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Abstract—Sensor networks are comprised of nodes with min-
imal baseband and RF functionalities. In such networks, it is
assumed that a source sensor communicates with a target sensor
over a number of relaying sensors by utilizing distributed low-
complexity space-time encoding techniques, hence the resulting
communication scenario is a generalized form of orthogonalized
multiple-input multiple-output (MIMO) channels. The contribu-
tions of this paper are the derivation of the Shannon capacity
in terms of natural units per second per Hertz for such space-
time encoded distributed communication scenarios. Closed-form
capacity expressions are derived for ergodic flat-fading Rayleigh
and Nakagami channels, as well as the communication-rate outage
probabilities for aforementioned channels. It is shown that the
distributed Alamouti scheme yields the best performance over
ergodic channels. In the case of nonergodic channels, the 3/4-rate
sporadic space-time block code (STBC) is shown to give optimum
performance. Finally, Monte Carlo simulations are used to assess
the performance of distributed multistage sensor networks. It is
shown that notable power savings can be achieved, compared to
the traditional single-link sensor networks.

Index Terms—Distributed information systems, multiple-input
multiple-output (MIMO) systems, sensor networks.

I. INTRODUCTION

THE CONCEPT of sensor networks is fairly new; therefore,
little theoretical literature is available on them. Further-

more, there is no common consensus on the functionalities and
inherent characteristics of sensor networks to date. Hence, in
this paper, we assume that sensor networks have characteristics
as described below.

Characteristics: The function of sensors is to sense certain
features of their surroundings and pass this information to a
unit that is capable of processing such data. The duty cycle of
sensors is rather low, as is their data rate. The majority of the
sensors are stationary, allowing for stable routing paths from
the source sensors to the target sensor or processing unit. A
primary concern for a sensor is for it to consume as little power
as possible, as it has been envisaged that microscopic sensors
will run on traditional batteries for months, if not for years.
It is therefore a task of a sensor-network designer to allow
for data transmission with minimal power consumption. This
requirement translates directly to a high-capacity physical layer,
where a certain data rate is accomplished with as little power
consumption as possible.
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Background: Sensor networks are significantly different
from traditional ad hoc networks. Firstly, the number of sensor
nodes in a sensor network can be several orders of magnitude
higher than the number of nodes in an ad hoc network. More-
over, sensor nodes are usually densely deployed, prone to fail-
ures, and limited in power provision, computational complexity,
and memory. While most ad hoc networks communicate on a
point-to-point basis, sensor nodes mainly use a broadcast com-
munication paradigm, and they may not have a global identifi-
cation [1]. There is a wide range of applications in which such
networks might be used, such as environmental monitoring and
control, robotic control and guidance in automatic manufactur-
ing environments, military surveillance, interactive toys, smart
homes providing security, identification, and personalization,
and health monitoring [2], [3]. Recently, there has been a lot
of interest in the building and deployment of sensor networks.
Worth mentioning are the Wireless Integrated Network Sensors
(WINS) [4] and SmartDust [5] projects, which aim to integrate
sensing, computing, and wireless-communication capabilities
into a small form factor to enable low-cost production of tiny
sensor nodes in large numbers [6]. Concerning the physical
layer of sensor networks, in [7], a physical-layer-driven ap-
proach to designing protocols, algorithms, and applications,
which minimizes the energy consumption of sensor-network
systems, is proposed. The energies consumed by M -ary and bi-
nary modulation are compared for their respective circuit power
consumptions. M -ary modulation increases energy efficiency
by reducing the transmission time of the device, but usually also
increases the circuit complexity and power consumption. It has
been observed [8] that diversity is most likely to be achieved in
the frequency domain, since the static nature of the network
and the single antenna on each sensor makes space or time
diversity difficult to obtain. However, performance gains are
observed if distributed space or time coding is deployed, as is
demonstrated in this paper. In [3], methods are defined for the
cooperative detection of targets by a distributed wireless sensor
network, and for a cooperative transmission scheme of the
results to a remote user. Some simple capacity calculations for
the Gaussian case are also obtained, and finally, a simple phase
rotation scheme that allows a variable number of transmitters
without a common phase reference to attain gains using simple
noncoherent combining is described. Regarding the medium
access control (MAC), traditional wireless MAC protocols do
not usually fit the requirements of a sensor network due to their
unique resource constraints and application requirements [1].

Hence, some of the most notable solutions for sensor
networks are the self-organizing MAC for sensor networks
(SMACS) scheme and the eavesdrop and register (EAR) algo-
rithms (both in [3]), the hybrid time division multiple access
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(TDMA)/frequency division multiple access (FDMA)-based
scheme in [7], and the carrier sense multiple access (CSMA)-
based medium access in [10].

Since the main operating constraint for sensors is their avail-
able energy, any proposed solution for sensor networks must
take energy considerations and energy savings into account.
Power-aware and cost-aware metrics are the two main cate-
gories of metrics that have been devised to minimize power.
Power-aware metrics aim to minimize the total power needed
to route a message between two different locations, while cost-
aware metrics look at methods to extend the nodes’ battery
lifetime [11]. In [2], a new power-aware routing protocol that is
suitable for low-energy and low-bit-rate networks is described.
As employed in this protocol, the use of a simple probabilistic
forwarding mechanism to send traffic on different routes helps
to use the node resources more efficiently; indeed, simulation
results show an increase in network lifetime of up to 40%
using this method. In [12], a dynamic power management
(DMP) scheme is proposed, where the sensor node is turned off
if no events occur. Such an event-driven power-consumption
scheme is critical to maximize battery life. In [11], a number
of power-aware (from a local point of view) routing protocols
are evaluated. In these schemes, the routing protocol tries to
make decisions using only information that is available from its
neighboring nodes.

Also relevant to the current work are [9], [13]–[25], [35],
which achieve performance benefits due to cooperative trans-
mission and reception. The performed analysis therein and the
proposed protocols demonstrate a diversity order equivalent to
the total number or cooperating antenna elements.

Assumptions: In contrast to previously performed research,
this paper accomplishes considerable power savings in a sensor
network by utilizing distributed MIMO capacity techniques
without cooperation between the nodes, hence minimizing the
signaling and traffic load in the network [34]. Potential ap-
proaches here are to deploy space-time block codes (STBCs)
[26]–[28], space-time trellis codes (STTCs) [29], or lay-
ered multiplexing [e.g., Bell Labs layered space-time archi-
tecture (BLAST)] [30]. Due to the severe power constraints,
the simplest encoding strategy has been chosen, i.e., STBCs.
The deployment of STBCs orthogonalizes the MIMO channel,
and thus reduces it to an equivalent single-input single-output
(SISO) channel [31], [32]. That is a very desirable property,
both from the complexity as well as analysis point of view.

For operational simplicity, it is assumed that each sensor is in
possession of one antenna element only, and the transceiver is
capable of operating either in the TDMA or the FDMA mode.
In the TDMA mode, each sensor receives data over the entire
frequency band W and a frame duration T1. After a possible
processing, the data is retransmitted over the entire frequency
band W and in a frame duration T2, during which time it is
not capable of receiving any data. In the FDMA mode, com-
munication may occur continuously, but data are received in a
fractional bandwidth W1 and retransmitted in a fractional band-
widthW2. Note that both of these bandwidths must not overlap.

As will be explained more thoroughly in Section II, the limi-
tation of having just one antenna element per sensor reduces the
distributed communication scenario at most to a multiple-input

single-output (MISO) communication scenario. Also, since the
sensors are spatially separated, no correlation will be observed,
additionally simplifying the analysis. Finally, to facilitate the
analysis, synchronization is assumed to be perfect.

Contributions: The contributions of this paper can be sum-
marized as follows.

1) A closed capacity expression for the orthogonalized er-
godic MISO Rayleigh and Nakagami flat-fading channels
is derived, where the channel coefficients can have an
arbitrary attenuation.

2) A closed capacity outage-probability expression for the
orthogonalized ergodic MISO Rayleigh and Nakagami
flat-fading channels is derived, where the channel coef-
ficients can have an arbitrary attenuation.

3) The capacity behavior of multistage distributed sensor
networks is assessed and simulated. The performance
is compared to the nondistributed case and appropriate
conclusions are drawn.

Paper Structure: In Section II, the system model is described
in detail. The principle of a distributed (sensor) network is
explained, as is the encoding/decoding strategy at each sen-
sor. In Section III, the closed-form capacity expressions for
orthogonalized ergodic MISO channels obeying Rayleigh and
Nakagami fading distributions are derived. In Section IV, the
respective outage probabilities are derived in closed form. The
end-to-end ergodic capacity and capacity outage probability is
studied in Section V. Here, a source sensor delivers information
to a target sensor via a plurality of relaying sensors. Finally,
conclusions are drawn in Section VI.

II. SYSTEM MODEL

A. Principle of Distributed Sensor Networks

Given is a source sensor (s-S) that intends to deliver informa-
tion to a target sensor (t-S) or processing unit via a given num-
ber of distributed relaying sensors (r-Ss), as depicted in Fig. 1.
The s-S sends its information to a group of spatially adjacent
r-Ss, which form the first-tier r-Ss. Since no cooperation be-
tween the nodes is allowed, the end-to-end diversity order is
limited to the weakest relaying stage, which is the first stage.
The achieved diversity order of 1 requires that the first-tier
sensor nodes are spatially close to the s-S to minimize the power
spent to reach the first tier.

The signal stream from the s-S is reached by the first-tier
r-Ss, which space-time encode the data stream, i.e., each r-S
transmits only a spatial fraction of the space-time code word
such that the total output from the first-tier r-Ss comprises
an MISO transmission. Since the MISO channel achieves a
higher capacity and lower outage probability [39], the distance
between the first and second relaying tier can be considerably
larger than from the s-S to the first relaying tier, or alternatively,
the transmission power can be reduced.

The second tier r-Ss receives the data stream, decodes it, and
reencodes and retransmits it to the third-tier r-Ss in the same
manner as described above. This process is continued until the
t-S or the processing unit is reached. Note that it is not the
aim of this paper to deal with the optimum data routing path
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Fig. 1. Distributed sensor network, where a source sensor communicates with a target sensor via a number of sensor tiers, each of which is formed of distributed
relaying sensors.

through the distributed sensor network; it is also assumed that
the tiers of r-Ss are already formed and the sensors know about
which spatial fraction of a space-time code word they have to
(re-)transmit. The distributed encoding process is described in
more detail as follows, where an FDMA-based relaying system
with T relaying sensor tiers is assumed.

Source Sensor: The s-S Gray maps b0 source information
bits onto symbol x by utilizing anM0-phase-shift keying (PSK)
[or M0-quadratic-amplitude modulation (QAM)] signal con-
stellation, where b0 = log2M0. The data stream is transmitted
on frequency band W0 with power S0.

First-Tier Relaying Sensors: The first-tier r-Ss receive the
data on frequency band W0, detect it, space-time encode it,
and transmit it simultaneously on frequency band W1 with a
total power S1. Each r-S Gray maps K1b1 bits onto symbols
x1, x2, . . . , xK by utilizing an M1-PSK (or M1-QAM) signal
constellation, where b1 = log2M1 and K1 is the number of
symbols per space-time encoding.

The {xk}K1
k=1 are encoded with an orthogonal space-time

coding matrix G1 of size p1 × d1, where p1 is the number
of symbol durations required to transmit the space-time code
word, and d1 is the number of distributed r-Ss (and therefore
equivalent to the number of transmit antennas). At each time
instant t, the encoded symbol ct,i with t = 1, . . . , p1 and i =
1, . . . , d1 is transmitted simultaneously from the ith distributed
r-S. Clearly, the rate of the first-tier STBC is R1 = K1/p1.
T th-Tier Relaying Sensors: The T th-tier r-Ss receive data

on frequency band WT−1, space-time decode it, space-time
reencode it, and retransmit it on frequency bandWT with a total
power ST . The encoding procedure is the same as described
above, where the rate of the STBC is RT .

Target Sensor: The t-S receives the data on frequency band
WT , space-time decodes it, and performs the final detection.
If the s-S deploys a channel code, e.g., a simple trellis code,
then the t-S performs the equivalent channel decoding to boost
performance.

Each relaying sensor tier clearly may use a different signal
constellation and STBC. It is only of importance that the
consecutive tier has knowledge of the transmission parameters
of the previous tier.

B. Equivalent SISO Model

To improve readability, superscripts related to the respective
relaying tier are omitted here. Given one relaying stage with nT

distributed transmit sensors and nR distributed receive sensors.
Because sensors of the same tier do not communicate among
each other, there are nR MISO channels with nT transmit an-
tennas. Also, because of the spatial separation between sensors,
the rather low data rates generated by sensor networks, and the
low mobility prevailing in indoor environments, the channel
coefficients are assumed to be independent, frequency flat, and
quasi-static. Without loss of generality, only one MISO channel
from the nr available is considered here. The channel matrix
thus reduces to a 1× nT channel vector h, and it is defined as

h ∆= (h1, . . . , hnT) (1)

where hi, i = (1, . . . , nT), denotes the channel gain from the
ith transmit sensor to the receive sensor. The use of orthogonal
STBCs is known to decouple the MIMO (here, MISO) channel
into parallel SISO channels [31]–[33]. This property is hence-
forth referred to as an orthogonalization of the MIMO (here,
MISO) channel. This advantageous property may come at a loss
in transmission rate R, which is defined as

R
∆=
K

p
(2)

where K is the number of symbols per space-time encoding
and p is the number of symbol durations required to transmit
the space-time code word [33]. For fixed channel realiza-
tions h, the normalized capacity in natural units per second
per Hertz over such orthogonalized MISO channel can be
expressed as [33]

C = R log
(
1 +

1
R

‖h‖2

nT

S

N

)
(3)

where S is the average transmitted power and N is the noise
power at the receiver. ‖h‖ denotes the Frobenius norm of h, the
square of which is given as

‖h‖2 =
nT∑
i=1

|hi|2 = tr(hhH) (4)

where the superscript H denotes the Hermitian operation and
tr() is the trace operator. If the channel realizations h are
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random, then the ergodic channel capacity is obtained by av-

eraging over all channel conditions ‖h‖2 ∆= λ, i.e.,

C =Eλ

{
R log

(
1 +

1
R

λ

nT

S

N

)}
(5)

=

∞∫
0

R log
(
1 +

1
R

λ

nT

S

N

)
fλ(λ)dλ (6)

where Eλ{·} denotes the expectation with respect to λ with a
probability density function (pdf) of fλ(λ).

Finally, the average signal-to-noise ratio (SNR) per symbol
at detection can be expressed as [33]

γ =
1
R

E
{‖h‖2

}
nT

S

N
. (7)

Defining E{hih
∗
i} ∆= α2

i , i = (1, . . . , nT), where the super-
script ∗ denotes the complex conjugate, then (7) can be re-
written as

γ =
1
R

∑nT
i=1 α

2
i

nT

S

N
(8)

which will be useful for subsequent analysis.

III. ERGODIC CAPACITY OF ORTHOGONALIZED

DISTRIBUTED MISO CHANNELS

A. Capacity Integral

A closed-form expression for the Shannon capacity over
ergodic Rayleigh flat-fading MIMO channels is presented here.
It is utilized later in the paper to compare the capacity of a
generic MISO channel with the capacity of an orthogonalized
MISO channel. This derivation of the closed-form expression
requires knowledge of the solution of the capacity integral,
which is frequently encountered in calculating MIMO or MISO
capacities.

The capacity C in natural units per second per Hertz of a
normalized ergodic Rayleigh flat-fading MIMO channel with
nT transmit and nR receive antennas constrained by power S
was elegantly derived by Telatar [39] as

C =

∞∫
0

log
(
1 +

λ

nT

S

N

)

·
m−1∑
k=0

k!
(k + n−m)!

[
Ln−m

k (λ)
]2
λn−me−λdλ (9)

where N is the received noise power, m = min{nR, nT},
n = max{nR, nT}, and Ln−m

k (λ) is the associated Laguerre
polynomial of order k. This can be conveniently expressed as

C = Eλ

{
m log

(
1 +

λ

nT

S

N

)}
(10)

with

fλ(λ) =
1
m

m−1∑
k=0

k!
(k + n−m)!

[
Ln−m

k (λ)
]2
λn−me−λ (11)

where fλ(λ) is the pdf of an unordered eigenvalue λ [39]. A
closed-form expression in terms of finite sums for the capacity
given in (9) was derived in [37] and is given as

C=
m−1∑
k=0

k!
(k + d)!

×
[

k∑
l=0

A2
l (k, d)Ĉ2l+d(τ)

+
k∑

l1=0

k∑
l2=0,l2�=l1

(−1)l1+l2Al1(k, d)Al2(k, d)Ĉl1+l2+d(τ)

]

(12)

where d
∆= n−m, Al(k, d)

∆= (k + d)!/[(k − l)!(d+ l)!l!],
and τ

∆= (1/nT)(S/N). Ĉζ(τ) is defined as

Ĉζ(τ)
∆=

∞∫
0

log(1 + τx)xζe−xdx. (13)

Because of its frequent occurrence, this expression is hence-
forth referred to as the capacity integral. The solution to the
capacity integral is given as [37]

Ĉζ(τ) =
ζ∑

µ=0

ζ!
(ζ − µ)!

[
(−1)ζ−µ−1

(
1
τ

)ζ−µ

e
1
τ Ei

(−1
τ

)

+
ζ−µ∑
k=1

(k − 1)!
(−1

τ

)ζ−µ−k
]

(14)

where Ei(y) ≡ ∫ y

−∞(e
t/t)dt is the exponential integral. Hence,

the capacity of a generic MISO channel can be expressed in
closed form as

C =
1

Γ(nT)
· ĈnT−1

(
1
nT

S

N

)
(15)

where Γ(x) is the complete gamma function.

B. Orthogonalized MISO Ergodic Capacity—Rayleigh Fading

Equal Channel Gains: If all channel gains are equal, then
E{h1h

∗
1} = · · · = E{hnTh

∗
nT

} ≡ α2. Clearly, hhH has rank
1; therefore, the capacity-determining eigenvalue λ of hhH

[39] is equal to hhH, i.e., λ = hhH = ‖h‖2. Because ‖h‖2 has
a central chi-square distribution with 2nT degrees of freedom
and mean E{λ} = nTα

2, the pdf of λ can be expressed as [38]

fλ(λ) =
1

Γ(nT)
λnT−1

(α2)nT
e−

λ

α2 . (16)
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Fig. 2. Normalized Shannon capacity in natural units per second per Hertz versus S/N in decibels for various STBCs over an MISO Rayleigh channel with
equal channel gains. α2 = 1.

With reference to (6) and some changes in variables, the ca-
pacity of the orthogonalized MISO channel can be expressed in
closed form as

C =
R

Γ(nT)

∞∫
0

log
(
1 + λ

1
R

α2

nT

S

N

)
λnT−1e−λdλ (17)

=
R

Γ(nT)
· ĈnT−1

(
1
R

α2

nT

S

N

)

=
R

Γ(nT)
· ĈnT−1

(
γ

nT

)
(18)

where γ = (α2/R)(S/N).
Fig. 2 depicts the normalized Shannon capacity in natural

units per second per Hertz versus S/N in decibels for various
MISO system configurations and α2 = 1. Depicted are the
following cases: 1) nT = 1 (SISO); 2) nT = 2 (Alamouti);
3) nT = 3 (3/4 rate); 4) nT = 4 (3/4 rate); 5) nT = 3 (half-
rate); 6) nT = 4 (half-rate); 7) nT = 3 (generic MISO); and
8) nT = 4 (generic MISO).

It can be observed that capacity increases for the generic
MISO channels with an increasing number of transmit anten-
nas. The same holds for the full-rate Alamouti STBC, which
yields an asymptotic capacity gain of 0.3 nats/s/Hz, or equiva-
lent power savings of 1.25 dB.

Interestingly, however, if the MISO channel is orthogo-
nalized with the aid of half-rate or even 3/4-rate orthogonal
STBCs, no capacity benefits can be observed. Note that the
STBCs only orthogonalize the MISO channel; however, they
do not give any coding gain. Therefore, if these bounds were
to be approached, an outer channel code would have to be
deployed.

Unequal Channel Gains: The capacity expression in closed
form for the unequal channel gains is derived utilizing the mo-

ment generating function (MGF), which is defined as φλ(s)
∆=∫∞

0 esλfλ(λ)dλ [40]. The MGF φλi
(s) of the ith MISO

Rayleigh channel with instantaneous power λi
∆= hih

∗
i (and

average power α2
i

∆= E{hih
∗
i}) can hence be derived as

φλi
(s) =

1
1− sα2

i

. (19)

The addition of the random channel gains according to (4)
results in the convolution of their pdfs, which equates to the
product of their MGFs. Therefore, the MGF of the MISO
channel can be expressed as

φλ(s) =
nT∏
i=1

φλi
(s) =

1
1− sα2

1

· 1
1− sα2

2

· · · 1
1− sα2

nT

.

(20)

Resolving (20) into its partial fractions, one can write

φλ(s) =
nT∑
i=1

Kiφλi
(s) (21)

where the constants—poles of the MGF—are obtained by
solving the set of linear equations, the solution to which is [44]

Ki =
nT∏

i′=1,i′ �=i

α2
i

α2
i − α2

i′
. (22)



DOHLER et al.: CAPACITY OF DISTRIBUTED PHY-LAYER SENSOR NETWORKS 627

Fig. 3. Normalized Shannon capacity in natural units per second per Hertz versus S/N in decibels for the distributed Alamouti STBC over an MISO Rayleigh
channel with unequal channel gains. α2

1 = 4/3 and α2
2 = 2/3.

The linearity of the inverse of the MGF therefore allows writing
for the pdf of the eigenvalue λ = ‖h‖2

fλ(λ) =
nT∑
i=1

Ki · 1
α2

i

e
− λ

α2
i . (23)

The capacity of the MISO link with unequal channel coeffi-
cients can finally be expressed in closed form as

C = R

nT∑
i=1

Ki · Ĉ0

(
1
R

α2
i

nT

S

N

)
= R

nT∑
i=1

Ki · Ĉ0 (γi) . (24)

Fig. 3 depicts the normalized Shannon capacity in natural
units per second per Hertz versus S/N in decibels for the
distributed Alamouti scheme. In the case of equal channel
coefficients, the expectation of the square of the Frobenius
norm of the normalized channel coefficients would yield nT;
here, nT = 2. For this reason, the power of the unequal channel
coefficients is chosen such that α2

1 + α2
2 ≡ 2. Chosen was the

particular case where α2
1 : α

2
2 = 2 : 1, i.e., α2

1 = 4/3 and α2
2 =

2/3. Depicted are the cases where only channel with power α2
1

is utilized, where only channel with power α2
2 is utilized, and

where the distributed Alamouti STBC is utilized. The latter is
corroborated by numerical simulations.

Clearly, the loss in capacity of the distributed communication
scenario is negligible compared to the case where communi-
cation happens through the stronger single link. However, a
considerable capacity loss can be observed when the weaker
single link is utilized. Therefore, when only a single link
is deployed, then shadowing may severely degrade the link
capacity, whereas when a distributed encoding is chosen, then
the capacity is fairly robust to attenuations in either link.
A quantification of the performance gains when independent

shadowing dominates the communication system is postponed
to Section V.

Fig. 4 depicts the normalized Shannon capacity in natural
units per second per Hertz versus S/N in decibels for the
distributed 3/4-rate STBC scheme. Here, the ratio between the
channel coefficients was chosen such that α2

1 : α
2
2 : α

2
3 = 4 :

2 : 1, i.e., α2
1 = 12/7, α2

2 = 6/7, and α2
3 = 3/7. Again, severe

capacity losses can be observed when communication happens
only over the weaker single links; however, the distributed com-
munication scenario offers a robust capacity. Note, however,
that the absolute ergodic capacity of the 3/4-rate STBC is infe-
rior to the ergodic capacity of the full-rate Alamouti scheme.

Fig. 5 depicts the normalized Shannon capacity in natural
units per second per Hertz versus the normalized power in
the first link α2

1 for the distributed Alamouti scheme with
S/N = 10 dB. Furthermore, depicted are the cases where
communication happens only over either of the single links,
where α2

2 = 2− α2
1. The distributed Alamouti scheme outper-

forms even the strongest link for 0.8 < α2
1 < 1.2. Notably,

the capacity of the distributed scheme is much less dependent
on the power of the individual links than in the case of the
single-link schemes. Similar observations can be made for
higher order STBCs. This corroborates the advantage of a dis-
tributed sensor network where channel conditions are not
known a priori and feedback is limited.

Generic Channel Gains: Generally, the channel gains can be
different where some gains are repeated. In this case, the MGF
of the eigenvalue λ of the MISO channel can be expressed as

φλ(s) =
nT∏
i=1

φλi
(s)

=
1

(1− sα2
1)

ν1 · 1
(1− sα2

2)
ν2 · · · 1(

1− sα2
g

)νg
(25)
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Fig. 4. Normalized Shannon capacity in natural units per second per Hertz versus S/N in decibels for the distributed 3/4-rate sporadic STBC over an MISO
Rayleigh channel with unequal channel gains. α2

1 = 12/7, α2
2 = 6/7, and α2

3 = 3/7.

Fig. 5. Normalized Shannon capacity in natural units per second per Hertz versus the normalized power in the first link α2
1 for the distributed Alamouti scheme

over an MISO Rayleigh channel. S/N = 10 dB.

where g is the number of different channel coefficients,∑g
i=1 νi ≡ nT, and α2

i , i = (1, . . . , g), is the distinct but pos-
sibly repeated average channel gains. Resolving (25) into its
partial fractions with repeated roots yields

φλ(s) =
g∑

i=1

νg∑
j=1

Ki,jφ
j
λi
(s). (26)

In the Appendix, the coefficients Ki,j are derived as

Ki,j =
1

(νi − j)! (−α2
i )

νi−j

· ∂
νi−j

∂sνi−j


 g∏

i′=1,i′ �=i

1
(1− sα2

i′)
νi′




s=1
α2

i

. (27)
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Fig. 6. Normalized Shannon capacity in natural units per second per Hertz versus S/N in decibels for the single-link case and the Alamouti scheme over an
identically distributed MISO Nakagami channel with varying m factor; α2 = 1.

This allows one to express fλ(λ) in closed form as

fλ(λ) =
g∑

i=1

νg∑
j=1

Ki,j · λj−1

Γ(j) · (α2
i )

j
e
− λ

α2
i . (28)

The capacity of the generic MISO link can now be expressed in
closed form as

C =R

g∑
i=1

νg∑
j=1

Ki,j · Ĉj−1

(
1
R

α2
i

nT

S

N

)
(29)

=R

g∑
i=1

νg∑
j=1

Ki,j · Ĉj−1(γi). (30)

C. Orthogonalized MISO Ergodic
Capacity—Nakagami Fading

Equal Channel Gains: The indoor fading distribution was
often found to obey a Nakagami distribution [40], which is thus
particularly important for indoor sensor networks. The pdf of
the instantaneous power λi (and average power α2

i ) of the ith
Nakagami channel can be expressed as [40]

fλi
(λi) =

mmi
i λmi−1

i

(α2
i )

mi Γ(mi)
e
−miλi

α2
i (31)

where mi is the Nakagami m fading parameter of the ith
channel ranging from mi = (1/2,∞). Note that for mi = 1,
the Nakagami distribution turns into a Rayleigh distribution.
Furthermore, the Ricean distribution with parameter K can be
closely approximated with the Nakagami m distribution, where
m = (1 +K)2/(1 + 2K) [40].

The MGF of the instantaneous power of the ith Nakagami
channel can be expressed as [40]

φλi
(s) =

1(
1− s

α2
i

mi

)mi
. (32)

For nT identically distributed Nakagami fading channels, i.e.,
α2

1 = · · · = α2
nT

= α2 and m1 = · · · = mnT = m, the MGF
of the eigenvalue λ = ‖h‖2 is therefore given as

φλ(s) =


 1(

1− sα2

m

)m




nT

(33)

the inverse of which leads to the desired pdf of the eigenvalue
of a Nakagami-distributed MISO channel

fλ(λ) =
mmnTλmnT−1

(α2)mnTΓ(mnT)
e−

mλ

α2 . (34)

The capacity for m ∈ N is solvable in closed form as

C =
R

Γ(mnT)
· ĈmnT−1

(
1
R

α2

mnT

S

N

)
(35)

=
R

Γ(mnT)
· ĈmnT−1

(
γ

mnT

)
(36)

where γ = (α2/R)(S/N). Note that if m ∈ R, then m should
be replaced by �m� to obtain a lower bound, i.e., the capac-
ity that is at least achieved by the ergodic Nakagami MISO
channel.

Fig. 6 depicts the normalized Shannon capacity in nat-
ural units per second per Hertz versus S/N in decibels for
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Fig. 7. Normalized Shannon capacity in natural units per second per Hertz versus the Nakagami m fading factor for various MISO system configurations.
S/N = 10 dB and α2 = 1.

various MISO system configurations, and α2 = 1 over a Nak-
agami channel. Depicted are the following cases: 1) nT = 1
(SISO) withm = 1 (Rayleigh); 2) nT = 1 (SISO) withm = 10
(strong LOS); 3) nT = 2 (Alamouti) with m = 1 (Rayleigh);
4) nT = 2 (Alamouti) with m = 10 (strong LOS); and
5) Gaussian channel for comparison. Clearly, for m = 10, i.e.,
a strong LOS communication scenario, the capacity reaches
Gaussian performance. This is independent from the number
of transmit antennas as the fading channel exhibits very few
fluctuations for high m.

Fig. 7 depicts the normalized Shannon capacity in natural
units per second per Hertz versus the Nakagami m fading
factor for various MISO system configurations: S/N = 10 dB
and α2 = 1. The Nakagami m fading factor is varied from
m = 1 (Rayleigh) to m = 20 (very strong LOS). Compared
are the following scenarios: 1) nT = 1 (SISO); 2) nT = 2
(Alamouti); 3) nT = 3 (3/4 rate); 4) nT = 4 (3/4 rate);
5) nT = 3 (half-rate); 6) nT = 4 (half-rate); and 7) Gaussian
channel for comparison.

Interestingly, capacity is rather independent of m for the
3/4- and 1/2-rate STBCs; however, it is generally inferior to
the capacity of the full-rate STBCs. Their low dependence is
explained with the high diversity already obtained from the
three and four transmit antennas. Their low performance comes
from the rate loss due to R < 1. Furthermore, the Alamouti
STBC converges to the Gaussian capacity faster than the one-
transmit-antenna case does. It is worth noting that, as long as
ergodic Shannon capacity is the system performance measure,
distributed communication scenarios under LOS conditions
do not yield any significant capacity benefit. However, with
unequal link attenuations due to shadowing, the distributed case
yields significant benefits, as demonstrated below.

Unequal Channel Gains: Here, the same procedure as for
the Rayleigh-fading case is repeated. The MGF φλ(s) of the

eigenvalue λ = ‖h‖2 of the MISO channel with nT transmit
antennas can be expressed as

φλ(s)=
nT∏
i=1

φλi
(s)

=
1(

1− s
α2

1
m1

)m1 · 1(
1− s

α2
2

m2

)m2 · · · 1(
1− s

α2
nT

mnT

)mnT

(37)

where mi is the Nakagami fading parameter of the ith link.
Repeating the procedure of the MISO Rayleigh-fading case
finally yields, for the capacity

C =R

nT∑
i=1

mi∑
j=1

Ki,j · 1
Γ(j)

Ĉj−1

(
1
R

α2
i

jnT

S

N

)
(38)

=R

nT∑
i=1

mi∑
j=1

Ki,j · 1
Γ(j)

Ĉj−1

(
γi

j

)
(39)

where the coefficientsKi,j are now found by performing partial
fractions on (37).

Fig. 8 depicts the normalized Shannon capacity in natural
units per second per Hertz versus the normalized power in the
first link α2

1 over a Nakagami fading channel for the distributed
Alamouti scheme: S/N = 10 dB and m = 10. Again, depicted
are the cases where communication happens only over either of
the single links, where α2

2 = 2− α2
1. Clearly, the region where

the distributed Alamouti scheme outperforms the stronger link
has reduced to a single point for α2

1 = 1. Furthermore, the
capacity of the distributed scenario is up to 15% lower than
that of the stronger single-link case. However, the capacity of
the distributed scenario is virtually independent of the fading
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Fig. 8. Normalized Shannon capacity in natural units per second per Hertz versus the normalized power in the first link α2
1 for the distributed Alamouti scheme

over an MISO Nakagami channel. S/N = 10 dB and m = 10.

coefficients. Therefore, if the sensors are potentially shadowed,
then the distributed communication scenario offers significant
performance stability.

Generic Channel Gains: The case of generic channel coef-
ficients is similarly obtained as for the Rayleigh channel and is
thus omitted here.

IV. OUTAGE CAPACITY OF ORTHOGONALIZED

DISTRIBUTED MISO CHANNELS

Given each realization of the MISO channel h to be memo-
ryless or ergodic, the maximum mutual information is referred
to as capacity [39]. To achieve this capacity, codebook entries
of infinite length and given capacity-maximizing covariance
have to be generated. The capacity of such channels has been
dealt with in the previous section. Here, the case of nonergodic
channels is analyzed—in particular, the case where the channel
realizations are randomly fixed at the beginning of the transmis-
sion and kept constant over the infinite transmission duration.
The requirement on the infinite length of the codebook entries
can be loosened; the performance can then be quantified with
the aid of the random coding theory [39]. It can be shown that
for increasing code length, the upper capacity bound is reached
exponentially. Practically, this implies that the codes deployed
by the sensors can be of finite (and comparably short) length
without losing too much in performance.

Since the channel realization h is chosen randomly and kept
constant over the codeword transmission, there is a nonzero
probability that a given transmission rate RC cannot be sup-
ported by the channel [39]. However, the probability that a
certain communication rate RC can be supported by a chan-
nel h with average codeword power S can be gauged and
is referred to as the outage probability Pout(RC, S,h). It is

therefore the aim to maximize Pout for a given channel, aver-
age codeword power, and required communication rate. That
can be achieved by choosing suitable codewords x with a
given covariance matrix Q = E{xxH}, so that Pout(RC, S,h)
equates inf{probability(log det(I+ hQhH) < RC)} subject
to Q : Q > 0, tr(Q) ≤ S [39], where I is the unit matrix.
Furthermore, in [39, Ex. 6], it has been shown that if the rank
of hhH is 1, then Q = S is optimal. That allows one to derive
closed-form expressions for the outage probabilities for various
channels by evaluating the channel outage probability induced
by the randomness of the instantaneous channel power, here
hhH = ‖h‖ = λ, with the appropriate bounds

Pout(RC, S,h) =

λRC∫
0

fλ(λ)dλ (40)

where, with reference to (5), λRC = (eRC/R − 1)[(1/R)
(1/nT)(S/N)]−1.

A. Orthogonalized MISO Outage Capacity—Rayleigh Fading

Equal Channel Gains: Computing (40) for the Rayleigh
fading channel with the pdf given by (16), one obtains

Pout(RC, S,h) =
1

Γ(nT)
γ

(
nT,

e
RC
R − 1
γ

)
(41)

where γ(a, x) ∆=
∫ x

0 λa−1e−λdλ is the lower incomplete
Gamma function and γ = (1/R)(α2/nT)(S/N).

Fig. 9 depicts the rate outage probability in percent versus
the rate in natural units per second per Hertz for various STBCs



632 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 2, MARCH 2006

Fig. 9. Outage probability of a given communication rate in percent versus this rate in natural units per second per Hertz for various STBCs over Rayleigh fading
channels. S/N = 10 dB.

Fig. 10. Outage probability of a given communication rate of 1 nat/s/Hz in percent versus S/N in decibels for various STBC scenarios over Rayleigh fading
channels.

over Rayleigh fading channels at S/N = 10 dB. Of interest
is usually an outage probability of 10%, which means that
the channel can support a given rate with a probability of
90%. Clearly, the SISO case performs worst as it supports
only 0.7 nats/s/Hz for a 10% outage probability. The half-rate
STBCs perform slightly better, achieving gains of approxi-
mately 1.05 nats/s/Hz (three transmit) and 1.15 nats/s/Hz (four
transmit). Interestingly, the full-rate Alamouti scheme does not
yield best performance as for the ergodic channel capacity.
It achieves 1.3 nats/s/Hz at 10% outage, whereas the 3/4-rate

codes yield approximately 1.35 nats/s/Hz (three antennas) and
1.45 nats/s/Hz (four antennas).

Fig. 10 depicts the rate outage probability in percent versus
S/N in decibels for various STBC scenarios over Rayleigh
fading channels, which is required to support a fairly low rate
of 1 nat/s/Hz. The same observations as above can be made.
The gains of the distributed sensor networks over the SISO
communication scenario for an outage of 10% are 2.5 dB
(1/2 rate, three transmit antennas), 3.3 dB (1/2 rate, four
transmit antennas), 4.0 dB (Alamouti, two transmit antennas),
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Fig. 11. Outage probability of a given communication rate of 1 nat/s/Hz in percent versus the normalized power in the first link α2
1 for the distributed Alamouti

scheme. S/N = 10 dB.

4.5 dB (3/4 rate, three transmit antennas), and 5.3 dB (3/4 rate,
four transmit antennas). It is worth noting that the gains de-
crease for increasing data rates.

A 5.3-dB gain translates to approximately 70% power sav-
ings. In contrast to the ergodic channels, it is thus worth
deploying distributed sensor networks with more than two
distributed transmit antennas per sensor tier for nonergodic
channel realizations.

Unequal Channel Gains: Computing (40) for the Rayleigh
fading channel with the pdf given by (23), one obtains

Pout(RC, S,h) =
nT∑
i=1

Ki ·
(
1− e−

e
RC
R −1
γi

)
(42)

where the coefficients Ki are given by (22) and γi =
(1/R)(α2

i /nT)(S/N). The generic case with repeated γi is
similarly obtained by utilizing the appropriate pdf previously
derived.

Fig. 11 depicts the rate outage probability in percent versus
the normalized power in the first link α2

1 for the distributed
Alamouti scheme with S/N = 10 dB and a desired communi-
cation rate of 1 nat/s/Hz. Again, depicted are the cases where
communication happens only over either of the single links,
where α2

2 = 2− α2
1.

Similar to the ergodic case, the outage probability of the
distributed scheme is much less dependent on the power of
the individual links than the single-link schemes. Furthermore,
for the chosen system parameters, the distributed scheme can
support a rate of 1 nat/s/Hz with an outage probability of
less than 10% for any α2

1. The single links, however, cannot
guarantee this data rate at 10% outage probability for most
α2

1. It can thus be concluded that in the case of independent
shadowing between the nodes, a distributed communication

scenario will always bring benefits in terms of power savings
or rate outage probabilities when compared to a single-link
communication scenario.

B. Orthogonalized MISO Outage
Capacity—Nakagami Fading

Equal Channel Gains: Computing (40) for the Nakagami m
fading channel with the pdf given by (34), one obtains

Pout(RC, S,h) =
1

Γ(nTm)
γ

(
nTm,

e
RC
R − 1

γ
m

)
(43)

where γ = (1/R)(α2/nT)(S/N). Fig. 12 depicts the rate out-
age probability in percent versus S/N in decibels for the
3/4-rate STBC scenario with four distributed transmit antennas
over Nakagami fading channels, which is required to support a
rate of 1 nat/s/Hz. The Nakagami fading factor was chosen to
be m = (1, 2, 4, 6, 8, 10). Increasing the m factor from 1 to 10
leads to a power savings of approximately 2.5 dB at an outage
probability of 10%. Compared to the ergodic capacity, where
capacity saturates very fast for increasing m, this is a notable
power gain.

Unequal Channel Gains: Finally, the outage probability
over different MISO Nakagami distributions can similarly be
calculated as

Pout(RC, S,h) =
nT∑
i=1

mi∑
j=1

Ki,j · 1
Γ(j)

γ

(
j,
e

RC
R − 1

γi

j

)
(44)

where the coefficients Ki,j are found by performing partial
fractions on (37), and γi = (1/R)(α2

i /nT)(S/N).
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Fig. 12. Outage probability of a given communication rate of 1 nat/s/Hz in percent versus S/N in decibels for the 3/4-rate STBC scenario with four distributed
transmit antennas over Nakagami fading channels with m = (1, 2, 4, 6, 8, 10).

V. END-TO-END CAPACITY OF DISTRIBUTED

SENSOR NETWORKS

A. Theoretical Approach

Fig. 1 depicts the case of a T + 1-stage distributed sensor
network with T sensor tiers, each acting as a virtual STBC
transmit array. The ith sensor tier is assumed to be comprised
of di sensors, where i = (1, . . . , T ).

The tth stage forms dt+1 MISO channels with dt distrib-
uted transmit antennas. The first stage is formed by the s-S,
which possesses only one transmit antenna. The (T + 1)th
stage reaches the t-S and therefore forms only one MISO
channel. The capacity of each stage is denoted by C(t)

dt,j
, where

t = (1, . . . , T + 1) and j = (1, . . . , dt). Since the output of an
MISO channel is a fractional input to the consecutive MISO
channel, the capacity is clearly dominated by the weakest link in
the system. Therefore, the end-to-end capacity C is determined
by [41]

C = min
{
C

(1)
1,1 , . . . , C

(1)
1,d1

, C
(2)
d1,1, . . . , C

(2)
d1,d2

, . . . , C
(T+1)
dT ,1

}
.

(45)

To maximize end-to-end capacity, weak MISO links should be
excluded; however, this has to be traded off against the loss
in capacity for the consecutive tier. An analytical optimization
approach is very cumbersome but, however, is possible. The
interested reader is referred to approaches suggested in [36]
and [37], where an optimum power and bandwidth allocation is
suggested in dependence of the prevailing channel conditions
as well. The suggested approach therein successfully over-
comes the problems associated with the logarithmic capacity
Lagrangian, solvable only numerically.

Fig. 13. Multistage distributed sensor network with up to five stages (i.e., four
sensor tiers). d = 100 m.

B. Simulation Assumptions

A multistage distributed sensor network has been simulated
with up to five stages (i.e., four sensor tiers), as depicted in
Fig. 13. The distance between the source and target sensors has
been kept constant with d = 100 m. This scenario could occur,
for instance, in an office building where a remote sensor (s-S)
reports to a processing central unit (t-S).
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Fig. 14. Normalized minimum, mean, and maximum Shannon capacity in natural units per second per Hertz versus the number of stages utilized. Pathloss
index n = 3.

The one-stage scenario corresponds to a direct-link commu-
nication scenario over 100 m. For the two-stage scenario, the
first relaying tier is comprised of various distributed sensors
that are randomly located in a squared area of the size d/5.
Simulated are only full-rate codes; therefore, only one or two
distributed sensors are uniformly placed into the shaded area.

The distance between the s-S, the center of the square, and
the t-S is d/2 = 50 m. For the three-, four-, and five-stage
scenarios, the distance between the relaying tiers is chosen to
be d/3 = 33 m, d/4 = 25 m, and d/5 = 20 m, respectively. In
the five-stage scenario, the sensor distribution areas touch each
other; this corresponds to the case when sensors are uniformly
distributed along the path between the s-S and t-S.

Furthermore, it is assumed that each sensor transmits an
average symbol energy of Es = 1 nJ measured at a 1-m dis-
tance [42]. The sensor receive noise-power spectral density is
assumed to be N0 = −140 dBm/Hz, i.e., a fairly high noise
floor due to cheap manufacturing of the sensor nodes. Thus, the
resulting S/N = Es/N0 = 80 dB measured at a 1-m distance.
Note that an increase in Es or decrease in N0 only leads to a
linear shift of subsequent performance curves.

The pathloss model used is the traditional negative expo-
nential pathloss model where the power loss is inversely pro-
portional to dn, where d is the distance and n is the pathloss
exponent. For the indoor environment, n ≈ (3, . . . , 6), where
n = 3 and n = 6 correspond to lightly and densely cluttered
indoor environments, respectively [43].

C. Capacity of Multistage Distributed Sensor Networks

Ergodic Channels Without Shadowing: Figs. 14 and 15 re-
late to a pathloss coefficient of n = 3. Fig. 14 depicts the
mean capacity in natural units per second per Hertz versus
the number of stages utilized. At each stage, the network

performance with and without STBC is compared, where the
deployed STBC is the full-rate Alamouti code. Furthermore, the
mean, maximum, and minimum capacities have been depicted.
Note that there is no fair capacity comparison between the com-
munication scenarios with different stages, as the transmission
energy was kept constant per node. If a fair comparison was
desired, then the total utilized energy to deliver the information
from the s-S to the t-S would have to be equated for all
scenarios. Such normalization was not performed here as the
primary aim was to compare distributed with traditional sensor
networks.

From Fig. 14, it is clear that the capacity of distributed sensor
networks is at least as high as for traditional multistage sensor
networks. A five-stage distributed sensor network exhibits a
0.25-nats/s/Hz average capacity advantage over the traditional
five-stage network. Referring to Fig. 2, this leads to an SNR
improvement of approximately 1 dB. As previously stated,
the average capacity is a useful performance measure if the
communication channels are ergodic.

Since the positions of the sensor nodes are usually fixed, the
channels are not ergodic with respect to the location (mean
attenuation); however, the channels are still assumed to be
ergodic with respect to the fading statistics. Therefore, Fig. 15
depicts the outage probability of the achievable capacity for the
chosen uniform sensor distribution.

For the five-stage scenario with uniform sensor distribution
at each stage, only 10% of all geometrical sensor distributions
cannot support a capacity of 6.7 nats/s/Hz if the traditional
SISO scenario is implemented; whereas for the distributed
MISO case, all geometrical sensor distributions can support
such rate. Only 10% of all five-stage MISO communication
scenarios cannot support 7.2 nats/s/Hz. This gives an average
capacity advantage of 0.5 nats/s/Hz (≡ 2 dB) if the respective
capacities are to be supported in 90% of all cases.
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Fig. 15. Outage probability of a given communication rate in percent versus this rate in natural units per second per Hertz for the three-, four-, and five-stage
single-antenna and distributed Alamouti sensor-network communication scenarios over Rayleigh fading channels without shadowing. Pathloss index n = 3.

Fig. 16. Outage probability of a given communication rate in percent versus this rate in natural units per second per Hertz for the three-, four-, and five-stage
single-antenna and distributed Alamouti sensor-network communication scenarios over Rayleigh fading channels with shadowing. Pathloss index n = 3 and
shadowing standard deviation σs = 0 dB.

Equivalently, while the distributed communication scenario
can support 7.2 nats/s/Hz at 90% of all cases, the traditional
sensor network can support such rate only with close to zero
probability (i.e., the outage probability is 100%).

The achieved gains of 2 dB translate to transmit power
savings of approximately 40%. This clearly corroborates the
advantages of distributed communication over traditional SISO
communication scenarios.

Nonergodic Channels With Shadowing: The outage proba-
bility of the attainable rate is obtained here for the case when
each link is effected by independent shadowing. For the Monte
Carlo simulations, only a small shadowing standard deviation
of 0 dB was assumed.

Fig. 16 depicts the outage probability of the attainable
rates versus the rate in natural units per second per Hertz
for the three-, four-, and five-stage communication scenarios.
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Interestingly, for the chosen sensor distribution, the three-
stage distributed communication scenario does not yield
any capacity benefits over the SISO case. Furthermore, the
four-stage distributed case yields only small gains. Finally,
when the sensors are densely and uniformly distributed between
the s-S and t-S, only then can drastic gains be observed.
The latter case corresponds to anticipated high-density sensor-
network layouts.

The five-stage distributed sensor network yields a gain of
0.65 nats/s/Hz for an outage probability of 10%. This mounts
to power savings of approximately 3 dB, or 50%.

VI. CONCLUSION

This paper derived closed-form expressions for the Shannon
capacity for sensor networks over distributed ergodic flat-fading
Rayleigh and Nakagami channels. Also derived were the re-
spective outage probabilities in the case of nonergodic channel
realizations.

STBCs allow a simple implementation and are thus suit-
able for power-limited sensor nodes. They are known to
orthogonalize the multiple-input multiple-output (MIMO)
channel, which allows an analytical treatment of various ca-
pacity and performance problems. Because each sensor node
is assumed to possess only one antenna element, a distrib-
uted network can only realize MISO channels. However, the
exposed analysis herein is easily extended to the generic
MIMO case.

The capacity derivations are based on a closed-form expres-
sion of the capacity integral, which was introduced and solved
in [37]. It has been utilized to find closed-form expressions for
the Shannon capacity over ergodic MISO identically distributed
flat-fading Rayleigh and Nakagami channels. In the case that
each of the wireless links may have a different attenuation
or Nakagami m factor, closed-form capacity expressions are
derived by performing partial fractions on the respective MGFs,
after which the derivation of the capacity is straightforward.
Similarly, the outage probabilities of supportable rates were
derived for various configurations.

It has been shown that in the case of ergodic channels,
optimum performance is achieved if a distributed Alam-
outi scheme is deployed. In the case of nonergodic chan-
nels, the outage probability for a desired communication rate
is minimized if sporadic 3/4-rate STBCs are utilized with
four transmit antennas. Gains of up to 5 dB could be ob-
served in the case of a distributed sensor deployment, com-
pared to a traditional single-link communication scenario. This
clearly demonstrates the benefit of a distributed communication
scenario.

Furthermore, Monte Carlo simulations have been performed
to evaluate the average capacity and the associated outage
probability for the Alamouti scheme. Again, it could be shown
that a distributed deployment generally yields significant per-
formance gains.

Note that sensors cannot operate at Shannon limit due to their
limitations on complexity. However, the derived capacity and
outage bounds give an indication on the performance of the
systems introduced.

APPENDIX

Following the approach exposed in [44, Ch. 12], it is proven
here that

Ki,j =
1

(νi − j)! (−α2
i )

νi−j

· ∂
νi−j

∂sνi−j


 g∏

i′=1,i′ �=i

1
(1− sα2

i′)
νi′




s=1
α2

i

(46)

if the partial fractions are applied to (25), which, expanded into
its partial fractions, can be expressed as

φλ(s) =

[
K1,1

(1− α2
1s)

1 + · · ·+ K1,ν1

(1− α2
1s)

ν1

]

+ · · ·+
[
· · ·+ Kg,νg(

1− α2
gs
)νg

]
. (47)

To obtain coefficient Ki,νi
, (47) is multiplied with (1−

α2
i s)

νi , after which s is set to s = 1/α2
i to arrive at Ki,νi

=∏g
i′=1,i′ �=i(1− α2

i′/α
2
i )

−νi′ . Furthermore, to obtain coefficient
Ki,νi−1, (47) is multiplied with (1− α2

i s)
νi , differentiated with

respect to s, after which s is set to s = 1/α2
i to arrive at

Ki,νi−1 =
1

(−α2
i )

∂

∂s


 g∏

i′=1,i′ �=i

1
(1− sα2

i′)
νi′




s=1
α2

i

. (48)

Hence, coefficient Ki,1 is obtained by multiplying (47) with
(1− α2

i s)
νi , differentiated (νi − 1) times with respect to s,

after which s is set to s = 1/α2
i to arrive at

Ki,1 =
1

(νi − 1)! (−α2
i )

νi−1

· ∂
νi−1

∂sνi−1


 g∏

i′=1,i′ �=i

1
(1− sα2

i′)
νi′




s=1
α2

i

(49)

which concludes the proof.
Note that the (νi − j)th derivative of

∏g
i′=1,i′ �=i(1−

sα2
i′)

−νi′ in (46) is easily derived in closed form. To enhance
readability, the following symbolic notation is introduced:

[Π] ∆=
g∏

i′=1,i′ �=i

1
(1− sα2

i′)
νi′ (50)

[Σ] ∆=
g∑

i′=1,i′ �=i

νi′α
2
i′

1− sα2
i′

(51)

[Σn] ∆=
g∑

i′=1,i′ �=i

νi′
(
α2

i′
)n

(1− sα2
i′)

n (52)

∂n[·] ∆=
∂n

∂sn
[·]. (53)
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With the introduced notation, the following holds:

∂[Σn] =n[Σn+1] (54)

∂[Σ]m =m[Σ]m−1[Σ2] (55)

and generally

∂[Ξ][Ψ] = ∂[Ξ] · [Ψ] + [Ξ] · ∂[Ψ]. (56)

This finally allows one to rewrite the first order and, induc-
tively, any higher order derivative as

∂[Π] = [Π][Σ] (57)

∂2[Π] = ∂[Π][Σ]

= ∂[Π] · [Σ] + [Π] · ∂[Σ]
= [Π]

(
[Σ]2 + [Σ2]

)
(58)

∂3[Π] = ∂
[
[Π]
(
[Σ]2 + [Σ2]

)]
= ∂[Π] · ([Σ]2 + [Σ2]

)
+ [Π] · ∂ ([Σ]2 + [Σ2]

)
= [Π]

(
[Σ]3 + 3[Σ][Σ2] + 2[Σ3]

)
(59)

∂4[Π] = [Π]([Σ][Σ]3 + 6[Σ]2[Σ2]

+ 8[Σ][Σ3] + 3[Σ2]2 + 6[Σ4]) (60)

etc.
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