1732

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 3, JUNE 2017

Robust and Efficient Monitor Placement
for Network Tomography in
Dynamic Networks

Ting He, Senior Member, IEEE, Athanasios Gkelias, Senior Member, IEEE, Liang Ma,
Kin K. Leung, Fellow, IEEE, Ananthram Swami, Fellow, IEEFE,
and Don Towsley, Life Fellow, IEEE, Fellow, ACM

Abstract— We consider the problem of placing the minimum
number of monitors in a dynamic network to identify addi-
tive link metrics from path metrics measured along cycle-free
paths between monitors. Our goal is robust monitor placement,
i.e., the same set of monitors can maintain network identifia-
bility under topology changes. Our main contribution is a set
of monitor placement algorithms with different performance-
complexity tradeoffs that can simultaneously identify multiple
topologies occurring during the network lifetime. In particular,
we show that the optimal monitor placement is the solution
to a generalized hitting set problem, for which we provide a
polynomial-time algorithm to construct the input and a greedy
algorithm to select the monitors with logarithmic approximation.
Although the optimal placement is NP-hard in general, we
identify non-trivial special cases that can be solved efficiently. Our
secondary contribution is a dynamic triconnected decomposition
algorithm to compute the input needed by the monitor placement
algorithms, which is the first such algorithm that can handle
edge deletions. Our evaluations on mobility-induced dynamic
topologies verify the efficiency and the robustness of the proposed
algorithms.

Index Terms—Network tomography,
dynamic graph decomposition.

monitor placement,

I. INTRODUCTION

ETWORK tomography refers to the methodology
Nof inferring internal performance metrics (e.g., link
delays/losses) of a communication network from external mea-
surements taken between nodes with monitoring capabilities,
referred to as monitors. Since its introduction [2], network
tomography has attracted significant interest in the research

Manuscript received March 22, 2016; revised September 28, 2016 and
December 5, 2016; accepted December 16, 2016; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor D. Y. Eun. Date of publication
January 31, 2017; date of current version June 14, 2017. This work was
supported in part by the U.S. Army Research Laboratory, and in part by the
U.K. Ministry of Defence under Grant W911NF-06-3-0001. This paper was
presented at the IEEE INFOCOM 2016.

T. He is with The Pennsylvania State University, University Park,
PA 16802 USA (e-mail: tzh58 @psu.edu).

A. Gkelias and K. K. Leung are with the Imperial College, London, U.K.
(e-mail: a.gkelias@imperial.ac.uk; kin.leung@imperial.ac.uk).

L. Ma is with the IBM T. J. Watson Research Center, Yorktown, NY 10598
USA (e-mail: maliang@us.ibm.com).

A. Swami is with the Army Research Laboratory, Adelphi, MD 20783 USA
(e-mail: ananthram.swami.civ@mail.mil).

D. Towsley is with the University of Massachusetts Amherst, Amherst, MA
01003 USA (e-mail: towsley @cs.umass.edu).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. This consists of proofs and
additional details.

Digital Object Identifier 10.1109/TNET.2016.2642185

community as a promising alternative to the approach of direct
measurement. Traditionally, network monitoring systems rely
on diagnostic tools such as traceroute, pathchar [3], and
Network Characterization Service (NCS) [4] to directly mea-
sure the performance of individual links via active probes,
but these techniques suffer from high measurement overhead
and lack of cooperation from internal nodes. In contrast,
tomography-based monitoring only requires cooperation of
monitors and can utilize passive measurements from data
packets to reduce the need of active probes [5].

A major challenge in applying network tomography is the
lack of uniqueness in the inferred link metrics. For exam-
ple, consider the inference of link metrics that are additive
(e.g., delays, jitters, log of packet delivery ratio). Network
tomography infers such link metrics by solving a system of
linear equations, where the unknown variables are the link
metrics, and each measurement path provides an equation
that relates the metrics of traversed links to the end-to-end
measurement on this path. From linear algebra, we know that
the system has a unique solution if and only if the number
of linearly independent measurement paths equals the number
of links. However, past experience shows that without careful
design, it is frequently impossible to uniquely determine all
the link metrics from path measurements [6]-[8].

This problem, known as the lack of identifiability, has been
recognized in the literature, where several solutions have been
proposed to ensure identifiability in a network with a fixed
topology by carefully placing the monitors [9], [10]. While the
fixed-topology assumption is valid in wired networks, applying
network tomography to wireless networks faces the additional
challenge that the network topology may vary at runtime due
to factors such as node mobility, node activation/deactivation,
and channel variation. While a straightforward solution is to
handle the changes reactively by computing a new monitor
placement after each topology change, such a solution can lead
to frequent reconfigurations and instability in the monitoring
system. To maintain seamless monitoring in such dynamic
networks, it is desirable to have a monitor placement strategy
that can handle topology changes proactively.

In this paper, we aim to develop monitor placement algo-
rithms that are robust to topology changes. To this end, we
leverage existing works on predicting topology changes. For
example, we can predict topology changes based on models
of node mobility [11], [12], patterns of link failures [13],

1063-6692 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

HE et al.: ROBUST AND EFFICIENT MONITOR PLACEMENT FOR NETWORK TOMOGRAPHY IN DYNAMIC NETWORKS

or frequently occurring topologies in the past. Given such
prediction capabilities, we are interested in two closely-related
problems: (i) During network planning, how can we place
monitors to ensure identifiability under predictable topology
changes? (ii) At runtime, how can we adapt the monitor
placement so as to maintain identifiability under unpredictable
topology changes? In both problems, we wish to use as few
monitors as possible to minimize cost.

A. Related Work

Based on how measurements are performed, existing solu-
tions on monitor placement can be categorized as: (1) place-
ment of monitors performing round-trip probing, (2) placement
of monitors performing end-to-end probing.

In category (1), each monitor (aka beacon) independently
computes metrics of a subset of links by sending round-trip
probes to all possible destinations along its routing tree. The
goal is thus to place a minimum number of monitors whose
routing trees cover all the links. The problem is proved to be
NP-hard, and algorithms based on set covering are proposed
to select a sufficient set of monitors. Variations have also been
proposed to cover all active links under a limited number of
link failures or route changes [14], [15].

In category (2), monitors jointly infer link metrics from
end-to-end measurements between themselves. Under the
assumption that monitors can measure arbitrary cycles or paths
(possibly) containing cycles, [9] derives the first necessary and
sufficient condition on the network topology for identifying
additive link metrics from end-to-end measurements. The
condition is later modified by [10] to incorporate an additional
constraint that measurement paths must be cycle-free. Based
on the modified condition, [10] develops an algorithm to place
a minimum number of monitors to identify all link metrics.
Variations of the problem include [16], which combines the
algorithm in [10] with a graph trimming algorithm to identify
only the links of interest, and [17], which maximizes the
number of identifiable links using a given number of monitors.
All the above works assume a fixed network topology.
Recently, attention is turned to support dynamic topology
changes. Under the measurement model in [9], [18] studies a
problem similar to [17] but wants to guarantee identifiability
under up to k link failures. In this work, we adopt the
measurement model in [10] but consider arbitrary topology
changes.

As shown in [10], optimal monitor placement requires
knowledge of the network structure in terms of biconnected
and triconnected components (see Definition 2). For static
graphs with m edges and n vertices, there are algorithms
to compute biconnected components [19] and triconnected
components, both in O(m + n) time. For dense graphs, [21]
proposes a sparsification technique that reduces the complexity
to O(n). For dynamic graphs, it is possible to reduce the
complexity by reusing previous results. A dynamic-graph
algorithm can be classified as either partially dynamic or
fully dynamic, depending on whether it supports only one
or both of edge insertion and deletion. Fully dynamic algo-
rithms have been proposed in [22] to maintain biconnected
components. In contrast, only partially dynamic algorithms

1733

exist for maintaining triconnected components after edge
insertions [23], [24], and fully dynamic algorithms are known
only in the special case of planar graphs [25]. In this work, we
fill the gap by proposing an algorithm to update triconnected
components in a general graph after edge deletion.

Key to robust monitor placement is the knowledge of poten-
tial network topologies after changes. Topology prediction has
been studied in the context of wireless ad-hoc and vehicular
networks, where techniques including adaptive filtering and
fluid dynamic modeling have been proposed to predict link
changes [11], [12] or extract topology snapshots from given
mobility models [26]. In this work, we leverage such predictors
and focus on developing robust monitor placement algorithms
based on the predicted topologies.

B. Summary of Contributions

We study robust monitor placement for inferring additive
link metrics from end-to-end measurements along cycle-free
paths under dynamic topology changes. Our contributions are:

1) We develop robust monitor placement algorithms that
place monitors to simultaneously identify a given set of
topologies, including: (i) a one-shot placement algorithm that
applies an existing algorithm designed for static networks to
an aggregate topology, (ii) an incremental placement algo-
rithm that sequentially places monitors in each topology, and
(iii) an optimal placement algorithm that jointly considers
all the topologies by casting the problem as a generalized
hitting set problem. All the algorithms guarantee identifiability
with different tradeoffs between the number of monitors and
the computation complexity. We also provide an algorithm to
identify and remove unnecessary monitors by solving a dual
problem.

2) We show that the optimal monitor placement is
NP-hard but can be approximated to a logarithmic factor by a
greedy heuristic. We further identify several cases where the
problem can be solved optimally in polynomial time. One case
corresponds to static networks, explaining why the problem is
solvable (by [10]) in this case.

3) We develop a dynamic graph decomposition algorithm
that maintains the information needed by monitor placement
(triconnected decomposition) for a dynamic graph undergoing
edge deletions. This is the first dynamic triconnected decom-
position algorithm that can handle edge deletion.

4) We extend the above solutions to address practical issues
including unpredictable topology changes, bounded number of
monitors, and arrival/departure of nodes.

5) We evaluate the proposed solutions on both random
dynamic topologies and realistic dynamic topologies induced
by mobility traces. Our results show that our dynamic
graph decomposition algorithm can significantly improve the
efficiency of the best existing algorithm, and our monitor
placement algorithms can use a small percentage of monitors
(10— 30%) to maintain identifiability under hundreds of topol-
ogy changes, while being highly robust to topology prediction
errors.

The rest of the paper is organized as follows. Section II
formulates the problem. Section III reviews existing results.
Section IV presents new monitor placement algorithms, for

1734
TABLE 1
NOTATIONS
Symbol | Meaning
G = (V, L) | graph with vertex set V and edge set L
Vg | set of vertices in graph G’ (by default V = Vg)
Lg/ | set of edges in graph G’ (by default L = Lg)
l(v,u) | edge connecting vertices v and u
G+1/G—1 | adding/deleting edge [from graph G
Sgr | separation vertices in graph G’ (Section III-B)
Mg | monitors at non-separation vertices of graph G’
JF | monitor selection constraints (Section IV-C)
R | monitor removal constraints (Section IV-D)

which Section V identifies optimality conditions. Section VI
presents a dynamic graph decomposition algorithm in sup-
port of monitor placement. Section VII discusses several
extensions. Section VIII evaluates the proposed solutions.
Section IX concludes the paper. Proofs are available in
Appendix A of the supplementary file.

II. PROBLEM FORMULATION
A. Notations

We will interchangeably use the terms “network (topology)”
and “graph”, “node” and “vertex”, and “link” and ‘“edge”.
Table I summarizes the main notations used in the paper.

B. Network Models

Consider a fixed set of nodes V' which form a network
with time-varying topologies. We assume that the network
topologies are known and are represented by undirected graphs
{G: : t =1,...,T}, where G, = (V, L) is a graph
representing the ¢-th topology.! For example, these topologies
can be predicted using existing topology prediction models
such as [11], [12]. We note that these topologies do not need to
occur sequentially in time and do not need to cover all possible
cases. Although we focus on link changes, node changes can
also be handled by modeling them as special link changes; see
Section VII-C.

C. Network Tomography

Given a topology G = (V, L) (omitting subscript t),
network tomography aims at inferring the performance metrics
of individual links in L from end-to-end metrics along a set
of measurement paths P. In particular, we are interested in
inferring additive metrics where the path metric equals the
sum of the corresponding link metrics; examples of such
metrics include delay, jitter, and log delivery rate (under
the assumption of independent losses across links). A basic
requirement of network tomography is the uniqueness of the
solution, aka identifiability.

Definition 1: A network G is identifiable if all its link
metrics can be uniquely determined from path metrics.

'Our monitor placement algorithms can handle arbitrary topologies,
although their performance depends on the specific topologies; see Section V.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 3, JUNE 2017

o
A
Ay ZZ_;iA s, Yea
7~ L e TN

s m; Ty "/ ™My My

{my me - \my m rtnal T

N / N A virtual link

~_9_-~ ~9_-7
(a) (b)

Fig. 1. (a) G with k (kx > 3) monitors; (b) Ge, With two virtual monitors.

From linear algebra, we know that G is identifiable if and
only if the rank of the measurement paths (when represented as
vectors in the link space; see [10]) equals the number of links.
We assume that we can only monitor paths that start/end at
certain nodes designated as monitors. We further assume that
monitors can control the routing of measurement packets as
long as the path starts and ends at different monitors without
incurring cycles, i.e., it is a simple path between monitors.
In practice, we can set up such paths between monitors
using technologies such as source routing, Multiprotocol Label
Switching (MPLS), and Software-Defined Networking (SDN),
and the cycle-free property guarantees that probes will not
encounter forwarding loops. See discussions in [18] for
more examples of such technologies. If G is identifiable
under a given monitor placement, we say that this placement
identifies G.

D. Objective of Monitor Placement

Our main objective is to select a smallest subset of nodes as
monitors to identify all the topologies of interest. We will dis-
cuss later (Section VII) how such a monitor placement can be
augmented to maintain identifiability in case of unpredictable
topology changes.

Remark: Note that our objective is to achieve link iden-
tifiability through monitor placement. While other objectives
(e.g., load balancing) and design parameters (e.g., measure-
ment paths and probing frequencies) are also important to
the performance of network tomography, their optimization
is beyond the scope of this paper and left to future work.

III. MONITOR PLACEMENT FOR STATIC NETWORKS
We start by reviewing existing results from [10] for a static
network with a fixed topology. We then extract insights from
these results to motivate our solutions for dynamic networks.

A. Identifiability Condition

Definition 1 does not allow efficient testing of identifiability
as there are exponentially many measurement paths. Existing
work [10] has established an equivalent condition in terms of
an extended graph G., constructed as follows: given a network
G with x (x > 3) monitors,? G, is obtained by adding two
virtual monitors m’ and mj, and 2k virtual links between
each pair of virtual-actual monitors, as illustrated in Fig. 1. The
identifiability of G is characterized by the following condition.

Theorem 1: [10] Given s (x > 3) monitors, G is iden-
tifiable if and only if its extended graph G., is 3-vertex-
connected, i.e., it remains connected after removing any
two nodes.

21t has been shown [10] that a network with more than one link needs at
least three monitors to identify all link metrics.

HE et al.: ROBUST AND EFFICIENT MONITOR PLACEMENT FOR NETWORK TOMOGRAPHY IN DYNAMIC NETWORKS

B. Minimum Monitor Placement for Static Networks

Based on the identifiability condition in Theorem 1, [10]
gives an algorithm, called Minimum Monitor Place-
ment (MMP), that places a minimum set of monitors to ensure
identifiability. We briefly review MMP for completeness and
refer to [10] for details. MMP works by decomposing G into
subgraphs with certain properties defined as follows.

Definition 2: A k-connected component of G is a maxi-
mal sub-graph of G that is either (i) k-vertex-connected, or
(i) a clique with up to k vertices. The case of £k = 2 is
called a biconnected component, and k = 3 a triconnected
component.

Biconnected components are subgraphs separated by cut-
vertices,’ and triconnected components are subgraphs sepa-
rated by cut-vertices and 2-vertex cuts.* Common vertices
between a given component and its neighboring components
are called separation vertices.

In words, MMP works by ensuring that: (i) all nodes with
degree (i.e., number of neighbors) 1 or 2 are monitors, (ii) all
bi/tri-connected components with at least three nodes have at
least three nodes that are separation vertices or monitors, and
(iii) all connected components with at least three nodes have
at least three monitors; see [10] for details. In static networks,
such a monitor placement is guaranteed to be sufficient and
optimal in the following sense.

Theorem 2: [10] Given a fixed network topology G, MMP
places the minimum number of monitors to identify G.

MMP can be implemented efficiently with a complexity of
O(|V]+|L]) for G = (V, L) [10]. The key step is to compute
bi/tri-connected components of G, which can be done in linear
time using graph decomposition algorithms in [19] and [20].

Key observations: MMP places two types of monitors:

o deterministically placed monitors: nodes with degree less
than three have to be monitors, as otherwise their neigh-
boring links are not measurable by simple paths;

o randomly placed monitors: MMP ensures at least three
nodes that are either separation vertices or monitors in
each bi/tri/1-connected component, but the exact monitor
locations can be arbitrary.

We will leverage these observations in deriving monitor place-
ment algorithms for dynamic networks.

IV. MONITOR PLACEMENT FOR DYNAMIC NETWORKS

A dynamic network may have multiple topologies during
its lifetime, represented by {G; : ¢ = 1,...,T}. Based on
the identifiability condition in Theorem 1, the problem of
robust monitor placement can be cast as follows: select a
minimum set of nodes M C V' as monitors such that for each
t = 1,...,T, the extended graph G ., constructed from
topology G; and monitors M is 3-vertex-connected.

Given the results for static networks (Section III), one can
guarantee identifiability for all the 7' topologies by applying

3A vertex v is a cut-vertex of G if removing v increases the number of
connected components in G.

4A vertex pair {u, v} is a 2-vertex cut of a biconnected component B if
removing {u, v} disconnects B.

SNote that [10] assumes the network to be connected; in general,
MMP should be applied to each connected component.

1735

(b)

Fig. 2. Monitor placement for two topologies (the optimal monitor placement
is {c, f, h}): (@) G1 (3-vertex-connected); (b) G2 (2-vertex-connected with a
2-vertex cut {d, e}).

MMP to compute a monitor placement M; for each G,
and then taking the union M = Uthl M;. Such a solution,
however, may select redundant monitors. For example, to
identify the topologies G1 and G5 in Fig. 2, MMP may select
monitors My = {a,b,c} for G1, and Ma = {¢, f,h} for G,
with a total of 5 monitors. However, by Theorem 1, M,
already identifies both G; and Go, i.e., two redundant monitors
are selected by MMP. This example illustrates the need of new
monitor placement algorithms that are specifically designed to
handle multiple topologies. In this regard, we outline a set of
solutions with different performance (wrt number of monitors)
and complexity.

A. One-Shot Placement

Intuitively, placing monitors to identify multiple topologies
is at least as complex as placing monitors to identify a
single topology. Interestingly, we show that this is achievable
by leveraging a special property of identifiable networks.
By Theorem 1, a network G that is identifiable under a
given monitor placement M remains identifiable after adding
links, because adding links maintains the 3-vertex-connectivity
of Ge,. Therefore, to identify topologies {G; = (V, L) :
t=1,...,T}, it suffices for the monitor placement to identify
their maximum common subgraph G, := (V] ﬂthl Ly),
referred to as the base graph. Since each G; can be generated
from G, by adding links, we have the following result.

Corollary 3: If a monitor placement M identifies the base
graph G, of {G; : t =1,...,T}, then it identifies each G;.

This result motivates a one-shot placement algorithm: first,
compute the base graph G; by identifying common links in all
topologies, and then apply MMP to G;,. Generally, one-shot
placement uses more than the minimum number of monitors;
however, it is very efficient and can be optimal in some cases
(see Claim 12).

Complexity: The base graph can be computed in
O(T min; |L¢|) time, and applying MMP to the base graph
takes O(]V| + miny |L¢|) time. The overall complexity of
one-shot placement is therefore O(|V'| + T ming |Ly|).

B. Incremental Placement

Alternatively, we can sequentially apply a variation of
MMP to each topology, which takes into account the existing
monitors to minimize the number of additional monitors.

The algorithm, named Incremental Minimum Monitor
Placement (IMMP), is presented in Algorithm 1. It differs
from MMP [10] in that it takes an additional input of existing
monitors My and only returns the newly selected monitors M, .
Specifically, given a subgraph D, let Vp denote all the nodes
in D, Sp the separation vertices in D, and Mp the monitors
at internal nodes (i.e., non-separation vertices) of D. Note

1736

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 3, JUNE 2017

Algorithm 1 Incremental Minimum Monitor Place-
ment (IMMP)
input : Current network topology G and existing
monitors My
output: Newly placed monitors M, s.t. M, U M,
identifies G
1 M, < {nodes with degree 1 or 2} \ Mo;
2 foreach connected component Cy, of G with at least 3
nodes do
partition Cj, into biconnected components 51, Bs, . . .;
foreach biconnected component B; with at least 3

nodes do
5 partition ; into triconnected components
6 foreach triconnected component T; do
7 if |S7,|+|M7;| <3 then
8 Mg — My U{(3 —|ST;| — |[M7;|) nodes

randomly selected from Vz, \ (S7, U M1,)};
if |Sg,| +|Mg,| <3 then
10 My — M, U{(3 — |58,
|Mpg,|) nodes randomly selected

from V3, \ (Sg;, U Mp,)};

u | if |Mg,| <3 then

12 M, — M, U{(3 — |M¢,|) nodes randomly
selected from Ve, \ Me, };

b=
ot

=

that Mp includes both existing and newly placed monitors
and can vary during monitor placement. IMMP first places
monitors at non-monitor nodes with only one or two neighbors
(line 1). It then decomposes the network into biconnected
and triconnected components (lines 3 and 5), based on which
it selects additional monitors if necessary such that each
tri/bi/1-connected component with at least three nodes has at
least three separation vertices/monitors (lines 8, 10, 12).

Based on the optimality of MMP (Theorem 2), we can show
that IMMP is optimal in the following sense.

Corollary 4: Given a network topology G and existing
monitors My, IMMP places a minimum set of additional
monitors M, such that My U M, identifies G.

The overall algorithm works as follows: for each
gt :gla"';gT (MO :Q])’

1) My —IMMP(G;, M;_1);

2) My« Mi_1 U Mgy.
Then M7y is guaranteed to identify Gy, ..., Gp.

Complexity: Since IMMP has the same complexity as MMP,
i.e., O(|V]| +|L¢|) for each G; [10], the overall complexity of

the incremental placement algorithm is O(T'|V |+ Zthl |L¢]).
Note that this analysis assumes that IMMP (lines 3 and 5) uses
the algorithms in [19] and [20] to compute the bi/tri-connected
components from scratch for each G;. We will later discuss
dynamic graph decomposition algorithms that can reduce the
complexity by reusing previous results if G; is structurally
similar to a previously decomposed topology (see Section VI).

Algorithm 2 Feasible Monitor Placement (FMP)
input : Network topology G
output: Monitor placement constraints F

1 foreach node v with degree 1 or 2 do

2 | add ({v}, 1) to F;

3 foreach connected component Cy, of G with at least 3
nodes do

4 | partition Ci, into biconnected components 51, B, . . .;
5 | foreach biconnected component B; with at least 3
nodes do
6 partition B; into triconnected components
T, T,. .
7 foreach triconnected component T; do
8 if |S7.| <3 then
9 | add (Vz, \ Sz,, 3—157,|) to F;
10 if |Sp,| <3 then
1 | add (Vs, \ Ss,, 3—58,]) to F;
12 | add (Vg,, 3) to F;

C. Joint Placement

Despite being locally optimal (Corollary 4), the overall
placement by the incremental algorithm is generally subop-
timal due to the lack of a joint consideration of all topologies.
Jointly considering all topologies is highly nontrivial, as each
topology can have exponentially many, equally optimal moni-
tor placements, corresponding to all combinations of possible
monitor locations within each bi/tri-connected component. The
brute-force strategy of enumerating all possible placements
for individual topologies to find a minimum union is clearly
inefficient. Our idea in addressing this issue is to decouple the
problem into two stages: (i) constraint characterization and
(i) monitor selection.

1) Constraints on Monitor Placement: Our key insight is
that all possible placements generated by MMP can be suc-
cinctly encoded into a set of constraints. Specifically, instead
of randomly picking one placement as in MMP, we record the
constraints on monitor placement in the form of set-integer
pairs F = {(S;, ki) : i =1,2,...}, where each S; C V is a
set of candidate monitors, and k; is the minimum number of
monitors selected from this set. For example, if MMP places
a monitor at a randomly selected node in S, we can represent
all possible placements by a constraint (.5, 1).

Given a topology G, these constraints can be com-
puted efficiently using an algorithm called Feasible Monitor
Placement (FMP), shown in Algorithm 2. FMP follows a
procedure similar to MMP, except that instead of selecting
specific nodes as monitors, it records the constraints on
where monitors should be placed such that G is identifiable.
Specifically, let Vp and Sp be defined as in Algorithm 1.
FMP generates one constraint for each node with only one
or two neighbors (line 2) to indicate that such nodes must
be monitors. It then decompose the network into biconnected
and triconnected components (lines 4, 6), based on which it
generates one constraint for each tri/bi/1-connected component
with at least three nodes to ensure that it has at least three
nodes that are separation vertices or monitors (lines 9, 11, 12).

HE et al.: ROBUST AND EFFICIENT MONITOR PLACEMENT FOR NETWORK TOMOGRAPHY IN DYNAMIC NETWORKS

We can show that the resulting constraints are both sufficient
and necessary for identifying G.

Lemma 5: Any monitor placement M C V identifies G if
and only if M satisfies the constraints 7 computed by FMP,
ie., |[IMN S,L| > k; for all (S“ kl) e F.

Discussion: It is possible that not all constraints are needed,
e.g., if the total number of monitors required by the tricon-
nected components within a biconnected component exceeds
the number of monitors required by the biconnected com-
ponent, then we do not need a separate constraint for this
biconnected component. We can avoid redundant constraints
by counting the number of monitors in each bi/tri/1-connected
component according to existing constraints (by mimicking
MMP) and adding a new constraint to F only if the current
number of monitors is not sufficient.

2) Constrained Monitor Selection: Given the constraints F
obtained by applying FMP to each topology G; (t =1,...,T),
the monitor placement problem is converted into a problem of
selecting a minimum subset M C V such that |M N S;| > k;
for all (S;, k;) € F. We refer to this problem as the
minimum hitting set problem (min-HSP) with input (V, F).
In the special case of k; = 1, it becomes the classic hitting
set problem (HSP). Because the constraints computed by
FMP are necessary and sufficient for achieving identifiability
(Lemma 5), we can obtain an optimal monitor placement by
solving the corresponding min-HSP optimally.

Theorem 6: Let F be the overall set of constraints com-
puted by applying FMP to each topology G; (t = 1,...,T).
Then the optimal solution to min-HSP(V, F) yields an optimal
(i.e., minimum) monitor placement for identifying Gy, . . ., Gr.

The challenge is that min-HSP is NP-hard since HSP
is NP-hard. Although given constraints F, the problem of
constrained monitor selection is a special case of min-HSP,
we show that it is still NP-hard by a reduction from HSP.

Theorem 7: The optimal monitor placement for arbitrary
topologies G; (t =1,...,T) is NP-hard.

Greedy approximation: In our problem, we can speed up
computation by first filtering out nodes that must be monitors
(i.e., nodes with degree less than three in at least one topology)
and then applying the greedy heuristic. For our problem, the
greedy heuristic works as follows: while there are unsatisfied
constraints, select the monitor that helps in satisfying the
maximum number of unsatisfied constraints, i.e., given the
current monitors M, select v as the next monitor such that v is
in the maximum number of sets among {S; : (S;, k;) € F,
|S; N M| < k;}. It can be shown that the greedy heuristic
achieves a logarithmic approximation as follows.

Theorem 8: The greedy heuristic for min-HSP(V, F)
achieves an approximation ratio of (1 + log|F]|), i.e., the
number of monitors selected by the greedy heuristic is at
most (1 + log|F]|) times larger than the minimum number
of monitors.

Complexity: Together, FMP and the greedy heuristic for
min-HSP provide a joint monitor placement algorithm. FMP
has the same complexity as MMP, which is O(|V| + |Ly|)
for each G; (t = 1,...,T) [10] if employing the static-graph
algorithms in [19] and [20] to compute the bi/tri-connected
components. As in IMMP, we can use dynamic-graph algo-

1737

Algorithm 3 Redundant Monitor Discovery (RMD)

input : Network topology G, monitors M that identify G
output: Monitor removal constraints R

1 foreach node v with degree 1 or 2 do

2 | add ({v}, 0) to R;

3 foreach connected component Cy, of G with at least 3
nodes do

4 | partition Cy into biconnected components By, B, . . .;

5 | foreach biconnected component B; with at least 3
nodes do

6 partition B; into triconnected components

7 foreach triconnected component T; do

8 if |S7,| <3 then

9 | add(MTJ,|MTJ|—3+|STJ|)tOR;

10 if |Sp,| <3 then

1 | add (Mp,, |Mp,| — 3+ [S5,|) to R;

12 | add (Mc,, |Mc,| —3) to R;

rithms discussed in Section VI to speed up computation for
t > 1. The greedy heuristic for min-HSP has complexity
O(T|V|?), as there are O(T'|V|) constraints and an O(|V|)-
complexity update upon satisfying each constraint (to compute
the number of unsatisfied constraints each candidate monitor
is involved in). Thus, the overall complexity is O(T|V|?).

D. Refinement of Placement

Due to the hardness of the optimal solution, the computed
monitor placement generally contains more than the minimum
number of monitors. A natural question is therefore how to
refine this placement by removing redundant monitors without
losing identifiability. As shown below, the problem of (redun-
dant) monitor removal can also be decoupled into two stages.

1) Constraints on Monitor Removal: The problem of
characterizing constraints on monitor removal is similar
to that of characterizing constraints on monitor selection
(Section IV-C.1), and thus can be solved by following similar
steps.

The algorithm, referred to as Redundant Monitor Discovery
(RMD), is summarized in Algorithm 3. Define Sp and Mp
as in Algorithm 1. Note that in contrast to Algorithm 1
where Mp varies during monitor placement, here Mp is
based on the given monitor placement and thus fixed. RMD
is analogous to FMP, except that it computes constraints for
removing monitors (lines 2, 9, 11, 12). Each constraint is also
represented by a set-integer pair (S;, k;), which means that
no more than k; monitors from .S; can be removed.

It is easy to verify that when removing monitors from a
monitor placement M that identifies G, the remaining monitors
satisfy the constraints computed by FMP if and only if the
removed monitors satisfy the constraints computed by RMD.
This duality immediately yields the following result.

Lemma 9: Given a monitor placement M that identifies G,
M \ M’ identifies G for any M’ C M if and only if M’
satisfies R computed by RMD, ie., |[M'NS;| < k; for all
(Si, k‘l) cR.

1738

Discussion: As in FMP, it is also possible for RMD to
generate redundant constraints. We can avoid this by remov-
ing redundant constraints before adding each new constraint,
i.e., when adding a constraint (S, k), all existing constraints
(S, k') with 8" C S and k' > k can be removed.

2) Constrained Monitor Removal: Given an initial place-
ment M, that identifies all G; (¢ = 1,...,T) and the
constraints R computed by applying RMD to each G; and M,
the problem of removing redundant monitors in My becomes
a problem of selecting a maximum subset M’ C M, such that
|M'N.S;| < k; for all (S;, k;) € R. We refer to this problem
as the maximum hitting set problem (max-HSP) with input
(Mpy, R). The duality between the minimum monitor selection
and the maximum redundant monitor removal implies an
alternative way of computing an optimal placement as follows.

Corollary 10: Let R be the overall set of constraints com-
puted by applying RMD to each of Gy, ..., Gy with an initial
placement My = V, and M’ be the optimal solution to max-
HSP(V, R). Then V \ M’ is an optimal monitor placement
for identifying Gi,...,Gr.

Unfortunately, max-HSP is again NP-hard. In fact, it is
exactly as hard as min-HSP because solving a min-HSP for
input (V, {(S;, k;) : i =1,2,...}) is equivalent to solving a
max-HSP for input (V, {(S;, |S:| —ki): i =1,2,...}).

Greedy approximation: We can apply a greedy heuristic
similar to the one used in Section IV-C.2: while there are
redundant monitors (i.e., monitors such that removing any one
of them does not violate any constraint), remove the redundant
monitor that is involved in the minimum number of constraints.
We bound the performance of this greedy heuristic as follows.

Theorem 11: The greedy heuristic for max-HSP(V, R)
achieves an approximation ratio of 1/|R]|, i.e., the number of
redundant monitors selected by the greedy heuristic is at most
|R| times smaller than the maximum number of redundant
monitors.

Complexity: Although max-HSP has the same complexity as
min-HSP on the same input, the actual complexity of monitor
removal depends on the size of the initial placement |Mj],
which can be much smaller than |V|. Specifically, RMD has
the same complexity as FMP, i.e., O(T|V| + >, |L4|) for
processing Gy, ..., Gp. The greedy heuristic for max-HSP has
complexity O(T'|V'|-| Mp]) to select from a size-| Mp| set under
O(T|V]) constraints. The overall complexity of RMD and
greedy max-HSP is therefore O(T|V'| - |Mo| + >, | L¢|).

Example: Consider a network with the topologies G; and Go
in Fig. 3. The one-shot placement first obtains the base
graph G, and then applies MMP to G, which may select
monitors M = {a,d, f,h,g}. Note that MMP is a ran-
dom algorithm; in this case, it may select ¢ instead of
d. The incremental placement first applies MMP to Gy,
which may select {b,c, f,h} as monitors, and then applies
IMMP to G, which may select additional monitors {a, g},
yielding M™ = {b,c, f,h,a,g}. The joint placement first
computes the constraints: 71 = {({a,b}, 1), ({a,b,c,d},?2),
({h}a 1)7 ({f7 hag}a 2)} for G1, and F> = {({a}a 1)7 ({9}7 1);
({c,d,e, f,g,h},2)} for Go. It then uses the greedy heuristic
to solve min-HSP for input (V, F; U F3), which yields
M = {a, g, h,b} (b may be replaced by c or d). The refined

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 3, JUNE 2017

a f
£ d g
Ia c f I c f
b by x h
d g d g
a
caal

DG

biconnected
components
- =
Q
mé
S -
>

x>

ee
(a

ted

components

iconnec

tri

--- virtual link g

(b) (©)

Fig. 3. Example of placement algorithms (an optimal monitor placement
is {a,d, g, h}): (a) G1 and its decomposition; (b) G2 and its decomposition;
(c) base graph G, of G1 and G2 and the decomposition of G,.

placement based on initial placement V' generates the same
result. Since G; already requires four monitors, both the joint
and the refined placements are optimal in this example.

V. OPTIMALITY CONDITIONS

We have seen from Theorem 7 that, unlike the monitor
placement problem in a static network, optimal monitor place-
ment in a dynamic network is generally hard to compute. This
motivates us to identify conditions under which the problem
can be solved optimally.

A. Optimality Condition for One-Shot Placement

A lower bound on the number of monitors needed by a
robust placement is the maximum number of monitors placed
by MMP in any one of the topologies. Therefore, if the number
of monitors needed to identify the base graph G, matches the
lower bound, the one-shot placement is optimal.

Claim 12: If 3t € {1,...,T} such that the number of
monitors placed by MMP in G; equals the number of monitors
placed by MMP in Gy, then the one-shot placement is optimal.

Remark: Intuitively, this condition is satisfied when the link
sets of different topologies have a (roughly) nested structure.
A special case of this condition is when G, = G; for some ¢,
i.e., Gy is a subgraph of all the other topologies G for
te{l,...,T}\t.

B. Optimality Condition for Incremental Placement

Generally, the performance of incremental placement is sen-
sitive to the order of applying IMMP to different topologies.
In a special case where all topologies are 3-vertex-connected,
however, the order no longer matters, because there is only
one triconnected component in the network, and we know
by MMP [10] that we only need three monitors in each G,
arbitrarily placed. This automatically implies the following.

Claim 13: If Gy,...,Gr are all 3-vertex-connected, then
incremental placement is optimal regardless of the order of
processing the topologies.

Remark: Although under this condition, incremental place-
ment degenerates into MMP (a monitor placement that iden-
tifies any G; identifies all the other topologies), it is different
from the one-shot placement. In particular, the base graph
of multiple 3-vertex-connected graphs may not be 3-vertex-
connected, and thus the one-shot placement may need more
than three monitors.

HE et al.: ROBUST AND EFFICIENT MONITOR PLACEMENT FOR NETWORK TOMOGRAPHY IN DYNAMIC NETWORKS

Fig. 4.
components By, ..

A network with three biconnected (and also triconnected)
., Bs.
b

C. Optimality Condition for Joint Placement

As explained in Section IV-C.2, the difficulty in solving
the monitor placement problem optimally is caused by the
hardness of min-HSP. Therefore, any condition that allows
min-HSP to be solved optimally (in polynomial time) is an
optimality condition for a (polynomial-time) joint placement
algorithm. To this end, we establish a condition for solv-
ing min-HSP that generalizes a well-known condition for
solving HSP.

1) Equivalent Formulation: It is well known that HSP is
equivalent to the set cover problem (SCP). Naturally, min-HSP
can also be represented by a variation of SCP, known as the set
multi-cover problem (SMCP) [27]. Given an input (U, &) for
min-HSP, where £ = {(S;, k;) : S; C U} means that at least
k; items must be selected from .S;, we can construct an input
(U, €) for SMCP, where U = £ specifies each “item” S; and
its minimum frequency of coverage k;, and € = {S. : e € U}
specifies the “sets” used to cover S;’s (Se := {S; : e € S;}).
The min-HSP is equivalent to SMCP that selects the minimum
number of sets & C &£ to cover each S; at least k; times.
We will work on SMCP for ease of presentation.

SMCP is NP-hard and can only be approximated within a
factor of (1 + max.cy log|S.|) by the greedy heuristic [28].
For inputs with certain properties as shown below, however,
SMCP can be solved optimally in polynomial time.

2) Existing Optimality Condition: It is known that SCP is
polynomial-time solvable when its input satisfies a condition
known as the consecutive ones property (C1P) [29]. In words,
a SCP has CIP if there is a permutation of the items such
that each set covers a set of consecutive items. It can be
shown that SMCP is also polynomial-time solvable under
C1P. Specifically, under CIP, the constraint matrix for the
integer linear programming (ILP) representation of SMCP is
totally unimodular [29], and thus the linear programming (LP)
relaxation gives an integral solution which is optimal.

This condition is, however, too strong. For example, even
the SMCP corresponding to placing monitors in a single
topology can violate C1P. Consider the network in Fig. 4,
where the monitor placement constraints computed by FMP
are {(Bi, 2), (B2, 1), (Bs, 2), (V, 3)} (B; denotes the set
of internal nodes in component B; for ¢ = 1,...,3). Since
{B1, V}, {Ba, V}, and {B3, V} all contain common nodes,
there is no permutation of {By, Ba, B3, V'} such that the
sets containing a given node are always consecutive, i.e., the
corresponding SMCP violates C1P. However, we know that
the optimal monitor placement in this case is polynomial-time
solvable (by MMP).

3) Generalized Optimality Condition: Below, we give a
more general condition for solving SMCP. Our condition is
motivated by the following observation: for an item belonging
to nested sets, i.e., each set is a subset of another, covering it
by the set with the largest cardinality is always optimal as this

1739

set maximizes the coverage of other items. This obsrevation
inspires the following condition.

Theorem 14: 1f the items can be represented by nodes in
a rooted tree such that each set covers a set of consecutive
nodes along a leaf-to-root path in the tree, then SMCP (and
the corresponding min-HSP) is polynomial-time solvable.

We prove this result by constructing an algorithm that solves
SMCP optimally under the above condition. Let Z = {(e, k) :
e € U} denote the items and their required frequency of
coverage, and £ = {S; : S; C U} the sets. The algorithm,
referred to as Leaf-based Greedy Cover (LGC), works as
follows: while 3 a non-sufficiently covered item (i.e., e such
that the number of selected sets covering e is less than k),

1) for an arbitrary, non-sufficiently covered leaf item® e,
select the set S that covers the most non-sufficiently
covered items among sets covering e;

2) update the remaining frequency of coverage required by
each item and the remaining sets.

The idea of the proof is to show that under the condition in
Theorem 14, LGC is optimal; see the proof in Appendix A.

Translated back to the joint placement problem, the condi-
tion in Theorem 14 requires that the sets of candidate monitors
computed by FMP be representable by nodes in a rooted tree
such that only consecutive sets on the same leaf-to-root path
may overlap. One sufficient condition is as follows.

Corollary 15: Let F = {(S;, ki), i = 1,2,...} be the
constraints computed by FMP for {G1,...,Gr}. If for any
i # j, S; and S; are either disjoint or nested (one is a
subset of the other), then the optimal monitor placement for
{G1,...,Gr} can be computed in polynomial time.

Alternatively, the result of Corollary 15 can be proved using
the theory of minimizing a monotone concave cost function
under laminar covering constraints [30]. Specifically, our cost
function (number of monitors) is linear, and our constraints
S;’s form a laminar family under the condition in Corollary 15.
Thus, we can apply the algorithm in [30] (for F3) to select
monitors optimally in O(|V|log? |V]) time.

Remark: A special case satisfying the condition in
Corollary 15 is that of placing monitors in a single topology,
where S;’s are internal nodes in tri/bi/1-connected components
of the topology. In this sense, Corollary 15 provides an
explanation on why computing the optimal monitor placement
for a single topology is easy (solved by MMP) but computing
that for multiple topologies is generally hard. In general,
this condition holds if there is only splitting or merging of
components during topology changes. For example, in Fig. 2,
Gy contains a single triconnected component that is split into
two in Gy, and the monitor placement constraint is F =
{{a,b,c},1),({f,9.h},1),({a,b,c.d,e, f,g,h},3)}, which
satisfies the condition in Corollary 15.

VI. EFFICIENT IMPLEMENTATION BY DYNAMIC
GRAPH DECOMPOSITION
At the core of the monitor placement algorithms is the com-
putation of bi/tri-connected components in dynamic graphs.

SPrecisely, e is such that e is not sufficiently covered, but all items below
e in the rooted tree are sufficiently covered.

1740

Although one can apply the graph decomposition algorithms
developed for static graphs in [19] and [20] to compute
these components from scratch for each topology, such an
approach may incur redundant computation if some topologies,
especially the consecutive ones, share similar structures. In this
section, we investigate the use of dynamic graph algorithms to
speed up the computation by reusing previous decomposition
results. Here we use “vertex/edge” instead of “node/link” in
the convention of graph algorithms.

A. Existing Solutions

For biconnected decomposition, [22] has proposed a fully
dynamic algorithm to maintain biconnected components upon
edge insertion/deletion in O(log® [V'|) amortized time per
update. For triconnected decomposition, however, only par-
tially dynamic algorithms exist. Specifically, [23] proposes an
algorithm based on a data structure called SPQR-tree to main-
tain the triconnected components upon edge/node insertion in
O(|V]log|V| + k) time per k updates. A similar algorithm
based on a data structure called cycle tree is proposed in [24],
which has a complexity of O(|V| + ka(k, |V])) for inserting
k edges into an empty graph of |V/| vertices (a(|L|, |V]) is
the inverse Ackermann function).

What is missing is an algorithm to update triconnected
decomposition under edge deletion (which also handles the
case of node deletion as discussed in Section VII-C). In the
sequel, we present such an algorithm, which together with
the algorithms handling edge insertion in [23], [24] forms a
first fully dynamic algorithm for triconnected decomposition.
As in [23], [24], we focus on the deletion of a single edge,
which can be repeated to handle the deletion of multiple edges.

B. Unique Representation of Triconnected Decomposition

Although triconnected components are separated from each
other by cut-vertices and 2-vertex cuts, not all subgraphs
separated by these satisfy Definition 2 for £k = 3. To fix
this issue, an iterative procedure is proposed in [10] to add
virtual edges between vertices in 2-vertex cuts, which results
in a non-unique set of triconnected components that depend
on the order of adding virtual edges. We avoid such ambiguity
by introducing another type of component called polygon.

Definition 3: Given a triconnected decomposition of G,

¢ two triangle components are combinable if they share a
virtual edge and no other component shares this edge;

« after combining all combinable triangles (by removing
the shared virtual edges), each component formed by one
or more triangles is a polygon.

For example, subgraph D in Fig. 8 (a) is a polygon
formed by combining four triangles. Note that a triangle is
also considered a polygon. Since polygon vertices are either
degree-2 vertices (which must be monitors) or separation
vertices (which do not need to be monitors), for the application
of monitor placement, it suffices to find the polygons and
the triconnected components that are not triangles. In the
sequel, we simply refer to triconnected components that are
not triangles as “triconnected components”. It has been shown

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 3, JUNE 2017

G-l(vy,v5)

a0 (*)

S T = (D
(a)

G-l(vy,v,)

G
oD =D
(b)

Fig. 5. Remove an edge from a bond: (a) not generating isolated vertex,

(b) generating isolated vertex.

Gl(v,w)

Fig. 6. Remove an edge from a triconnected component with more than
three vertices.

in Lemma 2 of [20] that the decomposition of a graph into
such triconnected components and polygons is unique.’

C. Observations

We start with several observations that guide our algorithm
design. The correctness of these observations will be justified
later. Suppose that edge [(v1, v2) between vertices v; and vo
is deleted. Then depending on which components (v, vs)
belongs to, we have the following observations.

Observation A: If [(v1,v2) is in a bond (see Fig. 5), then
the connected component containing the edge is split into two
connected components and the decomposition within each new
connected component remains the same. Note that deleting
I(v1,v2) may create isolated vertices (e.g., v; in Fig. 5 (b))
which form trivial triconnected components.

Observation B: If [(vy,v2) is in a triconnected component
7 with more than three vertices, then the deletion of (v, v2)
will not cause any change if it is on the boundary of 7
(i.e., {v1, vo} forms a 2-vertex cut), but may cause 7 to be
split into multiple triconnected components/polygons if it is
in the interior of 7 (see Fig. 6). Meanwhile, decomposition
outside 7 remains the same.

Observation C: If neither Observation A nor Observation B
applies, then [(v1,v2) must reside in one or more polygons.
We have the following subcases:

1) If I(vy,vy) appears in three or more polygons, then the
triconnected decomposition remains the same;

2) If l(v1,v2) appears in two and only two polygons,
then the polygons are combined into a new polygon
(see Fig. 7);

3) Ifl(vy,v2) is in one and only one polygon D (see Fig. 8),
then the removal of [(vy,vy) destroys D. If D contains
an edge !’ # [(v1,v2) that is not shared with any other
component, then !’ forms a new triconnected component
(a bond); moreover, if D contains a virtual edge that is
no longer needed (e.g., (w3, w,) in Fig. 8 (a)), then
this virtual edge also needs to be removed, which may
cause updates to the components containing the edge

"Note that polygons are considered a type of “triconnected components”
in [20].

HE et al.: ROBUST AND EFFICIENT MONITOR PLACEMENT FOR NETWORK TOMOGRAPHY IN DYNAMIC NETWORKS

G Gl(w,w)
T

T, B —) d
2 Vi

Remove an edge belonging to only two polygons.

Gllvyv)) - B.Y,

(b)

Fig. 8. Remove an edge belonging to only one polygon. (a) Before removing
I(v1,v2). (b) After removing I(v1,v2).

according to Observations B-C (1-2) (e.g., splitting 73
in Fig. 8 (a) into 77 and 73’ in Fig. 8 (b)).
Observations A-C cover all possible cases of deleting a
single edge. In the sequel, we will justify these observations
and develop efficient algorithms to update the triconnected
components/polygons according to these observations.

D. Triconnected Decomposition After Edge Deletion

Let ® denote the set of triconnected components/polygons
of G. In implementation, it suffices to record the internal and
the separation vertices in each component, which together
with the adjacency matrix of G specify the structure and the
inter-connectivity of all components. We propose Algorithm 4,
Triconnected decomposition after Edge Deletion (TED),
to update ® when a single edge I(v1, v2) is removed. Depend-
ing on the location of the edge, there are three cases, each
corresponding to one observation in Section VI-C:

(1) I(v1,v2) is in a bond (Observation A). Since a bond is a
degenerate triconnected component, deleting [(vy, v2) deletes
the entire component as in line 5. Moreover, if v; (i = 1, 2)
becomes isolated, then v; forms a new degenerate triconnected
component representing a single vertex, handled by line 3.

(2) {(v1,v2) is in a triconnected component T with more
than three vertices (Observation B). If {v1,v2} is a 2-vertex
cut, then the deletion of [(v1,v2) has no effect on the tricon-
nected decomposition as it will be replaced by a virtual edge,
and hence TED ignores this case. Otherwise, as illustrated
by Fig. 6, 7 may be split into multiple triconnected compo-
nents/polygons. To update the triconnected decomposition, we
first apply the algorithm in [20] to compute the triconnected
decomposition of 7 — I(v1,v2), and then replace 7 by the
triconnected components/polygons of 7 — I(vy,v2) (line 7).
Furthermore, the decomposition of 7 — [(v1,v2) may create
new polygons. If such a polygon shares a virtual edge with
one and only one other polygon (outside 7), then according to
Definition 3, we need to remove the virtual edge and combine
the polygons. This is handled by calling an auxiliary algorithm,
Combine Polygon after Edge Deletion (CPED), presented
in Algorithm 5 (line 8).

1741

Algorithm 4 Triconnected decomposition after Edge
Deletion (TED)
input : Triconnected decomposition ® of G and deleted
edge [(v1,v2)
output: Triconnected decomposition &’ of G — I(v1,v2)
1 if I(v1,v2) is in a bond B then

2 | if v (i=1, 2)is isolated in G — l(v1,v2) then

3 ® — replace B by a degenerate component
representing v;;

4 | else

5 | ® «— delete B;

6 else if [(v1,v2) is in a triconnected component T with
more than three vertices and {v1,v2} is not a 2-vertex
cut then

7 | ® « replace 7 by triconnected components/polygons

of T — l(v1,v2);

® — CPED(®, {2-vertex cuts of 7 });

9 else if [(v1,v2) is in two and only two polygons Dy and
D5 then

10 | ® « combine D; and D, into a new polygon;

u else if [(v1,v2) is in one and only one polygon D with

vertices wy, ...,w, (w1 = v, w, = vz) then

12 | ® « delete D;

=)

13 | foreachi=1,2,...,u0—1 do

14 if {w;,w;y1} is a 2-vertex cut then

15 if {w;, w41} is only shared by D and a
triconnected component T; and l(w;, w; 1) is a
virtual edge then

16 ® «— replace 7; by triconnected

components/polygons of 7; — l(w;, wiy1);

17 ® «— CPED(®, {2-vertex cuts of 7;});

18 else

19 | ® — CPED(®, {w;,wit1}):

20 else

21 ® «— create a new triconnected component for
the bond formed by (w;, w;t+1);

22 return &’ « updated ®;

(3) {(v1,v2) is in one or more polygons (Observation C).
There are three subcases: (i) {(v1, v2) resides in three or more
polygons (Observation C-1). In this case, even if [(vy,vs)
is removed, v; and vy are still connected by a virtual edge,
and hence the triconnected decomposition remains unchanged.
(ii) I(v1,v2) resides in two polygons (Observation C-2).
In this case, as illustrated in Fig. 7, removing I(v1, v2) creates
two polygons sharing a virtual edge (i.e., [(v1,v2) becomes
virtual), which according to Definition 3 need to be combined
into a single polygon (line 10). (iii) I(vy,v2) resides in one
and only one polygon D (Observation C-3). This is the most
complicated case, detailed below.

As Fig. 8 illustrates, removing [(vi,v2) destroys D and
splits the biconnected component B containing D into mul-
tiple biconnected components B; (: = 1,...,u — 1), each
corresponding to a subgraph of B separated from D by an
edge [(w;, wi+1) in D (wy, . .., w,, are vertices in D defined in
line 11). Accordingly, line 12 deletes D from the triconnected

1742

Algorithm 5 Combine Polygon after Edge Dele-
tion (CPED)
input : Triconnected decomposition ¢ and a set of
2-vertex cuts F' that are possibly between
combinable polygons
output: Triconnected decomposition after combining
polygons
1 foreach {w;,w;41} in F do
2 | if l(w;, wit1) is a virtual edge and is only shared by
two components Dj1, Djo that are both polygons then
3 | ® « combine D;; and D;, into a new polygon;
4 return updated P;

decomposition, and lines 13-21 update the decomposition of
each B; (i = 1,...,p— 1). If {w;,w;41} is not a 2-vertex
cut, then !(w;, w;+1) must form a new bond, which creates
a degenerate triconnected component (line 21). Otherwise, if
l(w;, w;+1) is a virtual edge, then this edge may also disappear
with the removal of [(vq,v2). Specifically, as observed in
Section VI-B, a virtual edge must be shared by at least
two components. Therefore, if !(w;,w;1+1) is only shared by
D and another component 7; (which must be triconnected),
then destroying D removes this edge. In this case (tested by
line 15), line 16 recomputes the triconnected decomposition
for the affected component (by the algorithm in [20]). Note
that as in Case (2), the updated decomposition may create pairs
of polygons separated by virtual edges of 7;, in which case the
auxiliary algorithm CPED is used to combine these polygons
(lines 17). If {(w;, w;+1) is only shared by D and two other
polygons, then destroying D causes these two polygons to be
combined, again handled by CPED (line 19).

The correctness of Algorithm 4 is guaranteed by the fol-
lowing theorem.

Theorem 16: For any graph G and edge l(vi, v2) in G,
given the triconnected decomposition of G, TED returns the
triconnected decomposition of G — I(vy,v2).

Complexity: The complexity of Algorithm 4 varies case by
case: (i) If the deleted edge [(v1, v2) is shared by at least three
components or two components of which at least one is tri-
connected, then no update is performed. (ii) If [(v1, v2) is in a
bond or shared by exactly two polygons, then simple update is
performed (lines 2-5 or line 10) in O(1) time. (iii) If {(vy, v2)
lies within a triconnected component 7, then TED recomputes
triconnected decomposition of 7 (lines 7-8), which takes
O(|Vr|+|L7|) time [20]. (iv) If [(vy, v2) is only contained by
a polygon D, then TED performs various updates on D and its
neighboring components (lines 12-21), the most complicated
update being for a triconnected component 7; separated from
D by a virtual edge (lines 16-17), which takes O(|V7, |[+|L 1)
time similarly to case (iii). The overall complexity in this case
is O ! (V| + |Lz|) = O(Vis| + | Ls|), where B is the
biconnected component containing /(vy, v2). Thus, the worst-
case complexity of TED is O(|Vg| + |Lg|).

Example: Fig. 8 illustrates one example of how Algorithm 4
updates the triconnected decomposition after deleting edge
l[(v1,v2), which is handled by lines 12-21 of Algorithm 4.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 3, JUNE 2017

In this example, virtual edge I(ws,w,) is removed after
deleting I(v1, v2), but virtual edge (w1, w2) is not (assuming
all 7;’s are triconnected components).

VII. HANDLING PRACTICAL CHALLENGES

In practice, a monitoring system may face additional chal-
lenges. For example, what if we encounter an unpredicted
topology at runtime? What if the computed placement requires
too many monitors? What if the set of nodes can also change?
We now discuss each of these issues and potential solutions.

A. On-Demand Monitor Placement

In case of unpredictable topology changes, existing monitors
may not be able to identify all the links. One way to ensure
identifiability is to employ additional nodes as temporary mon-
itors, which only participate in taking measurements but not in
other functions such as storage or processing of measurements.
To distinguish from temporary monitors, we refer to monitors
placed during network planning as persistent monitors. Given
the current topology G; and the persistent monitors My (placed
by the algorithm in Section IV), we can apply IMMP given in
Algorithm 1 to select temporary monitors as needed to identify
all the links in Gy, and this is guaranteed to select the minimum
number of temporary monitors by Corollary 4.

B. Bounded Number of Monitors

Given a bounded number of persistent monitors, we gen-
erally have to employ temporary monitors to achieve iden-
tifiability at runtime. For system stability, it is desirable
to minimize the number of times we change node status
(monitor—non-monitor or non-monitor—monitor). When the
topology changes from G, to G;y1, the minimum number of
nodes with changed status is upper-bounded by the minimum
number of extra monitors (in addition to persistent monitors) to
identify both G; and Gy 1, which is further upper-bounded by
the minimum number of extra monitors to identify Gy, ..., Gp.
The latter upper bound is minimized when the persistent
monitors all belong to the optimal robust monitor placement.
This observation suggests that we can adapt the algorithms in
Section IV for placing a bounded number of persistent mon-
itors by terminating the algorithms after selecting sufficient
monitors.

C. Arrival/Departure of Nodes

We have limited topology changes to addition/removal of
links, while in practice there may also be arrival/departure
of nodes. We can handle arrivals by always selecting the
newly arrived nodes as monitors; we can handle departures
by treating each departure as removal of all the links incident
to the departed node. It is easy to verify that this approach
guarantees identifiability under node changes; we leave further
optimization to future work.

VIII. PERFORMANCE EVALUATION

In this section, we first evaluate the efficiency of the
proposed dynamic graph decomposition algorithm TED
(Algorithm 4) in comparison with the best existing algorithm

HE et al.: ROBUST AND EFFICIENT MONITOR PLACEMENT FOR NETWORK TOMOGRAPHY IN DYNAMIC NETWORKS

TABLE 11
DYNAMIC TOPOLOGIES FOR TAXI NETWORK (86 NODES)

range (m) #topology changes avg #links avg #components
500 479 95.1 31.3
1000 479 334.3 6.3
1500 479 694.8 2.5
2000 479 1106.5 1.5
2500 479 1528.3 1.1
3000 479 1934.0 1.0
3500 479 2286.8 1.0
TABLE III

DYNAMIC TOPOLOGIES FOR TACTICAL NETWORK (90 NODES)

range (m) #topology changes avg #links avg #components
15 399 325.9 17.3
75 293 539.9 10.4
225 196 1027.7 4.2
375 387 1256.1 2.0
450 380 1607.5 1.5
525 399 2191.1 1.1

that can handle edge deletions.® We then evaluate the proposed
monitor placement algorithms (Section IV) based on dynamic
topologies generated from mobility traces.

A. Performance of Dynamic Graph Decomposition

We evaluate TED against the best known algorithm [20] that
can handle edge deletions on randomly generated dynamic
topologies undergoing edge deletions. See Appendix B (in
supplementary file) for details. The results show that TED
outperforms the existing solution for a wide range of settings,
and the improvement is the most significant for incremental
changes in sparse graphs.

B. Performance of Monitor Placement Solutions

We now evaluate the proposed solutions on dynamic topolo-
gies generated from mobility traces. We use two datasets:
(1) taxi cab traces from San Francisco,’ from which we select
traces of 86 nodes over a 8-hour period with location updates
roughly every minute; (2) mobility traces generated by Rom-
mie Hardy and Anjuli Smith at the Network Science Research
Laboratory of the US Army Research Laboratory [31], which
contain traces of 90 nodes belonging to 7 groups during
a 400-second tactical operation with location updates
every second.' Dataset (1) represents independent node
mobility, and dataset (2) represents grouped node mobility.

We generate dynamic topologies from each trace by assum-
ing a communication range and connecting two nodes by a
link whenever they are within the range. See Tables II and III
for a summary of the generated topologies. We see that both
networks experience hundreds of topology changes.

Comparison of Algorithms: We compare the performance of
the proposed robust monitor placement algorithms in terms of
the number of monitors; see Fig. 9. We use greedy heuristics

8The case of edge insertions is handled by existing algorithms in [23], [24]
and thus not evaluated here.

Traces are available at: http://crawdad.org/epfl/mobility/.

10The anonymized traces used for this evaluation are available at: https:/
www.dropbox.com/s/bkhdifos9wzjwln/trace_90node_401second.txt?dl=0

1743

© o
-shot
- e s . o
o I incremental Eliont
Ejoint ® [Jrefined
g Erefined 2 [Jlower bound
L [Tlower bound Sw
= =
S g
3 gy #
2
2
0 o
nn 500 1000 1500 2000 2500 3000 3500 4000 nn 15 75 225 375 4125 450 4875 525 600
range range
(a) (b)
Fig. 9. Performance comparison under varying communication range.

(a) taxi. (b) tactical.

#monitors
1]
#changes
meeeeeed

=

o 10 2 3 4 s 60 70 80 O 10 20 3 4 50 6 70 80

#persistent monitors #persistent monitors
(a) (b)

Fig. 10. Varying persistent monitors (taxi network, range = 1500 m).
(a) #monitors. (b) #changes.

2 .
1 - j:r
0 1 -
@ f T * Bos :
2 =3 i
c H 2 '
2 i gl 0
*® 10 H '
H 1 . -
. | ! H : :
h h
2 4 & 5 0 12 1w 1 15 2 o s 4 e 5 % w e e m
#persistent monitors #persistent monitors
(a) (b)
Fig. 11. Varying persistent monitors (tactical network, range=225 m).

(a) # monitors. (b) # changes.

to solve the associated hitting set problems and the result
of one-shot placement as the initial monitor set for refined
placement. We also evaluate a lower bound on the number
of monitors by computing the maximum number of monitors
placed by MMP in any single topology. As expected, the
one-shot placement algorithm uses the most monitors and
the refined placement algorithm uses the fewest. Although
incremental placement works well in these cases, we see that
it can be improved by joint/refined placement. Note that the
joint/refined placement here is suboptimal due to the greedy
heuristics. Comparing the two networks, we see that as the
taxi network has very different topologies during its lifetime, it
requires a large number of monitors to maintain identifiability,
while the tactical network contains subnets with relatively
stable topologies and thus requires fewer monitors.

Varying Number of Persistent Monitors: Fig. 10-11 show
the results when we bound the number of persistent mon-
itors and place temporary monitors as needed to achieve
identifiability, where the persistent monitors are randomly
selected from monitors placed by the refined placement algo-
rithm. To evaluate the cost of monitor adaptation, we count
the number of changes in node status, i.e., a non-monitor
becomes a temporary monitor or a temporary monitor becomes
a non-monitor. Fig. 10 (a) shows the median (red bar),

1744

#temporary monitors

#temporary monitors

L

0 50 100 150 200 250 00 350 400 450 500 0 50 100 150 200 250 300 350 400

time (min) time (sec)
(@ (b)
Fig. 12. Number of temporary monitors (averaged over 10 Monte

Carlo runs) needed to achieve identifiability under prediction error. (a) taxi
(range = 1500 m). (b) tactical (range = 225 m).

25/75-th percentile (box), and 5/95-th percentile (whisker) of
the number of (both persistent and temporary) monitors over
all topologies, and Fig. 10 (b) shows the corresponding values
for the number of node status changes. The results show a
clear tradeoff between the cost of monitors and the cost of
adaptation, controlled by the number of persistent monitors.

Impact of Prediction Error: To evaluate how well our place-
ment algorithms perform when input topologies contain errors,
we add i.i.d. zero-mean Gaussian noise with variance o2
to node locations (x/y-coordinates) and treat the resulting
topologies as the new ground truth; the process is repeated for
multiple Monte Carlo runs. Meanwhile, the topologies com-
puted from the original trace are provided to a monitor place-
ment algorithm (refined placement) as predicted topologies.'!
We evaluate the robustness of the resulting placement by:
(i) testing whether the placement achieves identifiabil-
ity for each newly generated topology, and (ii) if not,
computing the number of temporary monitors needed to
achieve identifiability. As shown in Fig. 12, our monitor
placement is highly robust to prediction error, requiring little
help from temporary monitors even if the error in node location
prediction'? is as large as 1/3 of the communication range.
In fact, our placement achieves identifiability (i.e., not requir-
ing any temporary monitor) for 0.95 fraction of time for the
taxi network and 0.82 fraction of time for the tactical network
(not shown).

IX. CONCLUSION

We have studied the problem of placing the minimum
number of monitors to identify additive link metrics from end-
to-end measurements in the presence of topology changes.
Unlike existing solutions that consider a single topology,
we want to simultaneously identify multiple topologies.
By casting the problem as a generalized hitting set problem,
we show that the optimal placement is NP-hard, but can be
approximated to a logarithmic factor by the greedy heuristic
and solved exactly in several special cases. We also develop
a dynamic graph decomposition algorithm with sublinear
complexity that assists the monitor placement algorithms but
can also be used independently. Our evaluations on realistic
dynamic topologies verify the efficiency and the robustness of
the proposed solution.

"This is equivalent to treating the original topologies as ground truth and
the modified topologies as estimates.

2The value of o is basically the root-mean-squared error (RMSE) of the
maximum likelihood estimate of node locations.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 3, JUNE 2017

[1]
[2]

[4]
[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

(23]

[24]

[25]

REFERENCES

T. He et al., “Robust monitor placement for network tomography in
dynamic networks,” in Proc. IEEE INFOCOM, Apr. 2016, pp. 1-9.

Y. Vardi, “Network tomography: Estimating source-destination traf-
fic intensities from link data,” J. Amer. Statist. Assoc., vol. 91,
pp. 365-377, 1996.

A. B. Downey, “Using pathchar to estimate internet link characteristics,”
in Proc. ACM SIGCOMM, 1999, pp. 241-250.

G. Jin, G. Yang, B. R. Crowley, and D. A. Agarwal, “Network character-
ization service (NCS),” in Proc. IEEE HPDC, Aug. 2001, pp. 289-299.
E. Lawrence, G. Michailidis, V. N. Nair, and B. Xi, “Network tomogra-
phy: A review and recent developments,” in Frontiers Statistics. London,
U.K.: Imperial College Press, 2006, pp. 345-364.

O. Gurewitz and M. Sidi, “Estimating one-way delays from cyclic-
path delay measurements,” in Proc. IEEE INFOCOM, Apr. 2001,
pp. 1038-1044.

Y. Chen, D. Bindel, H. Song, and R. H. Katz, “An algebraic approach
to practical and scalable overlay network monitoring,” in Proc. ACM
SIGCOMM, 2004, pp. 55-66.

A. Chen, J. Cao, and T. Bu, “Network tomography: Identifiability and
Fourier domain estimation,” in Proc. IEEE INFOCOM, May 2007,
pp. 1875-1883.

A. Gopalan and S. Ramasubramanian, “On identifying additive link
metrics using linearly independent cycles and paths,” IEEE/ACM Trans.
Netw., vol. 20, no. 3, pp. 906-916, Jun. 2012.

L. Ma, T. He, K. K. Leung, A. Swami, and D. Towsley, “Inferring link
metrics from end-to-end path measurements: Identifiability and monitor
placement,” IEEE/ACM Trans. Netw., vol. 22, no. 4, pp. 1351-1368,
Aug. 2014.

M. Zhao and W. Wang, “Analyzing topology dynamics in ad hoc
networks using a smooth mobility model,” in Proc. IEEE WCNC,
Mar. 2007, pp. 3279-3284.

1. W. Ho, K. K. Leung, and J. W. Polak, “Stochastic model and connec-
tivity dynamics for VANETS in signalized road systems,” IEEE/ACM
Trans. Netw., vol. 19, no. 1, pp. 195-208, Feb. 2011.

A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and
C. Diot, “Characterization of failures in an IP backbone,” in Proc. IEEE
INFOCOM, Mar. 2004, pp. 2307-2317.

Y. Bejerano and R. Rastogi, “Robust monitoring of link delays
and faults in IP networks,” in Proc. IEEE INFOCOM, Oct. 2003,
pp. 1092-1103.

R. Kumar and J. Kaur, “Practical beacon placement for link monitoring
using network tomography,” IEEE J. Sel. Areas Commun., vol. 24,
no. 12, pp. 2196-2209, Dec. 2006.

Y. Gao et al.,, “Scalpel: Scalable preferential link tomography based
on graph trimming,” [EEE/ACM Trans. Netw., vol. 24, no. 3,
pp. 1392-1403, Jun. 2016.

L. Ma, T. He, K. K. Leung, A. Swami, and D. Towsley, ‘“Monitor
placement for maximal identifiability in network tomography,” in Proc.
IEEE INFOCOM, May 2014, pp. 1447-1455.

W. Ren and W. Dong, “Robust network tomography:s-
identifiability and monitor assignment,” in Proc. IEEE INFOCOM,
Apr. 2016, pp. 1-9.

R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM J.
Comput., vol. 1, no. 2, pp. 146-160, 1972.

J. E. Hopcroft and R. E. Tarjan, “Dividing a graph into triconnected
components,” J. Comput., vol. 2, pp. 135-158, Sep. 1973.

D. Eppstein, Z. Galil, G. F. TItaliano, and A. Nissenzweig,
“Sparsification—A technique for speeding up dynamic graph algo-
rithms,” J. ACM, vol. 44, no. 5, pp. 669-696, Sep. 1997.

J. Holm, K. de Lichtenberg, and M. Thorup, “Poly-logarithmic deter-
ministic fully-dynamic algorithms for connectivity, minimum spanning
tree, 2-edge, and biconnectivity,” J. ACM, vol. 48, no. 4, pp. 723-760,
2001.

G. D. Battista and R. Tamassia, “On-line maintenance of tricon-
nected components with SPQR-trees,” Algorithmica, vol. 15, no. 4,
pp. 302-318, 1996.

J. L. Poutré, “Maintenance of triconnected components of graphs,”
in Proc. Int. Collog. Automata, Lang., Programming (ICALP), 1992,
pp. 354-365.

D. Eppstein, Z. Galil, G. F. Italiano, and T. H. Spencer, “Separator-based
sparsification II: Edge and vertex connectivity,” J. Comput., vol. 28,
no. 1, pp. 341-381, 1998.

HE et al.: ROBUST AND EFFICIENT MONITOR PLACEMENT FOR NETWORK TOMOGRAPHY IN DYNAMIC NETWORKS

[26] Y. Yao, W. Cai, V. Hilaire, A. Koukam, and C. Wang, “Statistical
analysis technique on ad hoc network topology dynamic characteris-
tics: Markov stochastic process,” Telecommun. Syst., vol. 53, no. 1,
pp. 33-45, May 2013.

S. Rajagopalan and V. Vazirani, “Primal-dual RNC approximation
algorithms for (multi)-set (multi)-cover and covering integer programs,”
in Proc. IEEE FOCS, 1993, p. 322.

G. Dobson, “Worst-case analysis of greedy heuristics for integer pro-
gramming with non-negative data,” Math. Oper. Res., vol. 7, no. 4,
pp. 515-531, Nov. 1982.

N. Rug and A. Schobel, “Set covering with almost consecutive ones
property,” Discrete Optim., vol. 1, pp. 215-228, Nov. 2004.

M. Sakashita, K. Makino, and S. Fujishige, “Minimizing a monotone
concave function with laminar covering constraints,” Discrete Appl.
Math., vol. 156, no. 11, pp. 2004-2019, Jun. 2008.

US Army Res. Lab. The Network Science Research Labora-

[27]

[28]

[29]

[30]

[31]

tory. [Online]. Available: https://www.arl.army.mil/www/default.cfm?
page=2485

Ting He (S'04-M’07-SM’13) received the
B.S. degree in computer science from Peking
University, China, in 2003, and the Ph.D. degree in
electrical and computer engineering from Cornell
University, Ithaca, NY, USA, in 2007.

From 2007 to 2016, she was a Research Staff
Member with the Network Analytics Research
Group, IBM T. J. Watson Research Center,
Yorktown Heights, NY, USA. She is currently
an Associate Professor with the School of
Electrical Engineering and Computer Science, The
Pennsylvania State University, University Park, PA, USA. Her work is in the
broad areas of network modeling and optimization, statistical inference, and
information theory.

Dr. He has received multiple paper awards from ITA, SIGMETRICS,
ICDCS, IMC, and ICASSP, as well as the Research Division Award and the
Outstanding Contributor Award from IBM.

Athanasios (Thanos) Gkelias (M’08-SM’15)
received the M.Eng. degree in electrical and com-
puter engineering (major in telecommunications)
from the Aristotle University of Thessaloniki,
Greece, in 2000, and the M.Sc. and Ph.D. degrees
from the Department of Electronic Engineering,
King’s College London, in 2001 and 2006, respec-
tively. He is currently a Post-Doctoral Researcher
with the Imperial College London, where he is
involved in the International Technology Alliance
Project. He is also serving as the Project Manager
of the UDRC Phase-1 Follow-on work framework.

From 2009 to 2013, he served as the Project Manager with the University
Defence Research Centre in Signal Processing, Imperial College, sponsored
by the U.K. Ministry of Defence. In 2008, he was with the Bell-Labs
Research Centre, Alcatel-Lucent, U.K., where he was a Visiting Researcher on
wireless mesh networks. In 2007, he was a Visiting Researcher with Athens
Information Technology, Greece.

Liang Ma received the B.Sc. and M.Sc. degrees
from the Beijing University of Posts and Telecom-
munications, China, in 2007 and 2010, respec-
tively, and the Ph.D. degree from the Imperial
College London, U.K., in 2014. He was with NTT
DoCoMo Beijing Laboratories, Ericsson Communi-
cations, China, and Microsoft Research Asia, where
he was involved in WLAN medium access con-
trol, high-speed switching system, and software
radio-based gigabit multi-antenna communications,
respectively. He is currently a Research Staff Mem-
ber with the Department of Cognitive Distributed Systems, IBM T. J. Watson
Research Center, NY, USA. He was a recipient of the International Conference
on Distributed Computing System Best Paper Award, the IBM Patent Award
2013, the Best Student Paper Award of ITA in Network & Information
Sciences 2013, the ACM Internet Measurement Conference Best Paper Award
Nomination, the INFOCOM 2014 Student Travel Grant, and the winner of
Outstanding Graduate Student 2008 and Excellent Student Awards four times
from 2003 to 2006.

1745

Kin K. Leung (S’ 78-M’86-SM’93-F’01) received
the B.S. degree from the Chinese University of Hong
Kong in 1980, and the M.S. and Ph.D. degrees from
the University of California at Los Angeles, Los
Angeles, CA, USA, in 1982 and 1985, respectively.
He joined AT&T Bell Labs, NJ, USA, in 1986 and
worked at its successors, AT&T Labs and Lucent
Technologies Bell Labs, until 2004. Since 2004,
he has been the Tanaka Chair Professor with the
Electrical and Electronic Engineering (EEE) and
the Computing Departments, Imperial College, in
London, U.K. He is currently the Head of the Communications and Signal
Processing Group, EEE Department. His current research focuses on pro-
tocols, optimization, and modeling of various wireless networks. He also
works on multiantenna and cross-layer designs for these networks. He received
the Distinguished Member of Technical Staff Award from AT&T Bell Labs
(1994), and was a co-recipient of the Lanchester Prize Honorable Mention
Award (1997). He received the Royal Society Wolfson Research Merits
Award (2004-2009) and became a member of Academia Europaea (2012).
He also received several best paper awards, and actively served on conference
committees and as journal editors.

Ananthram Swami (M’79-SM’96-F’08) received
the B.Tech. degree from IIT Bombay, the M.S.
degree from Rice University, and the Ph.D. degree
from the University of Southern California (USC),
all in electrical engineering. He is with the U.S.
Army Research Laboratory and is the Army’s Senior
Research Scientist (ST) for Network Science. Prior
to joining ARL, he held positions with Unocal
Corporation, USC, CS-3, and Malgudi Systems. He
was a Statistical Consultant to the California Lottery
and developed a MATLABatlab-based toolbox for
non-Gaussian signal processing. He has held visiting faculty positions at INP,
Toulouse, France, and currently at Imperial College. His work is in the broad
area of network science, with emphasis on tactical communication networks.
He is an ARL Fellow.

Don Towsley (M’78-SM’93-F’95-LF’15) received
the B.A. degree in physics and the Ph.D. degree
in computer science from the University of Texas
in 1971 and 1975, respectively. He held visiting
positions with numerous universities and research
labs. He is currently a Distinguished Professor with
the Department of Computer Science, University of
Massachusetts. His research interests include net-
works and performance evaluation.

He was a founding Co-Editor-in-Chief of the new
ACM Transactions on Modeling and Performance
Evaluation of Computing Systems and has served as the Editor-in-Chief of the
IEEE/ACM TRANSACTIONS ON NETWORKING and on numerous editorial
boards. He has served as the Program Co-Chair of several conferences,
including INFOCOM 2009.

Dr. Towsley has been an elected Fellow of both the ACM and IEEE and is a
corresponding member of the Brazilian Academy of Sciences. He has received
numerous IEEE and ACM awards, including the 2007 IEEE Koji Kobayashi
Award and the ACM SIGCOMM and ACM SIGMETRICS Achievement
Awards.

A

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

