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Abstract—The continuously growing number of multimedia
applications in current communication networks highlights the
necessity for an efficient resource allocation mechanism to cap-
ture the unique characteristics of multi-tiered multimedia appli-
cations and allocate network capacity in an efficient way. This
paper examines the problem of sharing the network throughput
under the existence of inelastic traffic flows that follow a multi-
tiered utility function. First, the concept of multi-sigmoidal
utilities is introduced in order to describe user satisfaction, then,
the implications of the use of such utilities are discussed for two
different allocation policies; the bandwidth-proportional and the
utility-proportional fairness allocation policies. In the former case,
the intrinsic reasons of possible network oscillations are analyzed
in detail and a heuristic to overcome such situations is proposed.
In the latter one, where such oscillations are not possible,
efficient ways to calculate a closed form solution for the optimal
rate allocation are described. Moreover, a novel mathematical
representation of such a multi-sigmoidal utility is presented and
closed form solutions for a number of application types are
calculated. Finally, the efficiency and robustness of the proposed
algorithms is evaluated by simulations for different network
topologies and compared against other work in literature.

I. INTRODUCTION

The end-to-end communication and resource allocation ser-

vices in current communication networks are provided by

Transport layer protocols such as TCP, whose various exten-

sions have been shown to implicitly solve a resource allocation

optimization problem [1] where all applications have been

modelled using concave utility functions. Although this was a

valid assumption in the past, the traffic generated by current

applications has such Quality of Service (QoS) requirements

that must be modelled by non-concave functions. Therefore,

existing resource allocation schemes provide suboptimal solu-

tions that may significantly affect both network performance

and user experience.

More specifically, network traffic can be classified into two

categories: elastic and inelastic [2]. Elastic applications in-

clude file transfer (FTP), email, network management (SNMP)

and Web access (HTTP), where user satisfaction is modelled

using logarithmic and other concave utility functions [1] (e.g.

U (x) = log x). Inelasticity usually characterizes real-time
applications such as Video Streaming, Teleconferencing, Voice

over IP (VoIP), Stock Trading etc. where non-concave utilities

of sigmoidal shape are typically used [3][4][5]. The sole

use of concave functions had little effect in the resource

allocation in previous decades, since elastic applications were

responsible for almost all the traffic. In current networks

though, where the majority of the traffic is generated by

inelastic real-time applications [6], such an assumption may

lead to significant misuse of resources which can prove the

use of TCP impractical [7].

Network Utility Maximization (NUM) [8], contrary to the

resource allocation algorithm in TCP, can distinguish between

elastic and inelastic applications by choosing different utility

functions for each one. Since the seminal work of Kelly et

al. [8], there have been several pieces of work that culti-

vated a deep understanding in the ways that optimization

theory can be utilized in solving various convex resource

allocation formulations in a distributed way. Interested readers

are referred to [9] and the references therein for a complete

overview of convex network resource allocation methods and

references [7][10][11] and [12] that introduce the use of single

sigmoidal utilities and examine the effects of non-convexity

of the resulting optimization problem on the development of

a distributed algorithm to solve it.

The single sigmoidal utility functions were introduced to

model multimedia applications but as technology advances

they may not be suitable to model many state of the art

multimedia applications. Several video streaming applications

used nowadays offer services at different quality levels with

each level having different bit-rate requirements and offering

different Quality of Experience (QoE) for the user. For ex-

ample, an online video content provider offers four distinct

levels of video quality (e.g. low, medium, high, ultra high)

based on the video resolution and bit rate. Each quality option

represents a different level of user satisfaction. Moreover, for

a specific video resolution the allocated bit rate affects user

satisfaction. For example, if low resolution is chosen, the

increase of bit rate above a certain level will not result in

significantly better visual results since the resolution is too

low for a visible improvement. Therefore, user satisfaction at

this quality level is saturated and further increase can only

be a result of the transition to a higher resolution profile.

Such multi-tiered multimedia applications can not be modelled

satisfactorily by single sigmoidal utilities.

Prior research has shown [8] that the resulting bandwidth al-

locations for traditional NUM approaches follow the so-called

bandwidth-proportional fairness (BPF). While this type of

fairness seems to perform well when all users follow the same

utility, this approach is responsible for some contradictory

behavior in cases that users have different QoS needs, i.e. when

they follow different utilities. More specifically, a bandwidth-
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proportional fair optimization algorithm favors users with low

demand, i.e. those with rapidly increasing utility function

since this leads to a larger increase in the aggregate utility

than when allocating to users with high demand, i.e. with

small value of utility derivative. To resolve this contradictory

behavior, authors in [13] define a new type of fairness,

called utility-proportional fairness (UPF). According to that, a

feasible bandwidth allocation vector x∗ = [x∗
1, x

∗
2, . . . , x

∗
R]

T

is utility proportional fair, if for any other feasible vector x
the following condition holds:∑

r∈R

xr − x∗
r

Ur (x∗
r)

≤ 0. (1)

The utility-proportional fairness can be achieved if the

utility function of each user is transformed according to:

Ur (xr) =

∫ xr

mr

1

Ur (y)
dy, mr ≤ xr ≤ Mr, (2)

where mr and Mr are the minimum and maximum transmis-

sion rates for user r respectively, and the objective function

of the NUM problem is changed to
∑

r∈R Ur (xr).
The most intuitive, yet very challenging, solution to resolve

the inefficiency of single-sigmoidal utilities is the use of multi-

sigmoidal functions. Multi-sigmoidal utilities, such as the one

shown in black at the top plot in Figure 1, are capable of cap-

turing the step-like behavior of user satisfaction with respect

to the various quality levels of modern video applications. The
development of appropriate multi-sigmoidal utilities that
can capture the QoS/QoE characteristics of the underlying
applications and the extension of NUM to incorporate such
utilities are the main motivation behind our work.

The organization of the paper in terms of the contribution

of each section is as follows. Section II introduces the multi-

sigmoidal utility to express user satisfaction in multi-tiered

multimedia applications and describes how this affects the

traditional NUM framework. Section III examines the incor-

poration of such function while trying to allocate resources

according to BPF. This includes the impact of such a choice

on the continuity properties of the optimal rate allocation

function, describes a detailed procedure to determine all these

discontinuity points and proposes an efficient heuristic algo-

rithm in order to resolve network oscillations, when they occur.

Section IV discusses the changes necessary to the traditional

NUM framework in order to be able to allocate resources ac-

cording to the UPF policy. Section V proposes a novel tangent-

based mathematical representation of a multi-sigmoidal utility

function and analyzes how this family of utility functions

can lead to the approximation and calculation of closed form

solutions in BFP and UPF, respectively. Section VI presents

extended simulation results of the proposed algorithms in

various topologies and Section VII concludes our work.

II. NUM WITH MULTI-SIGMOIDAL UTILITIES

A. Properties of a Multi-sigmoidal Utility Function

Before introducing multi-sigmoidal utilities, it is necessary

to define a set of properties that a function should possess

in order to be able to model user satisfaction. Such functions

should:

P1) take positive values in the range [0, 1];
P2) be increasing functions of the transmission rate,

P3) be zero when no rate is allocated to a particular user;

P4) have value 1 for rates above the maximum rate, rmax;

P5) be continuous in the range (0, rmax).

One could argue that a potentially sixth property could be

added as well. This describes the need that all quality levels,

i.e. all concave parts, of the utility to be reachable by a NUM

algorithm. In other words, a multi-sigmoidal utility can indeed

model multi-tiered applications only if all distinct utility levels

can be optimal selections under some conditions. While this

will be explained in more detail later, in Section III, it is not

considered a requirement for a multi-sigmoidal utility since

the exact shape of a utility function is determined depending

on each user’s appreciation of the allocated bitrate not affected

by the operational characteristics of NUM.

B. Network Resource Allocation with Multi-sigmoidal Utilities

This subsection extends the initial NUM framework [8]

by allowing the utilities to be multi-sigmoidal and discusses

the research challenges that this imposes to the distributed

algorithm, which will be answered later in this paper.

Consider a multi-hop network where M nodes act as sources

sending streams of traffic to a set of destination nodes using

a set of J links. A single node can operate as source,

destination or even as relay node that just forwards traffic to

its neighbours. When a source node i sends traffic at a rate

ri, it enjoys utility Ui(ri). It is assumed that all links in the

network are wired, vector C = [C1, C2, · · · , CJ ]
T

contains

the capacity of each link and r = [r1, r2, · · · , rM ]T includes

the transmission rates of all sources. The optimization problem

describing the Network Resource Allocation (NRA) problem is:

Problem Πp
NRA: Find the optimal rate vector r

max
r

M∑
i=1

Ui(ri) s. t.

M∑
i=1

αi,jri ≤ Cj , ∀ links j

where routing coefficient αi,j is 1 if user i sends traffic

through link j and 0 otherwise. We assume that the routing

matrix A, containing all routing coefficients αi,j , is known

a priori and considered fixed throughout the optimization

process. The rates ri ≥ 0, i ∈ [1,M ], represent the

transmission rates of the respective source nodes. Note that

Ui(ri) represents a transformation of Ui. As mentioned later,

Ui(ri) = Ui(ri) for bandwidth-proportional fairness but not

for utility-proportional one.

Problem Πp
NRA can be solved using Duality Theory by

constructing its dual problem and trying to solve the primal-

dual pair of problems in a distributed way [14]. Dual problem

variables are the so-called “lagrange multipliers” and represent

the “price” that user i has to pay to send each of the ri units

of traffic through link j. Following the analysis in [14][15], it

is evident that each user is trying to maximize their Net Utility
and thus the optimal resource allocation for user i is:

r∗i (λ) = argmax
{
NUi (ri) = Ui (ri)− ri · λi

}
, (3)
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where λi =
∑J

j=1 αi,jλj . Equation (3) can be used to

calculate the optimal rate of user i for a given price vector

λ. The optimal value of the dual variables λj , j ∈ [1, J ], can

be calculated iteratively using a gradient method, such as the

Gradient Descent [14],

λj(t+ 1) = λj(t)− sλ(t)

(
Cj −

M∑
i=1

αi,jri

)
. (4)

sλ(t) is the step size of the method at time t and affects the

convergence speed and distance from the true optimum [14].

Equations (3) and (4) constitute a joint primal-dual dis-

tributed algorithm of NUM, which can converge to an optimal

solution, even in the case of non-concave utilities (such as

single-sigmoidal), as long as (3) is continuous around the

optimal price vector λ∗ [7]-[10]. The properties of equations

(3) and (4) in the case of multi-sigmoidal utilities will be

discussed in the remainder of this paper.

The optimal solution of (3) for a particular user i is also the

optimal rate for this user for Problem Πp
NRA. This rate is at a

point where the derivative of the objective function diminishes

[14], which leads to:

r∗i (λ) = U ′
i

(
λi
)−1

, (5)

where U ′
i (·)−1

is the inverse first derivative function.

The two resource allocation policies examined in this paper

differ in the calculation of the inverse of the first derivative.

In BPF Ui (·) = Ui(ri) and therefore the calculation of the

inverse of the first derivative is possible only for utilities whose

derivative is a 1 − 1 function. In any other case, there might

be multiple optimal rates for a single aggregate price λi. This

is the inherent reason for the existence of oscillations in the

rate allocation process, as discussed later in this paper. On

the other hand, the utility function (2) in UPF can be inverted

allowing the calculation of closed form solutions for (5).

III. MULTI-SIGMOIDAL UTILITIES IN BPF

This section provides a detailed analysis of the effect of the

use of multi-sigmoidal utilities in the resource allocation pro-

cess while preserving bandwidth-proportional fairness (BPF).

For simplicity, we will use notation Ui(ri) instead of Ui(ri)
in the remainder of this section since Ui (ri) = Ui(ri).

A. Discontinuity

In the case of bandwidth-proportional fairness, r∗i (λ) is

continuous for all price vectors if the utility is either concave

or convex function of rates while it is discontinuous at only one

point for single-sigmoidal utilities [4][7]. Equation (5) shows

that r∗i (λ) is in essence a function of the aggregate price per

unit of traffic and does not depend on the individual values

of λj , j ∈ [1, J ]. Therefore, we will also refer to r∗i (λ) as

r∗i
(
λi
)
, where λi is the aggregate price for user i. In addition,

it turns out that the shape of a utility function determines

the discontinuity points of the rate allocation function and

that the discontinuity points correspond to jumps from one

concave region to another or from one concave region to zero.

Moreover, there is a number of candidate discontinuity points

that may or may not appear as discontinuities of r∗i
(
λi
)
.
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Fig. 1: A multi-sigmoidal utility with 4 discontinuity points

The methodology to identify these points involves the use

of lines that are tangent to the utility function Ui (ri). Initially,

we draw a tangent line y = αri + β that osculates the utility

function at two or more points. Let rni , with n = 1, 2, ..., N
and r1i < r2i < · · · < rNi , be the rates at which the tangent

line y osculates the utility function, such that the tangent

line is graphically always above the utility function. In multi-

sigmoidal utilities, a tangent line such as y can osculate the

utility function at most at N = K points, where K is the

number of inflection points in the utility shape, and there can

be at most
K(K−1)

2 distinct tangents, in the case where each

one of them osculates the utility function at exactly two points.

Using the example of tangent y we can prove that the candidate

discontinuity points are aggregate prices equal to the slopes

of these tangent lines.

Theorem III.1. If λi = α, the rates rni , n = 1, 2, . . . , N are
all globally optimal rates for user i and aggregate price λi.

Theorem III.1 shows that function r∗i
(
λi
)

has multiple

values for aggregate price λi equal to the slope of the tangent

y and the multiplicity of the function at that point is equal

to the number of points N that the slope osculates the

utility function. Regarding the discontinuity and monotonicity

properties of r∗i
(
λi
)

it is possible to prove the following

theorems. The proofs of Theorems III.1-III.5 are omitted for

brevity but can be found in [16].

Theorem III.2. If λi = α+δ, where δ is a very small positive
constant, then the globally optimal rate r∗i

(
λi
)

is smaller than
the smallest optimal rate for λi = α, i.e r∗i

(
λi
)
< r1i .

Theorem III.3. If λi = α−δ, where δ is a very small positive
constant, then the globally optimal rate r∗i is larger than the
largest optimal rate for λi = α, i.e r∗i > rNi .

Theorem III.4. The optimal rate function of user i, r∗i
(
λi
)
,

is a decreasing function of λi.

Apart from the discontinuity of r∗i
(
λi
)

around the points

determined by the tangents at the utility function, these the-

orems imply that rates in the range
(
r1i , r

N
i

)
can never be

globally optimal rates and therefore r∗i
(
λi
)

will “jump” from
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rNi to r1i . Moreover, there will be a maximum value for λi,

let λi
max, above which the optimal rate will be zero. In other

words, r∗i
(
λi
)

has a positive value for 0 ≤ λi ≤ λi
max and

is zero for aggregate prices λi ≥ λi
max. This maximum non-

zero aggregate price λi
max is called maximum willingness to

pay for user i and is a discontinuity point of r∗i
(
λi
)

for all

sigmoidal utilities. To calculate λi
max we can use the same

procedure as for single-sigmoidal utilities [10].

It is evident from the above that every tangent at two

or more points of the utility function represents a candidate

discontinuity point of function ri (λ). Each one of these points

represents a “jump” from one hyperbolic tangent component to

another, while the discontinuity point around λi
max represents

a “jump” from a hyperbolic tangent component to zero rate.

The latter point will always appear in the rate function but

the rest depend on their relative value compared to λi
max.

For example, if λi
max is smaller than all the other candidate

discontinuity aggregate prices, then none of them will appear

and there will be only one discontinuity point, λi
max. The

maximum number of discontinuity points are K, as many as

the inflection points of the utility. This can happen if there are

K − 1 distinct tangent lines, each one touching the utility at

two points that belong to two consecutive hyperbolic tangent

components, with the Kth, corresponding to λi = λi
max, being

graphically represented by a tangent line that passes from point

(0, 0) and osculates the utility function at its first hyperbolic

tangent component.

To provide an example of the above, the top sub-figure

of Figure 1 shows a utility function with four discontinuity

points, along with the four tangent lines responsible for these

discontinuity points, while the bottom one shows the optimal

rate r∗i (λ) with the discontinuity points clearly shown. This

figure illustrates the connection between the shape of the

utility function and the discontinuity points of the price-

based rate function r∗i (λ). Moreover, it illustrates that r∗i (λ)
consists of decreasing continuous parts and decreasing jump

discontinuity points. Commenting on the feasibility of all K
sigmoidal components to be selected as optimal choices, it

is evident that this is possible only under the existence of

K distinct discontinuity points, i.e. the utility function is

fully reachable. In any other case, there will be at least one

sigmoidal component that is unreachable during NUM. Based

on this observation, we can prove the following:

Theorem III.5. A multi-sigmoidal utility will have all levels
reachable, and hence will have the maximum number of
discontinuity points, iff the following conditions hold:

(1) λi
k,k−1 < λi

k,j , ∀j ∈ [1, . . . , k − 2] , k ∈ [3, . . . ,K]

(2) λi
k,k−1 < λi

max, ∀k ∈ [2, . . . ,K] ,

where λi
k,l is the slope of the tangent that osculates the utility

of user i at the kth and lth sigmoidal component.

For an arbitrary multi-sigmoidal utility function we can

calculate all the aggregate prices for which r∗i (λ) is discon-

tinuous. To this purpose, we assume the existence of a tangent

that osculates the utility function at exactly two points, let p1
and p2. After calculating all such possible tangents and their

Algorithm 1 – Calculation of discontinuity points of r∗i (λ)

1: ctr1 = K; ctr2 = 1; Calculate λi
max, Si;

2: while true do
3: index = argmin

{
Si (ctr1, 1 : ctr1)

}
;

4: λi
tmp = min

{
Si (ctr1, 1 : ctr1)

}
;

5: if λi
max < λi

tmp then
6: break;

7: else
8: disc (ctr2) = λi

tmp; ctr1 = index;

9: end if
10: ctr2 = ctr2 + 1;

11: end while
12: disc (ctr2) = λi

max;

touching points, a candidate discontinuity point is the slope of

this line:

λi
c =

Ui (p1)− Ui (p2)

p1 − p2
. (6)

Using these candidate points, we create the symmetric

matrix Si of size K×K, where Si (s1, s2) represents the slope

of the tangent that osculates the s1
th and s2

th concave region

of the utility. By convention, we assume that the elements

of the main diagonal of matrix Si contain some very large

positive value. Algorithm 1 can be used to determine which

of these candidate discontinuity points will actually appear

in ri (λ). Note that Si (ctr1, 1 : ctr1) denotes the first ctr1
elements of the ctr1

th row of matrix Si. The resulting vector

disc contains the discontinuity points of r∗i (λ). Algorithm 1

is an iterative algorithm that can be run independently by each

user in order to determine the discontinuity points of its rate

allocation function. Note that in case that one of the tangents

osculates the utility function at more than two points, then two

or more elements of matrix Si will be equal.

B. Oscillations

The discontinuity points calculated by Algorithm 1 play an

important role in the convergence of the algorithm comprised

of eq. (3) and (4) in the case of multi-sigmoidal utilities.

When the condition in [12] is not satisfied, there can be

oscillations in the network. The phenomenon of oscillation

occurs when a user transmits at an excessive data rate (com-

pared to the available capacity) in one iteration, and then, in

the next iteration, the user transmits at an exceedingly low rate.

An oscillation is formed as the repetition of these two events

continues indefinitely, prevents the user from converging to

the optimal transmission rate and leads to a wider network

oscillation. The oscillation rates of user i are in fact very

close to the optimal rates for λi. Based on this observation, we

propose the Oscillation Resolving Heuristic (ORH) to assure

the convergence of the gradient based distributed algorithm.

The Oscillation Resolving Heuristic (ORH) allocates a con-

stant non-zero rate to oscillating users and removes them from

the rest of the optimization process, which continues for the

remaining users in the network. The allocated rate rosci to

oscillating users i is equal to the smallest touching point of

the tangent with slope equal to the aggregate price λi for

which the oscillation happens. This approach assures that no
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users are restricted from accessing network resources, contrary

to other approaches in literature. This allocated rate satisfies

the necessary conditions for optimality and by selecting the

smallest of all the optimal rates for price λi we assure that

there will be more resources for the rest of the users in the

network, thus leading to higher network utility.

The implementation of ORH is very simple, requires a

simple oscillation detection mechanism with no need for any

centralized coordination. Note also that, the ORH does not

represent a complete solution for solving Problem Πp
NRA and

does not affect the convergence properties of the algorithm. In

fact, (3) and (4) are responsible for solving Problem Πp
NRA

iteratively, while the ORH is merely part of the process for

resolving an oscillation that might occur during this process.

The ORH leads towards more fair resource allocations com-

pared to mechanisms such as the heuristic proposed in [4].

IV. MULTI-SIGMOIDAL UTILITIES IN UPF

By considering the utility proportional fairness transfor-

mation of (2), the problem becomes convex and (3) always

satisfies the condition in [12]. More importantly this allows us

to calculate a closed form solution for (5). This stems from the

fact that the first derivative of the utility function can be easily

calculated as U ′
i (ri) =

1
Ui(ri)

, which is invertible as long as

the utility is continuous and monotonic, which are both true for

any concave utility and the multi-sigmoidal utility considered

in this paper. In this case, the optimal rate is given by:

r∗i
(
λi
)
= U−1

i

(
1

λi

)
. (7)

As explained in the next section, based on (7), we can

calculate a closed form solution for utilities that satisfy these

two properties. This is a significant advantage of the utility
proportional fairness approach which leads to the develop-

ment of algorithms that calculate the optimal solution even

for non-concave utilities and converge significantly faster than

the traditional iterative approach.

V. A NOVEL MULTI-SIGMOIDAL FUNCTION

A. A Hyperbolic Tangent Based Utility Function

Based on the desired properties of a multi-sigmoidal utility,

presented in Section II, we propose the use of the following

family of multi-sigmoidal functions:

U (r) =
1

2K

{
K∑

k=1

tanh

(
r − ck
bk

)
+K

}
, (8)

where r is the transmission rate, ck is the kth inflection point,

with c1 > c2 > · · · > cK , and bk is a positive design parame-

ter that determines the steepness of the kth component of the

multi-sigmoidal function. K is the number of single sigmoidal

components comprising the multi-sigmoidal function, each one

of them having a single inflection point. For example, the

multi-sigmoidal function in black in the top plot of Figure

1 consists of four hyperbolic tangent components.

Hyperbolic tangent functions have been extensively used

in neural networks research area [17] but their convenient

properties make them also applicable within the context of

multi-tiered multimedia applications for the following reasons:

• They possess the five properties described in Section II.

• They can be combined to create multi-sigmoidal shapes

of arbitrary number of rate levels.

• They can be calibrated using the inflection vector c and

the steepness vector b to achieve the desired shape.

• Their first derivative can be easily inverted to calculate

the optimal rate allocation for a specific price vector.

The hyperbolic tangent function, tanh (x), is a symmetric,

continuous (property P5), differentiable and increasing (prop-

erty P2) function, which is centered around its inflection point

at r = 0 and has two horizontal asymptotes, the lines y = −1
and y = 1. Each tangent component can be scaled and shifted

appropriately so that the resulting utility has values within

the range [0, 1]. The resulting multi-sigmoidal function has

horizontal asymptotes the lines y = 0 and y = 1 (property P1).

Note that inflection points ck can be used as design parameters

to create the step-like behaviour of the utility around the rate

values of each application quality level.
Parameters bk, k = 1, . . . ,K, can be used to calibrate the

steepness of the respective tangent components. In general,

larger values for bk lead to smoother shapes. In particular,

they can be used to bring U (0) and U (rmax) as close to the

bounds (0 and 1 respectively) as necessary, where rmax is the

maximum rate above which the utility is equal to 1. Specif-

ically, for ri = 0 equation (8) becomes tanh
(
− ck

bk

)
≈ −1,

for k = 1, 2, . . . ,K. Given that y = −1 is an asymptote, the

equation will never be satisfied in the equality but we can

select variables bk, k ∈ {1, 2, . . . ,K}, so that the maximum

error εk of the kth tangent component is bounded. More

specifically, it is possible to calculate an upper bound for each

bk in order to meet property P3 according to

tanh

(
−ck
bk

)
≤ −1 + εk ⇒ bk ≤ − ck

tanh−1 (εk − 1)
(9)

and since tanh−1 (·) is negative around r = −1,

bk ≤ ck

| tanh−1 (εk − 1)| . (10)

By selecting the component bounds appropriately, it is possible

to bound the total error ε =
∑K

k=1 εk below a maximum

threshold. In addition, it can be shown that the effect of

parameter b1, i.e. the sigmoidal component that is closer to

the point r = 0, is dominant over the rest and therefore the

calculated bound for b1 is expected to be much tighter for

the same error. Working in the same way, it is possible to

calculate the upper bounds for parameters bk to assure that

property P4 is also satisfied and, as seen later, to minimize

the approximation error of the optimal rate.

B. Approximating the Optimal Rate in BPF
The family of multi-sigmoidal utilities described in (8) is

a non-concave function with multiple concave and convex

regions. Its first derivative is given by

V (r) =
1

2K

{
K∑

k=1

1

bk
sech2

(
r − ck
bk

)}
, (11)
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which is not a 1-1 function since the same value V (·) corre-

sponds to more than one rates and therefore is not invertible.

Figure 2 shows the utility derivative for the multi-sigmoidal

example in black of Figure 1, which illustrates that a single

value of utility derivative corresponds to at most 2×K distinct

rates.

It is possible however to approximate these rates efficiently.

The approximation methodology relies on the fact that V (·)
in (11) is a summation of a number of independent hyperbolic

secant components. Moreover, they are symmetric, they can be

inversed separately, and by taking into account that the rate

that maximizes Problem Πi
NU (λ) can only be in a concave

region or at zero rate, it is possible to calculate a single rate

for each component by

rci (λ, k) = bik · sech−1

(√
2 ·K · bik · λi

)
+ cik, (12)

where sech−1 (·) is the inverse hyperbolic secant, bik, k =
1, 2, . . . ,K, form steepness vector bi and inflection points

cik, k = 1, 2, . . . ,K, form inflection vector ci of user i1. An

additional candidate solution is at rci (λ,K + 1) = 0, which

must be also taken into account. Consequently, the optimal rate

of user i for vector λ will be the one that yields the maximum

net utility, i.e.

r∗i (λ) = argmax {NUi (r
c
i (λ, k)) |k = 1, 2, . . . ,K + 1} .

(13)

The use of equation (13) to approximate the optimal rate

for any price vector λ transforms the distributed algorithm

described in Section II to use (13) instead of (3). The resulting

algorithm comprised of (13) and (4) is an extension of the

standard gradient algorithm [14] and any oscillations that are

likely to appear due to discontinuities can be resolved using

the heuristic presented in Section III-B.

The procedure described above has transformed (3), which

involves the solution of a non-convex optimization problem,

into a simple selection (out of K + 1 choices) of the rate

that maximizes the net utility using (13). However, since this

is an approximation method, it is necessary to determine the

approximation error and propose methods to minimize it. It

is easy to verify from Figure 2 that the approximation error

depends on the degree of overlap2 of the hyperbolic secant

components and, moreovoer, it has its maximum values at the

intersection points xk of two consecutive components.

The effects of this overlapping can be restricted efficiently.

The inflection points of the utility’s sigmoidal components are

determined by the technology used at the source node and

they are assumed that can not be changed. However, there is

often more freedom in selecting the steepness parameters of a

multi-sigmoidal utility. In such cases, the steepness parameters

bk, k = 1, 2, . . . ,K, can be used as design parameters to

assure that the approximation error is small. In this way,

it is possible to calculate some additional bounds for the

values of the parameters bk of the utility function so that the

1The mathematical derivation of (12) is presented in detail in [16].
2We assume that two hyperbolic secant components c1 and c2 are not

overlapping if fc1 (xc) = fc2 (xc) ≈ 0 at their intersection point xc.
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Fig. 2: Example of a multi-sigmoidal utility derivative and its

4 Hyperbolic Secant Components

hyperbolic secant components of the utility derivative are non-

overlapping. In general, the smaller the values of bk are, the

more concentrated the respective hyperbolic secant component

is around the inflection point. Clearly, the choice of bk for

component k affects the range of choices at the neighboring

ones and therefore it is not possible to determine analytically

a single steepness vector b to assure low approximation error.

However, it is possible to formulate optimization problems that

calculate the optimal steepness vector b according to various

criteria, such as the maximum tolerable approximation error.

Such an optimization problem is formulated in [16].

C. Calculating Optimal Rate in UPF

The existence of various types of user applications with

diverse QoS requirements complicates the process of calcu-

lating a generic closed form solution for the optimal rate. It

is however possible to derive application-specific analytical

solutions for (3) in the case of Utility Proportional fairness.

Based on the analysis above, it is possible to derive the

optimal rate allocation for browsing, file transfer and video

streaming applications using the utility functions suggested

in [4], [5] and [16]. These optimal rate allocation functions

are demonstrated in Table I. rmin and rmax represent the

minimum and maximum transmission rates of a user, and

parameters α and β are calibration parameters of the single-

sigmoidal utility. The calculation of analytical solutions for

concave and single-sigmoidal utilities is relatively easy and

will be omitted for brevity. However, the calculation for multi-

sigmoidal utilities such as those described in (8) is more

complicated and, therefore, will be described in detail in the

remainder of this section.

Eq. (8) consists of K hyperbolic tangent components that

have been scaled and shifted so that the resulting utility

has values in the range [0, 1]. Therefore, each of the scaled

components is restricted in a different non overlapping region.

For example, values in the range (0.5, 0.75) correspond to the

third hyperbolic tangent component of the utility in the top

plot of Figure 1. This implies that a value of utility belongs to

only one of the hyperbolic tangent components, while the rest
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TABLE I: The Optimal Resource Allocation Function for Widely Used Types of Applications

Application Type User Utility Function Optimal Rate Allocation Function

HTTP Ui (ri) =
log

(
ri

rmin

)

log
(

rmax

rmin

) r∗i (λ) = rmin ·
(

rmax

rmin

) 1
λi

FTP Ui (ri) =
log(ri+1)

log(rmax+1)
r∗i (λ) = (rmax + 1)

1
λi − 1

Single-tiered Video Application Ui (ri) =
1

1+exp(−α(ri−β))
r∗i (λ) =

α·β−log(λi−1)
α

Multi-tiered Video Application Ui (ri) =
1

2K

{∑K
k=1 tanh

(
xr−ck

bk

)
+K

}
r∗i

(
λi

)
= bj · atanh

(
2
(
K 1

λi − j
)
+ 1

)
+ cj

of the components have value either 1 or −1. To calculate the

inverse of (8), we write:

y =
1

2K

{
K∑

k=1

tanh

(
ri − ck

bk

)
+K

}
⇔

2Ky −K =
K∑

k=1

tanh

(
ri − ck

bk

)
⇒

2Ky −K = μ+ tanh

(
ri − cj

bj

)
− ϕ. (14)

Index j represents the index of the hyperbolic tangent compo-

nent that corresponds to the requested point. Term μ represents

the components before j that have value 1, i.e. μ = j−1, and

term ϕ represents the components after j that have value −1,

i.e. ϕ = K − j. Based on these, (14) becomes:

2 (Ky − j) + 1 = tanh

(
ri − ck

bk

)
, (15)

and by solving with respect to ri, we find that:

r∗i (y) = bj · arctanh (2 (Ky − j) + 1) + cj. (16)

Moreover, by combining (7) and (16) we calculate the optimal

rate allocation of user i with respect to the aggregate network

price for i as

r∗i
(
λi
)
= bj · arctanh

(
2

(
K

1

λi
− j

)
+ 1

)
+ cj. (17)

Eq. (17) is a closed form of the optimal rate allocation for a

specific aggregate price λi when the utility function has multi-

sigmoidal shape, i.e. when it models multi-tiered multimedia

applications. In order to evaluate (17), it is necessary to

determine the hyperbolic tangent component that the specific

aggregate price λi corresponds to, i.e. determine the value of j.

According to the first order necessary condition for optimality
[14], at the optimal solution U ′

i (r
∗
i ) = λi, which leads to

Ui (r
∗
i ) =

1
λi , which implies that the regions of utility values

can be easily mapped to regions of aggregate price values.

Specifically, for a multi-sigmoidal utility with K inflection

points of the form described in (8), the hyperbolic component j
is within region

[
j−1
K , j

K

]
, with j = 1, 2, . . . ,K, of the utility

values and corresponds to prices in the region
(

K
j ,

K
j−1

)
, with

K
0 → ∞. In other words, depending on the value of the

aggregate price λi, we can determine the component that the

optimal rate belongs to and specify j. For example, Table II

shows the utility value regions and their respective aggregate

price regions for a multi-sigmoidal utility given by (8) for

K = 4. Note, that aggregate prices within [0, 1) correspond

to Ui = 1 and therefore to component j = K.

By splitting the summation of hyperbolic tangent compo-

nents and calculating the inverse of only one of them, we

create some discontinuities on the boundaries of the aggregate

price regions. These discontinuities are caused by the fact that

arctanh(x) → ±∞ when x → ±1 respectively. Specifically

for (17) the discontinuities appear on the intermediate bound-

aries since, by definition of the utility function, r∗i (0) = rmax
i

and r∗i (∞) = 0. For example, in the case of a multi-sigmoidal

utility with K = 4, the discontinuities exist for λi = 4
3 ,

λi = 2 and λi = 4. In order to handle these discontinuities

and assure continuity of the rate allocation function, one could

assign an approximation of the optimal rate for these boundary

cases based on neighboring rate values. In other words, the

optimal rate r∗i
(
λi
)

for the boundary aggregate prices can be

calculated by a transformation of the form:

r∗i
(
λi
)
= f

(
r∗i
(
λi
−
)
, r∗i
(
λi
+

))
, (18)

where λi
− = λi−ε, λi

+ = λi+ε and ε is a very small positive

constant. A potential approach could be a weighted average

of the rates for prices λi
− and λi

+ according to:

r∗i (λ
i) =

w1 · r∗i (λi
−) + w2 · r∗i (λi

+)

w1 + w2
, (19)

where w1 and w2 are weighting parameters with wk > 0, k ∈
{1, 2}. The relative values of the parameters w1 and w2 can

be used to select a rate value that is closer to one or the other

discontinuity end. For example, w1 > w2 implies that r∗i (λ
i)

will be closer to r∗i (λ
i
−) than to r∗i (λ

i
+). For the numerical

results later, we will use w1 = w2 = 1
2 and ε = 10−8 to

calculate the optimal rate for boundary aggregate prices.

This weighted averaging of neighboring points for the

estimation of the optimal rate is a way to make (17) a

continuous function of the aggregate price. This continuity

for all aggregate prices also implies that when using utility
proportional fairness all rates within the range

[
rmin, rmax

]

Component
Utility Value Re-

gion

Aggregate Price Re-

gion

1
[
0, 1

4

]
(4,∞)

2
[
1
K , 2

K

]
(2, 4)

3
[
2
K , 3

K

] (
4
3 , 2
)

4
[
3
K , 1

] [
0, 4

3

)
TABLE II: Tangent Components and the Respective Utility

and Aggregate Price Value Regions for a Utility with K = 4
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Fig. 3: Example of a network topology with a single bottleneck

link

are feasible contrary to the bandwidth proportional fairness

case, where only a small part of the total rate range is feasible

(see bottom sub-plot in Figure 1). This shows that the rate

allocation function has the robustness and elasticity to adjust

to any changes in the link prices and take advantage of the

full range of the available rate region in order to maximize

user satisfaction in the network.

VI. SIMULATION RESULTS

The optimization framework presented in the previous sec-

tions was simulated in MATLAB to study its performance.

Several examples where network oscillations occurred were

examined to evaluate the efficiency of ORH to stabilize the

network in the case of BPF and illustrate the ability of UPF

to provide stability and lead to fair allocation of resources

when heterogeneous applications compete.

The simulation results are organized in two sections; a

single bottleneck network case and a multiple bottleneck

network one. The simulation setup included a variety of

types of applications, including FTP, HTTP and multimedia

applications. This dictated the use of different utility functions,

concave or multi-sigmoidal, according to the type of applica-

tion. All multimedia applications were modelled using multi-

sigmoidal utilities according to (8) for different inflection

and steepness vectors. Furthermore, the calculation of the

steepness parameter vector bi for each multi-sigmoidal utility

was done by solving the optimization problem in [16] for a

maximum approximation error σ = 10−4 using the Global

Optimization Toolbox in MATLAB, and all utilities where

designed so that their maximum transmitted rate rmax is

10Mb/s and Ui (rmax) = 1 for all source nodes.

A. Single bottleneck link

Figure 3 shows an example topology of a network that has

a single bottleneck link. The traffic flows are designated by a

different line style. The capacities of links 1−4 and 6−9 where

selected to be larger than rmax, while the capacity of link 5
was chosen so that it is inadequate for all sources to transmit

at their maximum rate rmax, thus creating a bottleneck.

Source nodes 1 and 4 have multi-sigmoidal utilities of

four hyperbolic tangent components while sources 1 and 3
represent HTTP and FTP traffic respectively and are modelled

using logarithmic utility functions [5]. Several different values

for the capacity of the bottleneck link were used in order to

examine cases of network oscillation or stability. In essence,

by increasing the bottleneck link capacity, one can decrease
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Fig. 4: Convergence of Rates

the optimal link price due to the availability of more resources

and the weakening of the competition among users.

Figure 4 shows the convergence of the rates of the source

nodes for bottleneck capacity C5 = 25Mb/s. All links apart

from link 5 have zero price and λ5 = 0.072485. This happens

as link 5 saturates and its link price increases. In BPF,

user 1 starts oscillating and the ORH heuristic is invoked.

The algorithm allocates some rate to User 1 and removes

him from the rest of the optimization process in order to

resolve oscillations and assure convergence of the distributed

algorithm. As shown in blue, the oscillation of user 1 also

causes other users to oscillate but at a smaller extend. On the

other hand, when UPF is applied all 4 users are shown to

converge smoothly without any oscillations.

The top plot in Figure 5 shows the convergence of the

aggregate utility in the network, i.e. the summation of the

individual utilities illustrating the effect of the oscillation of

User 1 in the objective function of the optimization problem.

This instability is resolved successfully by ORH. The bottom

plot in Figure 5 shows that when the oscillating user is

removed, the remaining users compete for the rest of the

network resources which leads to higher individual utilities for

these users. On the other hand, there are no oscillations when

UPF is used and the resulting rate allocation leads to exactly

the same degree of satisfaction for all sources. Therefore, the

utility of all users is depicted using a single line (in red).

B. Multiple bottleneck links

Figure 6 illustrates a topology with three bottleneck links

where eight flows are competing for network resources. The

different traffic flows are distinguished by a different line style

and colour combination. Links 5, 8 and 13 are the bottlenecks

while the rest are sufficiently large to accommodate traffic

even at the maximum rate rmax. Nodes 2, 3 and 6 measure

user satisfaction using concave utilities, while the remaining

five flows model multi-tiered multimedia applications. Figure

7 shows the convergence of the aggregate objective function

when BPF and UPF are applied. As the blue line shows,
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the ORH can successfully resolve user oscillations that occur

during the optimization process while the UPF manages to

prevent any oscillations and allow the distributed optimization

algorithm to converge smoothly to the optimal rates even for

this more complex network scenario. The convergence of rates

was omitted in this case as it resembles the behaviour in

the previous simulation example, however, it is worth noting

that, in general, UPF gives priority to users with higher rate

requirements while BPF allocates more rate to users that

are satisfied easier in an attempt to achieve higher aggregate

utility in the network. This behavior can be verified in all the

aforementioned figures.

VII. CONCLUDING REMARKS

This paper studied the resource allocation problem mo-

tivated by the fast growing number of multimedia applica-

tions in current communication networks. We introduced the

concept of multi-sigmoidal utilities and proposed efficient

methods to overcome any challenges that their use imposes for

two different allocation policies, BPF and UPF. We proposed a

novel mathematical representation of such utility functions and

a distributed algorithm to optimize the allocation of bandwidth

by exploiting the special structure of the utility function.

Finally, the performance and robustness of the proposed frame-

work were evaluated through extensive simulations for various

network topologies.
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