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Abstract—Internet of Battlespace Things (IoBT) deployments
in adversarial environments face critical challenges in network
resource management, where rapid environmental changes and
dynamic threats render traditional optimization approaches in-
adequate. The inherently volatile nature of these environments,
where network conditions can change within seconds, necessitates
algorithms that prioritize speed over perfect optimization to
maintain operational effectiveness. This paper presents a novel
Graph Neural Network (GNN) based Deep Reinforcement Learn-
ing (DRL) framework specifically designed for combinatorial task
admission and routing optimization in dynamic IoBT networks.
Our approach integrates Graph Attention Networks (GATs) for
capturing network topology dependencies, Deep Sets encoders
for permutation-invariant task processing, Adaptive Path GNNs
for learning path representations, and statistical feature encoders
that complement learned embeddings with interpretable routing
heuristics. The system formulates network optimization as a
Markov Decision Process, enabling real-time decision-making
that maximizes task utility while respecting capacity constraints
and adapting to topology changes. Comprehensive experimental
evaluation across multiple network scenarios demonstrates that
our Deep Q-Network (DQN) agent consistently outperforms
greedy baselines by 5-58%, achieving near-optimal utility with
sub-second inference times compared to Mixed Integer Program-
ming solvers that require hundreds of seconds. The framework
shows strong generalization capabilities, with agents trained on
smaller task sets effectively scaling to larger workloads, and
exhibits superior performance when trained under dynamic
conditions rather than static environments.

Index Terms—Graph Neural Networks, Reinforcement Learn-
ing, Combinatoric Optimisation, Networking

I. INTRODUCTION

Modern IoBT deployments in adversarial and harsh environ-
ments present unprecedented challenges for network resource
management and optimization. Mission-critical applications
such as disaster response coordination, battlefield communica-
tions, emergency first responder networks, and infrastructure
monitoring in extreme conditions demand robust, adaptive
networking solutions that can maintain operational effective-
ness despite dynamic threats, equipment failures, and rapidly
changing environmental conditions. These scenarios are char-
acterized by heterogeneous device capabilities, intermittent
connectivity, resource constraints, and the constant threat of
adversarial interference or physical damage [1].
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Traditional network optimization approaches, which typi-
cally assume stable topologies and predictable traffic patterns,
are inadequate for such dynamic adversarial environments.
The combinatorial nature of resource allocation problems in
these settings is further complicated by uncertainty in network
state, unpredictable task arrivals, and the need for real-time
decision-making under partial information. However, the chal-
lenge is amplified in IoBT environments by their inherently
volatile nature, where network conditions, threat landscapes,
and operational requirements can change within seconds or
minutes, rendering previously optimal solutions obsolete be-
fore they can be fully implemented. For instance, defense
networks must maintain operational capability while under
active cyber or physical attack, requiring intelligent resource
allocation that anticipates and mitigates potential disruptions,
yet the fast-paced nature of combat scenarios demands im-
mediate decision-making where a reasonably good solution
implemented quickly often outperforms an optimal solution
that arrives too late. This fundamental speed-versus-optimality
trade-off necessitates algorithms capable of producing accept-
able solutions within tight time constraints, prioritizing rapid
adaptation over perfect optimization to maintain operational
effectiveness in rapidly evolving IoBT environments.

This work addresses these challenges by developing a GNN
based Reinforcement Learning (RL) framework specifically
designed for combinatorial optimization problems in adversar-
ial IoBT environments. Our approach leverages the inherent
graph structure of communication networks to learn adaptive
policies that maximize task utility while maintaining resilience
against various forms of network perturbation. The integration
of attention mechanisms, permutation-invariant task process-
ing, and path-aware feature encoding enables the system to
make informed decisions under uncertainty, balancing imme-
diate operational needs with long-term network sustainability.

The application of GNNs to combinatorial optimization
problems has emerged as a promising research direction,
with significant contributions spanning multiple domains. [2]
provides a comprehensive conceptual review of key advance-
ments in applying machine learning techniques to combinato-
rial optimization, establishing the theoretical foundations for
neural approaches to NP-hard problems, though their work
focuses primarily on offline optimization rather than the real-



time, sequential decision-making framework we propose for
dynamic network environments. In the context of network
resource management, several studies have shown the potential
of GNN-based approaches. [3] proposes Flex-Net, a novel
GNN architecture for joint optimization of communication
direction and transmission power in flexible duplex networks,
achieving near-optimal performance while maintaining low
computational complexity. However, their approach addresses
physical layer optimization in wireless networks, whereas
our work tackles the higher-level problem of task admis-
sion and routing in multi-hop networks with explicit utility
maximization objectives. Similarly, [4] addresses dynamic
resource slicing in 6G multi-access edge computing networks
using message passing GNNs combined with online ADMM,
demonstrating superior performance in highly dynamic and
unreliable network scenarios. While this work shares our focus
on dynamic environments, it concentrates on resource slicing
rather than the combined task admission and routing problem
we address, and lacks the reinforcement learning framework
that enables our agent to learn from experience and adapt
to diverse network conditions. The integration of attention
mechanisms in graph-based optimization has been explored
by [5], which proposes graph pointer networks with attention-
based branching rules for combinatorial optimization, signif-
icantly outperforming traditional expert-designed heuristics.
In contrast to their offline branch-and-bound approach, our
work leverages attention mechanisms within a real-time RL
framework that makes sequential decisions under uncertainty
without requiring complete problem knowledge a priori. For
sequential decision-making in dynamic environments, [6] de-
velops a GNN-DRL framework for dynamic job-shop schedul-
ing problems, formulating the optimization as a Markov deci-
sion process with disjunctive graph representations. While this
work demonstrates the potential of GNN-RL combinations,
it focuses on manufacturing scheduling rather than network
optimization, and does not address the unique challenges of
path selection and capacity constraints inherent in communica-
tion networks. The challenge of handling variable-sized inputs
in optimization contexts has been addressed through Deep
Sets architectures, as demonstrated by [7] on set prediction
networks that maintain permutation invariance while enabling
effective set-to-set learning. Our work extends this concept by
integrating Deep Sets with GATs and path-aware encoders,
creating a novel hybrid architecture specifically designed for
the task admission problem where the set of pending tasks
varies dynamically and must be processed alongside network
topology information.

The key contributions of this research include: (1) a novel
GNN-RL architecture that captures complex network depen-
dencies while adapting to topology changes and capacity varia-
tions, (2) a comprehensive problem formulation that addresses
task admission and routing under adversarial conditions, and
(3) empirical validation demonstrating superior performance
compared to traditional heuristics while maintaining computa-
tional efficiency suitable for real-time deployment in resource-

constrained environments.
The remainder of this paper is organized as follows. Sec-

tion II defines the network optimization problem and its
computational complexity. Section III presents our GNN-RL
system design, including the neural architecture components,
state representation, and reward function. Section IV provides
experimental evaluation comparing our approach against base-
lines across multiple network scenarios. Section V concludes
with key insights and future research directions.

II. NETWORK OPTIMIZATION PROBLEM: MAXIMIZING
TASK UTILITY

In this work, we address a network optimization problem
focused on maximizing the total utility of served tasks within
a multi-hop communication network. The network comprises
N nodes, including sink or switch nodes, where each directed
link possesses a finite communication capacity. A pool of
tasks, representing data flows, must be accommodated in the
network. These tasks originate from random source nodes
and are destined for distinct sink nodes, traversing multi-hop
paths to reach their destinations. Each task is characterized
by a unique data rate requirement, a utility value in the
interval (0, 1], and a randomly selected destination sink node.
Importantly, routing is restricted to single paths, prohibiting
the splitting of any task’s flow across multiple routes. The
primary objective is to select a subset of these tasks that
maximizes the aggregate utility while adhering to the net-
work’s capacity constraints. This selection process must ensure
that the chosen tasks can be routed without violating link
capacities, thereby optimizing resource utilization in capacity-
limited environments. Such problems arise in various other
applications, including wireless sensor networks, data center
traffic management, and telecommunication systems, where
efficient allocation of bandwidth is critical to performance.

To formalize the problem, we define the following sets and
parameters. Let I denote the set of tasks, indexed by i, and
L the set of directed links, indexed by l, each with capacity
Cl. For each task i, ri represents its data rate requirement, ui

its utility value where 0 < ui ≤ 1, oi its origin source node,
and si its destination sink node.

The decision variables include binary indicators xi ∈ {0, 1},
which determine whether task i is selected, and fi,l ∈ {0, 1},
indicating whether link l is utilized by task i. The optimization
seeks to maximize the total utility:

max
∑
i∈I

uixi. (1)

This objective is subject to several constraints. First, single-
path routing is enforced: if a task is selected (xi = 1), the
selected links must form a valid path from oi to si. This is
achieved through flow conservation at each intermediate node
n (neither oi nor si):∑

l∈Lin(n)

fi,l =
∑

l∈Lout(n)

fi,l, (2)



where Lin(n) and Lout(n) are the sets of incoming and
outgoing links at node n, respectively.

Additionally, flow balance at the origin and sink nodes is
required. For the origin node oi:∑

l∈Lout(oi)

fi,l = xi,
∑

l∈Lin(oi)

fi,l = 0. (3)

For the sink node si:∑
l∈Lin(si)

fi,l = xi,
∑

l∈Lout(si)

fi,l = 0. (4)

Finally, link capacity constraints ensure that the total data
rate on each link l does not exceed Cl:∑

i∈I
rifi,l ≤ Cl ∀l ∈ L. (5)

The problem is inherently a combinatorial optimization
problem (COP) due to the binary nature of the decision
variables: xi governs the discrete selection of tasks, while
fi,l dictates the binary assignment of paths. This discreteness
introduces combinatorial explosion, as the solution space
grows exponentially with the number of tasks and links. The
complexity is underscored by reductions to known NP-hard
problems. When utilities and data rates are uniform, the prob-
lem simplifies to the unsplittable flow problem (UFP), which
is established as NP-hard. In the presence of heterogeneous
utilities, it generalizes to a weighted utility maximization
variant of UFP, retaining NP-hardness. Even in simplified
scenarios, such as those with single-link capacity constraints,
the problem resembles the 0-1 knapsack problem, another
NP-hard classic. These reductions highlight the computational
intractability of finding optimal solutions for large instances,
motivating the development of approximation algorithms or
heuristics for practical deployment.

III. SYSTEM DESIGN

The aforementioned combinatorial optimization problem
can be naturally reformulated within the reinforcement learn-
ing (RL) framework to enable efficient decision-making in
dynamic environments. In RL, the problem is modeled as
a Markov Decision Process (MDP), defined by the tuple
(S,A,P,R, γ), where S is the state space, A is the action
space, P represents the transition probabilities, R is the
reward function, and γ is the discount factor. The objective
is to maximize the expected cumulative discounted reward:
maxπ E

[∑T
t=0 γ

trt | π
]
, where π is the policy and T is the

episode length. In DQN, this is achieved by minimizing the
temporal difference error in Q-value approximations, leading
to an optimal policy π∗(s) = argmaxa Q

∗(s, a). For the task
admission and routing problem, each task arrival corresponds
to a time step, where the agent decides whether to admit the
task and, if so, which path to assign, aiming to maximize
long-term total utility while respecting capacity constraints.

Our implementation proposes a DQN agent that leverages a
synergistic fusion of heterogeneous neural modules to produce

robust, context-aware decision-making for network combina-
torial optimization. At its core, the model integrates deep
relational reasoning from Graph Attention Network (GAT)
layers, permutation-invariant task-set embeddings via the Deep
Sets encoder, and expressive sequential representations from
the Adaptive Path GNN, complemented by hand-crafted statis-
tical path feature encodings. In the final layers, these diverse
feature spaces—graph-level, global network state, aggregated
task-set, and fused path descriptions—are concatenated and
processed via a sequence of fully connected layers, enabling
the agent to holistically reason about the trade-offs inherent in
each decision: immediate utility, future congestion risks, and
opportunity costs. The explicit fusion of learned and statistical
encodings allows the model to dynamically balance generic
heuristics with nuanced, experience-driven strategies that adapt
to changing network and traffic patterns.

A. Graph Attention Network (GAT)

In learning effective routing and resource allocation policies
in variable network environments, a key challenge lies in
capturing complex dependencies between nodes and links,
especially when these relationships are highly dynamic and
non-uniform. Traditional GNNs such as Graph Convolutional
Networks (GCNs) treat all neighboring nodes equally, which
limits their expressiveness in scenarios where certain links or
nodes play a disproportionately important role for specific
tasks or topologies. The Graph Attention Network (GAT)
directly addresses this limitation through a trainable attention
mechanism that enables the model to focus on the most
informative neighbors during feature aggregation.

The GAT layer computes attention coefficients αij between
nodes i and j using a shared attention mechanism a:

eij = a(Whi,Whj) (6)

αij =
exp(LeakyReLU(eij))∑

k∈Ni
exp(LeakyReLU(eik))

(7)

where W is a learned weight matrix, hi are node features,
and Ni denotes the neighborhood of node i. The updated node
representation is then computed as:

h′
i = σ

∑
j∈Ni

αijWhj

 (8)

Multi-head attention further enriches the representation by
enabling the model to attend to multiple aspects of the
topology in parallel. This is particularly valuable in network
optimization, where bottleneck links or critical paths can
decisively influence resource assignment and overall system
utility.

B. Deep Sets Encoder

A principal challenge in learning network admission and
routing policies is that the set of outstanding tasks is inherently
variable in size and unordered across both training and infer-
ence. Traditional neural architectures struggle to process such



variable-length input sets, often requiring inefficient padding
or suboptimal aggregation methods. The Deep Sets Encoder
addresses this through a permutation-invariant architecture that
guarantees representations independent of task ordering.

The Deep Sets framework processes a set X =
{x1, x2, . . . , xn} through two neural networks:

f(X ) = ρ

(
n∑

i=1

ϕ(xi)

)
(9)

where ϕ : Rd → Rm transforms individual elements and
ρ : Rm → Rk processes the aggregated representation. This
formulation ensures permutation invariance while enabling
reasoning about both individual task attributes and holistic set-
level properties.

In implementation, tasks are first processed through the ϕ
network, optionally masked for invalid entries, then summed
to form a single feature vector per batch. The ρ network
produces the final set-level embedding, which is fused with
other network state representations to enable context-aware
decision-making.

C. Adaptive Path GNN

Learning representations for candidate paths that capture
both sequential link interactions and evolving resource con-
straints poses a significant challenge. Standard GNNs model
overall network structure but struggle to encode variable-
length paths as distinct objects with both local and global
information. The Adaptive Path GNN module addresses this
limitation by enabling context-rich, path-level embeddings
adaptable to both basic and enhanced feature inputs.

For a path p = (v1, v2, . . . , vℓ) with link features e(vi,vi+1),
the module applies multi-head self-attention:

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V (10)

where Q, K, and V are query, key, and value matrices derived
from the sequence of link features. Masking ensures robust
handling of variable-length paths during batching.

The intuition is that path feasibility and optimality depend
not just on individual link properties, but on the sequence of
characteristics along the entire path—bottlenecks, utilization
gradients, and network position. The attention mechanism dy-
namically highlights critical hops and aggregates information
into compact, expressive path representations.

D. Statistical/Structural Path Features Encoder

To complement learned representations with interpretable
indicators of path quality, the Statistical/Structural Path Fea-
tures Encoder computes hand-crafted descriptors of each can-
didate path. These include normalized path length, average
utilization after task admission, minimum remaining capacity,
and maximum link congestion.

For a path p and task with rate r, key features in-
clude: normalized path length (ℓp/ℓmax), average utiliza-
tion ( 1

|Ep|
∑

e∈Ep

ue+r
ce

) and minimum remaining capacity

(mine∈Ep

ce−ue−r
cmax

), where Ep represents links in path p, ue

is current utilization, ce is capacity, and cmax is maximum
link capacity. These features are processed through a multi-
layer perceptron and fused with learned path embeddings,
providing the agent with direct access to well-understood
routing heuristics while enabling nuanced, experience-driven
decision-making.

E. State Representation, Action Space and Reward Function

The state representation st ∈ S is a comprehensive multi-
component tuple: st = (Nt,Et,Gt,Tt,Pt), where Nt ∈
Rn×dn contains node features (source/destination indicators,
degrees, task interactions), Et ∈ Rn×n×de represents edge
features (utilization, remaining capacity, path membership),
Gt ∈ Rdg captures global network state (progress, admission
rates, congestion metrics), Tt ∈ Rm×dt encodes the task set,
and Pt ∈ Rk×dp contains path features for candidate routes.

The action space A = {0, 1, 2, . . . , k} includes task rejec-
tion (action 0) and selection of one of k candidate paths (ac-
tions 1 to k). Action masking enforces feasibility constraints
by restricting available actions to those satisfying current
capacity constraints: At = {a ∈ A : feasible(a, st)}.

The reward function balances multiple objectives through
weighted components: rt = αuRu +αeRe +αcRc +αfRf +
αrRr, where Ru represents utility gain, Re captures effi-
ciency benefits, Rc penalizes congestion, Rf accounts for
future opportunity costs, and Rr penalizes rejections. Time-
dependent weights encourage exploration early in episodes
and exploitation toward episode completion, facilitating robust
policy learning that maximizes long-term cumulative utility
rather than myopic gains.

IV. SYSTEM EVALUATION

To evaluate the performance of the DQN agent, we con-
structed a controlled experimental framework for network
routing and admission control. The network topology is gener-
ated randomly for a fixed number of nodes, with link connec-
tivity determined by a specific link density, while guaranteeing
that the generated network remains fully connected. Each
directed link is assigned a random data capacity drawn uni-
formly from [Cmin, Cmax]. For each episode, a fixed number of
tasks is produced, with every task assigned a random source
and destination node, a data rate from [Rmin, Rmax], and a
utility value from [Umin, Umax], both sampled from uniform
distributions.

Given the combinatorial nature of routing in graphs, enu-
merating all acyclic source-destination paths for each task
quickly becomes computationally prohibitive as the network
size and number of tasks increase. To address this, we precal-
culate all acyclic routes per task and select only K candidate
paths (either the K shortest or K random ones) for both
training and testing. This path subset restriction is essential
to reducing the search space, ensuring tractable computations
for the DQN agent and reference algorithms, while preserving
a representative diversity of routing options sufficient for
meaningful learning and performance comparison.



Fig. 1. Comparison of average utility (left) and solving time (right) achieved by the DQN agent, Greedy allocation, and MIP optimizer across varying network
sizes and link densities. The results are shown for different numbers of tasks and three DQN evaluation scenarios.

Three scenarios are designed to systematically probe the
DQN agent’s ability to generalize under varying degrees of
network variability:

• Scenario 1: The network topology and link capacities are
fixed throughout training and evaluation. A different set
of random tasks is used in each episode, measuring the
agent’s robustness to changing traffic demand on a static
infrastructure.

• Scenario 2: The network topology and connectivity are
fixed, but the link capacities and sets of tasks are re-
generated for each episode. This emphasizes the DQN’s

adaptation to variable resource constraints.
• Scenario 3: Only the number of network nodes remains

constant; both the network connectivity (link set), link
capacities, and task assignments vary in every episode.
This is the most general scenario, testing the agent’s
adaptability to entirely new topologies and network states.

For benchmarking, the DQN agent’s results are compared
to two established reference solvers (for strict fairness, each
algorithm is evaluated on the exact same network topologies,
link capacities, and sets of tasks):

• Greedy agent: Admission and routing decisions are made



by sequentially admitting the first feasible task-path that
maximizes immediate utility, without consideration of
long-term resource consequences. It represents an effi-
cient yet myopic allocation strategy that is commonly
used in online settings due to its speed and simplicity.

• MIP optimizer: The Mixed Integer Programming (MIP)
optimizer formulates the problem described in Section
II as an exact combinatorial optimization problem over
the same set of candidate paths and under identical con-
straints. While it provides an upper bound for utility, the
MIP is computationally expensive and typically infeasible
for large-scale or real-time scenarios.

The evaluation results (Fig 1), comprehensively compare
average utility and computational solving time for increasing
numbers of tasks, across network sizes and scenarios. The
evaluation takes place over 50 sets of randomly generated
tasks, and the average values are presented. The results
demonstrate that the DQN agent consistently surpasses the
Greedy baseline in admitted utility across all tested network
topologies. This improvement becomes more pronounced as
the number of tasks increases, with the DQN outperforming
Greedy by approximately 18-20% at lower task loads (50
tasks) and reaching up to 58% improvement for large task sets
of 1000 tasks in 10-node networks. These gains are achieved
despite training the DQN agent on significantly smaller task
sets (50 tasks), highlighting its strong generalization capability
in dynamic and complex environments. For example, in the
20-node network with 200 tasks, DQN achieves utility values
ranging from 38.1-48.5 across scenarios compared to Greedy’s
36.48, while the MIP optimizer reaches 53.42. This pattern
holds steady across all topologies, from 10-node networks with
25% link density to 40-node networks with 10% link density,
reflecting the robustness of the learned policies.

Interestingly, as the number of tasks grows during evalua-
tion, models trained under Scenario 3 (dynamic link changes)
demonstrate superior performance compared to those trained
in more static settings (Scenario 1). Scenario 2 (capacity
changes) follows closely behind, with both outperforming
Scenario 1. For instance, in the 10-node network with 1000
tasks, Scenario 3 achieves a utility of 53.65 compared to
Scenario 1’s 46.36, representing an 83% improvement over
Greedy versus 58% for Scenario 1. This occurs because
agents trained in more variable environments learn generalized
admission and routing policies that rely less on memorizing
static topology characteristics. Instead, they develop adaptive
strategies focused on underlying control principles, enabling
better flexibility and transfer to unseen conditions. Regarding
computational efficiency, all three scenarios share similar eval-
uation durations since only the training data differs, with DQN
inference remaining consistently under 0.4 seconds across all
cases. The simpler network topologies, such as the 10-node
case with 25% link density, allow for evaluation up to 1000
tasks efficiently. Conversely, for larger topologies, the MIP
solver’s computation time grows exponentially, with solving
times reaching 272.90 seconds for 20 nodes with 200 tasks

and 32.07 seconds for 40 nodes with 200 tasks. For task sets
exceeding 200 tasks in larger topologies, the MIP solver’s
computation time exceeds 15 minutes per evaluation, rendering
detailed timing analysis impractical while the DQN agent
maintains sub-second inference time, delivering near-optimal
utility with vastly reduced computational overhead.

V. CONCLUSIONS

We presented a comprehensive GNN-based Deep Rein-
forcement Learning framework for task admission and rout-
ing optimization in dynamic IoBT environments, successfully
combining GATs, Deep Sets encoders, Adaptive Path GNNs,
and statistical feature processing to address the critical need
for fast, adaptive decision-making in adversarial battlespace
conditions. The experimental results demonstrate that the
DQN agent consistently outperforms greedy baselines by 5-
58% across all tested scenarios while maintaining sub-second
inference times, exhibits strong generalization capabilities by
scaling from 50-task training sets to 1000-task evaluation
scenarios, and shows superior performance when trained under
dynamic conditions rather than static environments, suggesting
that exposure to network variability produces more robust
policies. The approach effectively balances the speed-versus-
optimality trade-off by achieving 70-90% of optimal utility
within tight time constraints demanded by battlespace appli-
cations, while MIP solvers require impractical computation
times. Future research directions include multi-objective op-
timization, adversarial training, distributed implementations,
and uncertainty quantification techniques, with this GNN-DRL
approach establishing a solid foundation for next-generation
adaptive networking solutions in adversarial IoBT systems
where rapid adaptation over perfect optimization is essential
for mission success.
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“Combinatorial Optimization and Reasoning with Graph Neural Net-
works,” in Journal of Machine Learning Research, vol. 24, no. 130, pp.
1–61, 2023.

[3] T. Perera, S. Atapattu, Y. Fang, P. Dharmawansa and J. Evans, “Flex-
Net: A Graph Neural Network Approach to Resource Management in
Flexible Duplex Networks,” in 2023 IEEE Wireless Communications
and Networking Conference (WCNC), Glasgow, UK, 2023.

[4] A. Asheralieva, D. Niyato and Y. Miyanaga, “Efficient Dynamic
Distributed Resource Slicing in 6G Multi-Access Edge Computing
Networks With Online ADMM and Message Passing Graph Neural
Networks,” in IEEE Transactions on Mobile Computing, vol. 23, no.
4, pp. 2614-2638, April 2024.

[5] R. Wang et al., “Learning to Branch in Combinatorial Optimization with
Graph Pointer Networks,” in IEEE/CAA Journal of Automatica Sinica,
vol. 11, no. 1, pp. 157-169, January 2024.

[6] C. -L. Liu and T. -H. Huang, “Dynamic Job-Shop Scheduling Problems
Using Graph Neural Network and Deep Reinforcement Learning,” in
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol.
53, no. 11, pp. 6836-6848, Nov. 2023.
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