq values, and the IDs of the input-output nodes (i.e.,

[50,5,40,10,10,30,60,10,10, Treq , Creq ,1,3]). The output of the

IE classifier to each of these vectors will be either ‘1’ (if



Figure 6: IE output: Black dots correspond to accepted resource
requests, red dots to rejected requests. The blue line represents the
available resources frontier.

the Treq and Creq values can be supported) or ‘0’ if they

cannot. We start with some small Treq and Creq values that

are classified as ‘1’, and gradually increase the values until

the input vector is classified as ‘0’. Each dot in Fig. 6 repre-

sents the corresponding throughput and computational power

requests. Black dots correspond to admitted combinations of

resource requests (i.e., ‘1’s), while the red dots to rejected

(i.e., ‘0’s). The blue dashed line then denotes the remaining

available resources frontier in the domain.

V. SLICE AND DYNAMIC FLOW CONTROLLERS

A slice can support a number of tasks arriving at different

times, which require either communications and/or computing

resources. Let L denote the set of resources and K the set of

tasks. We assume that task k ∈ K requires resources Lk ⊂ L.

A. Slice Controller (SC)

Each accepted slice uses its allocated resources to support

communication/processing tasks. The responsibility of the SC

is to accept or reject tasks running the slice and calculate their

optimal rates. We associate with every task k a non-decreasing

utility function Uk(xk), where xk ≥ 0 represents the task’s

service rate. Examples of video and log utility functions are

given in Fig. 7. The SC outputs a target rate x∗
k for each task

k by solving the following optimization problem.

SC: max
∑

k

nkUk(xk), (1)

s.t.
∑

k:l∈Lk

ak,lnkxk ≤ Bl, l ∈ L, (2)

0 ≤ xmin
k ≤ xk ≤ xmax

k , ∀k ∈ K, (3)

nk ∈ {0, 1}, ∀k ∈ K, (4)

where Bl is the capacity for resource l and ak,l is the rate

multiplier associated with task k’s use of resource l, k ∈ K,

l ∈ L. xmin
k and xmax

k denote the minimum and maximum

rates that task k can be handled. nk takes value one if task k

can be admitted (i.e., can be handled a rate of at least xmin
k )

and zero otherwise. Here Bl represents the resource capacity

measured in Mbps when l corresponds to a communications

0 1 2 3 4 5 6 7 8

Rate
0

1

2

3

4

5

6

7

U
ti
lit
y

(a) Video utility function

0 1 2 3 4 5

Rate
-4

-2

0 U
ti
lit
y2

(b) Log utility function

Figure 7: Utility functions for tasks

link or in MIPS when l is a computing resource and ak,l’s

are multipliers used to normalize the consumption of different

resources as illustrated next. Consider a database query task

where each query requires is on average 10KB in size, 600K

instructions to execute at a database server, and 25KB in size

for a reply. The query size and response size are 0.08Mb and

0.2Mb respectively. Since the communication link capacities

are expressed in Mbps, the multipliers associated with the

query and reply will be 0.08 and 0.2 respectively. Similarly,

since each query executes 0.6M instructions on average and

computation capacity is measured in MIPS. Hence, the mul-

tiplier associated with the query execution is 0.6.

B. Dynamic Flow Controller (DFC)

The goals of the DFCs are twofold, i) to achieve the

optimal task rates determined by the SC with the assumption

of perfect knowledge of available resource capacities), and

ii) to be robust to inaccurate capacity knowledge of the SCs

and dynamic changes to available resources over time. For

each admitted task k, the DFC optimizes the transport-layer

utility function Vk(xk) = αk log xk. Here the weights αk

are chosen such that the rates converge to the optimal rates

provided by the the SC and such that small uncertainties in

resource availability result in small deviations from these rates.

The design of the DFC follows from the theory of network

utility maximization [4]. It has been proven that if the DFC

has the optimal rates and their slopes (provided by SC), it will

converge to the optimal SC output rates [9], thus solving (1).

We have considered three types of feedback for signalling

the presence or absence of contention, i.e., loss based (LB),

queue-length based (QB), and delay based (DB). All of them

were initially proposed and studied in the context of TCP

congestion control. Here we study them in the context of SDS

involving communication and computation resources.

Loss and Queue Length Based: Both the LB and QB con-

trollers update the task (flow) rate depending on the contention

on resources that the task uses. To be precise, the rules

governing how the flow rate of a task is set are given by

xk ← min{xmax
k , xk + γkαk}, no contention,

xk ← max{xmin
k , xk − γkxk}, contention present, (5)

i.e., the flow rate is decreased when a contention signal is

received and increased in case of no contention. Here, γk
is the gain parameter determining controller aggressiveness.



Figure 8: Network topology and flows

Similar to TCP Reno, the LB controller takes data loss as an

indication of contention and the absence of data loss as an

indication of no contention. The QB controller relies on the

explicit signalling of contention. Suppose each resource l in

the coalition network maintains a queue of packets/processing

requests. Denote ql as the queue length of resource l and b as

the contention threshold. Under this mechanism, a contention

is signaled on the resource when ql > b.

Delay Based: In a DB flow controller, the flow rate for is

updated based on queueing and processing delays observed by

the task. One such flow controller used for TCP congestion

control is the FAST TCP [10]. Here we apply FAST TCP to

design a delay based flow controller for SDS that involves

communication and computation resources. Denote the mini-

mum end-to-end delay of task k as dk. This includes propaga-

tion and minimum processing delays. Let Tk denote the overall

end-to-end delay (propagation, queueing, & processing). Let

xnew
k = xk + γk[αk − xk(Tk − dk)]. Then under FAST, the

flow rate of a task is updated according to the following rule:

xk = max{xmin
k ,min{xk, x

max
k }} (6)

C. Performance Evaluation

Solving the SC optimization problem is NP-hard. In this pa-

per, we have used MATLAB OPTI toolbox [8], which applies

nonlinear optimization with mesh adaptive direct search algo-

rithm (NOMAD) [7]. After solving the optimization problem,

the SC sends the optimal rates and the gradients of the utility

functions to the corresponding DFCs.

To evaluate the performance of different DFCs, we have

developed a differential equation, fluid model simulator and

considered the network topology shown in Fig 8. We assume

three communication flows (f1, f2, and f3) and one database

flow (f4). Link capacities for all the communication links

(l1, l2, and l3) are 34 Mbps. The database flow uses both

communication and computation resources. The available ca-

pacity of the computation resource is 1 MIPS. The multipliers

associated with query, query execution, and reply are 0.08, 0.6,

and 0.2 respectively as mentioned above. We assume all the

flows have log utilities. Also, α1 = α2 = α3 = 1 and α4 = 10.
The results are presented in Table I. We observe that the delay

based DFC converges to the rates provided by the SC for all

four flows. On the other hand, the rates do not converge for

the loss and queue-length based controllers. Note that, both

the loss and queue-length based controller designs are based

on a primal approach while the delay based design employ a

Controller Type xf1 xf2 xf3 xf4

Slice Controller 16.766 17.233 16.766 1.67

Loss Based 16.84 18.08 16.84 4.90

Queue Length Based 16.18 16.63 16.18 1.664

Delay Based 16.766 17.233 16.766 1.666

Table I: Comparison of flow rates obtained from different controllers
after convergence.

dual approach. We further performed simulations involving

only communication resources. We found the LB and QB

controllers to be promising for these kinds of communication

focused applications.

VI. CONCLUSIONS

A 3-level control architecture for software-defined (SD)

slices has been proposed, where domains of resources are

owned and contributed from multiple coalition partners at

geographically dispersed locations. The architecture comprises

a Global Controller (GC) for all SD slices at the top, Do-

main Controllers (DCs) at the middle, and Dynamic Flow

Controllers (DFCs), one for each task/flow, at the bottom. A

novel resource inference engine (IE), associated with each DC,

has been developed, whose function is to estimate availability

of various resources in that domain. Based on the inferred

resource availability in domains, the GC determines the fea-

sibility of accepting requests of new SD slices and allocates

resources to achieve/maintain the required performance of all

slices. Based on the allocated resources, a slice controller (SC)

is created and responsible for determining the processing rate

of tasks running on the slice. By dynamic adjustments of task

rate, each DFC allocates resources to its associated task or

data flow according to dynamic conditions of resources for

efficiency and robustness.

REFERENCES

[1] V. Mishra, D. Verma, C. Williams and K. Marcus, “Comparing Software
Defined architectures for coalition operations," 2017 International Con-
ference on Military Communications and Information Systems (ICM-
CIS), 2017, pp. 1-7, doi: 10.1109/ICMCIS.2017.7956476.

[2] C. Williams, E. Bertino, S. C. D. Verma, K. Leung and C. Dearlove,
“Towards an architecture for policy-based management of software
defined coalitions," IEEE SmartWorld 2017, pp. 1-6, doi: 10.1109/UIC-
ATC.2017.8397420.

[3] J. Spencer and T. Willink, “SDN in coalition tactical networks," MIL-
COM 2016 - 2016 IEEE Military Communications Conference, 2016,
pp. 1053-1058, doi: 10.1109/MILCOM.2016.7795469.

[4] F. Kelly, A. Maulloo, D. Tan. J Operational Res Soc 49 (1998) 237-252.
[5] C.H. Liu, K.K. Leung and A. Gkelias, “A Generic Admission-Control

Methodology for Packet Networks," IEEE Transactions on Wireless
Communications, Vol. 13, No. 2, pp.604-617, February 2014.

[6] Li, C-S., et al. “Software defined environments: An introduction," IBM
Journal of Research and Development 58.2/3 (2014): 1-1.

[7] S. Le Digabel, "Algorithm 909: NOMAD: Nonlinear Optimization with
the MADS Algorithm," ACM Transactions on Mathematical Software
37(4), pp. 44:1 - 44:15, 2011

[8] (2021 Jul. 20). [Online]. Available:
https://www.inverseproblem.co.nz/OPTI/index.php/Solvers/NOMAD

[9] Spang, Bruce, Anirudh Sabnis, Ramesh Sitaraman, Don Towsley, and
Brian DeCleene. “MON: Mission-optimized overlay networks." IEEE
INFOCOM 2017, 1-9. IEEE, 2017.

[10] Cheng Jin, David X. Wei, and Steven H. Low, “FAST TCP: Motivation,
architecture, algorithms, performance," Proceedings - IEEE INFOCOM,
pp.2490-2501, 2004.


