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ABSTRACT

In this paper, we propose two multiview image compression methods. The basic concept of both schemes is
the layer-based representation, in which the captured three-dimensional (3D) scene is partitioned into layers
each related to a constant depth in the scene. The first algorithm is a centralized scheme where each layer is
de-correlated using a separable multi-dimensional wavelet transform applied across the viewpoint and spatial
dimensions. The transform is modified to efficiently deal with occlusions and disparity variations for different
depths. Although the method achieves a high compression rate, the joint encoding approach requires the trans-
mission of all data to the users. By contrast, in an interactive setting, the users request only a subset of the
captured images, but in an unknown order a priori. We address this scenario in the second algorithm using
Distributed Source Coding (DSC) principles which reduces the inter-view redundancy and facilitates random
access at the image level. We demonstrate that the proposed centralized and interactive methods outperform
H.264/MVC and JPEG 2000, respectively.

Keywords: Multiview image compression, interactive communication, wavelet transform.

1. INTRODUCTION

In recent years, image-based rendering (IBR) has been proposed as an alternative to traditional rendering
techniques. The approach is based on the notion that novel viewpoints can be synthesized by interpolating
existing images. The method achieves photo-realistic results with low computational complexity and therefore
supports immersive viewing applications. To obtain artifact-free results, however, the scene must be sampled
with a large number of cameras. These images are either transmitted or stored, which means efficient compression
is an essential part of IBR systems.1

There are a number of trade-offs which must be considered when encoding multiview images. The main
one is in terms of compression performance and random access.1 Random access is an important feature for
interactive applications where only a subset of the images is transmitted in an unknown order a priori. An
example is an online streaming service where the user interactively selects images used for interpolation as
she/he moves through the scene. One of the main issues, however, is that compression performance relies on
removing inter-view redundancy. In most cases this is implemented using disparity compensated prediction which
inevitably limits the random access capabilities.

In terms of ongoing research, the majority of compression literature has focused on achieving a high com-
pression using techniques such as hierarchical prediction2 or subband coding.3, 4 A number of methods have
been proposed which achieve a high compression and still maintain random access. For example, in5 the authors
propose storing multiple representations of an image for a set of possible predictions to reduce the transmission
rate and eliminate drift. This method, however, requires high storage requirements at the server. A different
approach6, 7 has been to use Distributed Source Coding (DSC) principles to reduce the storage size and eliminate
the side information uncertainty.

In this paper we aim to address the random access and compression efficiency issues. We propose two methods:
the first is a centralized scheme which decomposes the data using a multi-dimensional wavelet transform. The
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approach achieves a high compression, however, does not support random access due to the transform coefficient
inter-dependence. In the second algorithm, we trade-off compression efficiency to obtain random access at the
image level. We implement this feature by using DSC principles that we use to remove the uncertainty in the
user’s viewing trajectory. Both of the proposed methods are based on the concept that a multiview image dataset
can be partitioned into a set of layers each related to a constant depth in the scene as shown in Fig. 5. We call
this partition the layer-based representation.

The outline of this paper is as follows. In the following section we discuss the multiview data structure and
review the layer-based representation. We present our centralized and interactive methods in sections 3 and 4,
respectively. The performance of both algorithms is evaluated in Section 5 and we conclude in Section 6.

2. MULTIVIEW DATA STRUCTURE

We start by introducing the plenoptic function and the structure of multiview data. In addition we present a
layer-based representation which exploits the multiview structure to partition the data into volumes each related
to a constant depth in the scene.

2.1. Plenoptic function

In the IBR framework, multiview images form samples of a multi-dimensional structure called the plenoptic
function.8 Introduced by Adelson and Bergen, this function parameterizes each light ray with a 3D point
in space (Vx, Vy, Vz) and its direction of arrival (θ, φ). Two further variables λ and t are used to specify the
wavelength and time, respectively. In total the plenoptic function is therefore seven-dimensional:

I = P7 (Vx, Vy, Vz, θ, φ, λ, t) , (1)

where I corresponds to the light ray intensity.

In practise, it is not feasible to store, transmit or capture the seven-dimensional function and a number of
simplifications are applied to reduce its dimensionality. Firstly, it is common to drop the λ parameter and instead
deal with either the monochromatic intensity or the red, green, blue (RGB) channels separately. Secondly, the
light rays can be recorded at a specific moment in time, thus dropping the t parameter. This simplification can
for example be applied when viewing a stationary scene. The resulting object is a 5D function.

A popular parametrization of the plenoptic function, known as the light field9 defines each light ray by its
intersection with a camera and a focal plane:

I = P4 (Vx, Vy, x, y) , (2)

where as illustrated in Fig. 1, (Vx, Vy) and (x, y) correspond to the coordinates of the camera and the focal plane,
respectively. Observe that the dataset can be analysed as a 2D array of images, where each image is formed by
the light rays which pass through one point of the camera plane. We illustrate a 4× 4 image example of a light
field in Fig. 2.

The light field can be further simplified by setting the 2D camera plane to a line. This is also known as the
epipolar-plane image (EPI) volume12:

I = P3 (Vx, x, y) . (3)

In comparison to the light field, the EPI is easier to visualise and in the following sections we use it to present a
number of concepts. Next, we review the EPI and light field structure and present the layer-based representation.

2.2. EPI and Light Field Structure

Multiview images capture the same scene from different locations and because of this are structured and redun-
dant. Consider the EPI volume, where as shown in Fig. 3(a) we model each camera using the pinhole model.13



Figure 1. Light field parametrization. Each light ray is defined by its intersection with a camera (Vx, Vy) and a focal
plane (x, y).10

Figure 2. Captured light field.11 Dataset can be analysed as a 2D array of images.

Assuming there are no occlusions, it can be shown that a light ray originating from a point in space (X, Y, Z)
intersects each camera focal plane with coordinates

x =
fX

Z
− fVx

Z
, (4)

y =
fY

Z
, (5)

where f is the focal length. Observe that the spatial coordinate x is linear with respect to the camera position
and that the gradient, which is also called the disparity ∆p = f

Z , is inversely proportional to the depth. We define
the set of coordinates in (4) and (5) for each point in space (X,Y, Z) as an EPI line. Furthermore, assuming
that the scene is Lambertian∗, and that the light ray intensity does not change along its path, the intensity
along an EPI line is constant. This property is illustrated in Fig. 3, where we show that each point in space is
mapped to a line in the EPI volume. In addition to the constant intensity along the EPI lines, observe that the
occlusion ordering can also be predicted. Recall that the disparity ∆p of an EPI line is inversely proportional
to the depth. Therefore, as shown in Fig. 3(b), when two lines intersect, the line corresponding to the larger
disparity will occlude the other.

This concept can also be extended to the light field where, instead of a line, a point (X, Y, Z) maps onto a
2D plane as
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 . (6)

∗In a Lambertian scene the light ray intensity is constant when an object is observed from a different angle.



(a) (b)

Figure 3. (a) The camera moves along a straight line and is perpendicular to the baseline. (b) Each point in space maps
to a line in the EPI volume. Observe that the blue object is closer to the focal plane and therefore occludes the red object.
It can be shown using (4) and (5) that a data sample (x, y, Vx) can be mapped onto a different viewpoint V ′

x with spatial

coordinates x′ = x− f(V ′x−Vx)
Z

and y′ = y.

2.3. Layer-based representation
The layer-based representation is an extension of the EPI line concept. The representation partitions the multi-
view data into homogenous regions, where each layer is a collection of EPI lines related to a constant depth in
the scene. An example of the representation is shown in Fig. 5.

Consider a set of EPI lines modeled by a constant disparity ∆pk as shown in Fig. 4(a). We define the
volume carved out by the EPI lines with Hk and the boundary which delimits the region with Γk (x, y, Vx).
Assuming there are no occlusions, observe that using (4) and (5), the boundary Γk (x, y, Vx) can be defined by a
contour on one of the viewpoints projected to the remaining frames. More specifically, if we define the contour
γk (s) = [x (s) , y (s)] to be the boundary on the viewpoint (Vx = 0), we obtain the following relationship

Γk (s, Vx) =




x (s)−∆pkVx

y (s)
Vx


 , (7)

where s parameterizes the contour γk (s). This concept is further illustrated in Fig. 6(a) which shows an
unoccluded layer from the Animal Farm dataset.11 Observe that the complete segmentation can be defined by
the red boundary γk (s) on the first image viewpoint projected to the remaining frames. In terms of compression
this concept is important since it means that the data segmentation can be inferred at the decoder by transmitting
the contour γk (s) and the layer’s disparity ∆pk.

Note that the above approach does not take into account occlusions. Using the same principles as in the case
of an EPI line, a layer will be occluded when it intersects with other layers which are related to a smaller depth.
We illustrate this in Fig. 4, which shows that when two layers intersect we obtain their occluded representations
H⊥k−1 and H⊥k . In this example, the layers are ordered in terms of increasing depth (i.e. Hk corresponds to a
larger depth than Hk−1). In addition, we show an example of an occluded layer from a real dataset in Fig. 6(b).
We can use this notion to reconstruct the complete segmentation of each layer using the set of layer contours
{γ1 (s) , . . . , γN (s)} and the corresponding disparities {∆p1, . . . , ∆pN}.

3. CENTRALIZED MULTIVIEW IMAGE COMPRESSION

In this section we present our centralized compression method. The joint encoding means that we can efficiently
reduce the data redundancy in the layer-based representation shown in Fig. 5 and thus achieve a high compres-
sion. The method, however, requires that all of the data is transmitted and decoded. Therefore, a drawback of
the scheme is that it does not support interactive communication.



(a) (b) (c)

Figure 4. Comparison between two volumes Hk−1, Hk and their intersection. The volumes are ordered in terms of
increasing depth (i.e. Hk−1 corresponds to a smaller depth than Hk). (a) A set of EPI lines related to a constant
disparity ∆pk. The collection of EPI lines carve out a volume Hk. Observe that the complete segmentation of the volume
can be defined by a boundary on one viewpoint projected to the remaining frames. (b) Volume Hk−1 modeled by a
constant disparity ∆pk−1. (c) When the two volumes intersect, layer Hk−1 will occlude Hk as it is modeled by a smaller
depth. We define the visible volumes with H⊥k−1 and H⊥k .

Figure 5. Animal Farm layer-based representation.11 The dataset can be divided into a set of volumes where each one
is related to a constant depth in the scene. Observe that the layer contours at each viewpoint remain constant, unless
there is an intersection with another layer which is modeled by a smaller depth.

The high-level overview of the method is shown in Fig. 7. In the first stage we extract the layer-based
representation reviewed in Section 2.3. The segmentation method is beyond the scope of this paper and we refer
the reader to11 for an in depth explanation of the approach. Each extracted layer is defined by a segmentation
on the first image viewpoint and the corresponding disparity. We losslessly encode this information and transmit
it to the decoder. We then reduce the redundancy of each layer using a 4D Discrete Wavelet Transform (DWT)
applied in a separable fashion, first across the viewpoint dimensions, followed by a 2D DWT applied to the
image dimensions. Recall that each layer is related to a constant depth in the scene. As a consequence,
we disparity compensate the inter-view transform to achieve a more compact representation. The obtained
transform coefficients are finally quantized, entropy coded and transmitted to the decoder. Next we present each
of the stages in more detail.

3.1. 2D Inter-view DWT

We implement the inter-view 2D DWT on each layer in two steps: first by applying a 1D disparity compensated
DWT across the row images followed by the column images as illustrated in Fig. 8. This process is iterated on
the low-pass components to obtain a multiresolution decomposition.

In our implementation of the 1D DWT we use the disparity compensated Haar transform. This is motivated
by the fact that the light field intensity along the EPI lines is constant. Therefore, a wavelet with one vanishing
moment is enough to obtain a compact representation. It is applied by modifying the standard lifting equations14



(a) (b)

Figure 6. Layer from the Animal Farm dataset. (a) The unoccluded layer Hk can be defined using the contour γk (s)
on one viewpoint projected to the remaining frames. The 2D contour is denoted by the red curve on the first image. (b)
Occluded layer H⊥k can be inferred by removing the regions which intersect with other layers related to a smaller depth.

Figure 7. Centralized compression method block diagram. Additionally, we illustrate the obtained transform coefficients
at each stage of the method.



(a) (b) (c)

Figure 8. Inter-view 2D DWT implemented in a separable approach by filtering the image rows followed by the image
columns using the 1D disparity compensated DWT. The red arrow shows the direction of the 1D DWT. (a) Extracted
layer: 2×2 light field. (b) Transform coefficients following 1D disparity compensated DWT across each row. (c) Transform
coefficients following 1D disparity compensated DWT across each column.

and including a warping operator W as follows:

Lo [n] =
Po [n]−W{Pe [n]}

2
,

Le [n] = Pe [n] +W{Lo [n]}, (8)

where, Po [n] and Pe [n] represent 2D images with spatial coordinates (x, y) located at odd (2n+1) and even (2n)
camera locations, respectively. Following (8), Le [n] contains the 2D low-pass subband and Lo [n] the high-pass
subband. Assuming that W is invertible and the images are spatially continuous, the above transform can be
shown to be equivalent to the standard DWT applied along the motion trajectories.15

In both the lifting and update steps in (8), the warping operator W is chosen to maximize the inter-image
correlation. This is achieved by using a projective operation that maps one image onto the same viewpoint as
its odd/even complement in the lifting step. Using (4) and the fact that the layers are modeled by a constant
disparity, we define the warping operation from viewpoint n1 to n2 along the Vx dimension as:

Wn1→n2{P [n1]} (x, y) = P [n1] (x + ∆p (n2 − n1) , y) , (9)

where ∆p is the layer disparity.

Note that in the case of an occlusion, the DWT leads to filtering across an artificial boundary and, thus,
results in a reduced compression efficiency. To prevent this, we use the concept proposed in16 to create a shape-
adaptive transform in the view domain. The transform in (8) is modified whenever a pixel at an even or odd
location is occluded such that

Le [n] =
{

Pe [n] , occlusion at 2n + 1
Ŵ{Po [n]}, occlusion at 2n

, (10)

and the high-pass coefficient in Lo [n] is set to zero. In (10), the warping operator Ŵ is set to an integer pixel
precision to ensure invertibility and this is done by ceiling the disparity in (9).

3.2. 2D Spatial DWT
To improve the efficiency of the spatial transform, the subbands from each layer are grouped together into a
single image and are further jointly processed. A comparison between the original and recombined layers is
illustrated in Fig. 9. Note that due to occlusions and the way in which the inter-view transform is implemented,
two or more layers may overlap in each subband. In this case, we apply a separate spatial transform to the
overlapped pixels.

Note that the overlapped pixels are commonly bounded by an irregular (non-rectangular) shape. For that
reason, the standard 2D DWT applied to the entire spatial domain is inefficient due to the boundary effect. We
therefore use the shape-adaptive DWT16 within arbitrarily shaped objects. The method reduces the magnitude
of the high-pass coefficients by symmetrically extending the texture whenever the wavelet filter is crossing the
boundary. The 2D DWT is built as a separable transform with linear-phase symmetric wavelet filters (9/7 or
5/317), which, together with the symmetric signal extensions, leads to critically sampled transform subbands.



(a) (b)

Figure 9. (a) Tsukuba transform coefficients following the inter-view transform. Each of the three transformed layers
is composed of one low-pass subband and three high frequency images. (b) Recombined layers. The view subbands
from each layer are grouped into a single image to increase the number of decompositions that can be applied by the
spatial transform. In each subband two or more layers may overlap. We apply a separate shape-adaptive 2D DWT to the
overlapped pixels.

(a) (b)

Figure 10. (a) Layer contour from the Tsukuba dataset.18 (b) Corresponding Tsukuba texture.

3.3. Layer contour and disparity encoding

The contour encoding block transmits the segmentation needed to correctly decode each layer. Recall, from
the properties of multiview data outlined in Section 2.3, that the segmentation of each layer can be defined by
a contour on one of the image viewpoints and the layer’s disparity. The input to the layer contour encoding
algorithm is therefore an array of binary images (one for each layer). A typical binary layer is illustrated in Fig.
10(a).

We losslessly encode the layer contours and transmit the data to the decoder. The problem of lossless contour
encoding has been extensively studied with the majority of the work based on Freeman chain codes.19 Here, we
use the algorithm proposed in,20 where the boundary is differentially encoded using Huffman entropy coding. It
is also possible to encode the layer contours in a lossy modality. This scheme is important at low bit rates where
the majority of the bit budget should be allocated to encoding the texture (rather than the layer contours). We
refer the reader to4 where this issue has been addressed.

The disparity of each layer is also losslessly encoded and transmitted. The rate required to encode these
parameters is negligible in comparison to the encoding rate of the texture and the layer contours.

3.4. Quantization and Entropy Coding

In this stage the transform coefficients are quantized and entropy coded. Our codec uses context adaptive
arithmetic coding to attain bit rates close to the entropy of the source.

For a given bit budget constraint Rx, the optimal bit allocation among the transform coefficients is achieved
using a method similar to EBCOT.21 Initially, the coefficients are partitioned into blocks and losslessly encoded



Figure 11. Interactive compression method block diagram.

by bit-plane to obtain the operational RD curves. Then, given a Lagrangian multiplier λx, a bit allocation R∗

for each block is chosen such that the cost function J is minimized, where:

J = D (Ri) + λxRi, (11)

and (Ri, D (Ri)) is the rate-distortion pair associated to each operational point. To meet the allowed bit budget∑

l

R∗l = Rx, a bisection search22 for the correct multiplier λx is applied. We note that since the operational

RD curves are known, this process is not computationally expensive. Once the optimal values R∗l are evaluated,
the encoded bit streams are truncated and transmitted.

4. INTERACTIVE MULTIVIEW IMAGE COMPRESSION

Here we present our interactive coding method which supports random access at the cost of reduced compression
efficiency. One of the main issues in IBR streaming applications is that the viewing trajectory of the user is
unknown. Therefore, even though there exists correlation between the requested images it is not possible to
design a disparity compensated prediction structure without significantly increasing the storage requirements at
the server. In the proposed method, we deal with this problem by substituting the inter-view DWT transform
with DSC principles. Recall that DSC is closely related to channel coding and can be used to correctly reconstruct
a data sample given its noise corrupted version. We use the same ideas to reconstruct the transmitted images
given any reference side information image available in the cache of the user. The side information is treated as a
noisy version of the transmitted signal. The approach also facilitates random access since each image is encoded
independently.

The overview of the proposed interactive method is shown in Fig. 11. In the first stage we obtain the
layer-based representation which is followed by a pre-processing stage applied to each layer. Next, we reduce the
intra-view redundancy using a shape-adaptive 2D DWT applied to each image in the obtained layers. This is
followed by DSC applied to the quantized subband coefficients along the inter-view domain. We then optimize
the coefficients in the rate-distortion sense and entropy code the resulting data. In addition, we also losslessly
encode and transmit the layer contours and the disparity of each layer.

In the following section we describe in more detail each of the encoding steps that are different from the
centralized method.

4.1. Layer pre-processing

The input to this stage are the extracted layers shown in Fig. 5. The aim is to increase the inter-view correlation
such that the compression efficiency of the DSC stage is more efficient. We implement the pre-processing stage
by disparity compensating the images of each layer onto a common viewpoint using (6). Additionally, any
occluded regions are interpolated using the mean along the EPI lines. The interpolation implies that there will
be overlapping layer regions during the decoding process. However, as discussed in Section 2.3, we can infer
the correct occlusion ordering using the associated depth/disparity of each layer. We show an example of the
pre-processing in Fig. 12.



(a) (b)

Figure 12. (a) Due to occlusions, the extracted layers may contain discontinuities along the EPI lines. (b) Pre-processing
is implemented by disparity compensating each image onto a common viewpoint and interpolating the occluded pixels
using the mean along the EPI lines. The layer contour outlined with the red curve is efficiently encoded using a modified
version of the Freeman algorithm20 and transmitted.

4.2. Transform Coefficient Quantization

Here, we quantize the transform coefficients following the intra shape-adaptive 2D DWT applied to each of
the layer images. The quantization step-size is chosen using a Lagrangian optimization method similar to the
centralized approach in Section 3.4.

4.3. Inter-view Distributed Source Coding

Consider the quantized low-pass transform coefficients from three images of one layer illustrated in Fig. 13.
Observe that the subbands are correlated across the views. In this stage we exploit the inter-view redundancy
using DSC principles.

(a) (b) (c)

Figure 13. Quantized low-pass subbands from three images of one layer. Observe that the blocks are correlated across
the views.

During decoding, the remote user may contain any image as side information. Using DSC principles we can
remove the side information uncertainty, while still reducing the number of bits which must be transmitted.
Consider the following model:

y = x + n, (12)

where y is the transform coefficient requested by the user, x is the side information available in the cache and n
is the residual signal. Recall that y can be correctly reconstructed by transmitting a minimum of dlog2 (2n + 1)e
least significant bits (LSB) from y. To encode a sequence of blocks shown in Fig. 13, we take the worst case
scenario, where any image can be used as side information. For example, the transform sequence {55, 51, 53}
requires dlog2 9e = 4 LSB to correctly reconstruct the data.

This method is then applied to each set of transform coefficients across the views to determine the number
of LSB that must be transmitted in order to correctly reconstruct the data given any image as side information.

4.4. RD Optimization and Entropy Coding

Observe that the outlined DSC approach described in the previous section is inefficient when the transform
coefficients across the views are the same except for one frame. For example to encode {55, 55, 57} we have to



(a) Tsukuba light field
[272× 368× 4× 4].

(b) Animal Farm EPI volume [232× 624× 16].

Figure 14. Multiview image analysis datasets.

transmit 3 LSB from each coefficient. Intuitively, a better solution would be to set 57 to 55, so that zero LSB
are encoded. We solve this problem in an RD sense as follows: for each set of transform coefficients, we find the
value which corresponds to the largest error and set it to the median of the set. Then, we evaluate the change
in distortion ∆D and estimate change in rate ∆R. Using a greedy approach, if

∆D + λ∆R < 0 (13)

we make the substitution and iterate the process until (13) is positive. The trade-off between rate and distortion
is set using λ, which is chosen when evaluating the quantization step-size.

The server subsequently encodes the data using a bit-plane context adaptive arithmetic coder to attain rates
close to the entropy of the source. The number of retained LSB is also encoded and transmitted with the data.
This information is stored by the user for future reference. Note that the number of retained LSB provides a
bit-plane significance map, which is further exploited by the entropy coder to reduce the encoding rate.

5. EVALUATION

We evaluate the performance of the proposed centralized and interactive methods using the Tsukuba light
field [272× 368× 4× 4]18 and Animal Farm EPI [232× 624× 16]11 datasets, shown in Fig. 14. Without a
loss of generality we only encode the monochromatic component of the data. In the following, we present the
compression results for both schemes.

5.1. Centralized method

The proposed centralized method is compared to the state-of-the-art H.264/AVC23 video coding algorithm. To
encode the data, the multiview images are treated as a set of video frames along the temporal dimension and
they are compressed using the High Profile, Level 2.1. In addition we use the multiview extension (MVC)24 of
the method to encode the Tsukuba light field. Recall that the light field has an additional viewing dimension
which is exploited by the MVC method by applying prediction along both viewing dimensions.

We show a quantitative comparison of the method in Fig. 15. Observe that the proposed centralized scheme
achieves a significantly better compression performance across the complete range of bit rates with PSNR gains
of up to 4dB when encoding the Animal Farm EPI volume. A subjective comparison in Fig. 16 also shows that
our approach attains more visually pleasing results than the block-based method.

5.2. Interactive method

We initialize the proposed interactive method by independently encoding the first image of each layer. Then,
the remaining images are randomly chosen and transmitted using the DSC strategy. We compare the method to
JPEG 2000† which has the same random access capabilities as the proposed approach.

†We modify JPEG 2000 to have the same entropy coding as our approach.



(a) Tsukuba light field. (b) Animal Farm EPI volume.

Figure 15. Quantitative comparison of the proposed centralized method with H.264/AVC and MVC. (a) Tsukuba light
field dataset. (b) Animal Farm EPI volume.

(a) (b)

(c) (d)

Figure 16. Qualitative comparison of the proposed centralized method with H.264/AVC and MVC. (a) Animal Farm
encoded using H.264/AVC at 0.024bpp (PSNR 28.93dB). (b) Animal Farm encoded using the proposed centralized method
at 0.021bpp (PSNR 32.14dB). (c) Tsukuba light field encoded using H.264/MVC at 0.056bpp (PSNR 27.53dB). (d)
Tsukuba light field encoded using proposed centralized method at 0.052bpp (PSNR 29.77dB).

We illustrate a quantitative comparison of the proposed method with JPEG 2000 in Fig. 17. Observe that
the proposed method achieves PSNR gains of up to 3dB. This is due to the fact that our approach reduces the
inter-view redundancy whereas JPEG 2000 encodes each image independently. The improvement can also be
seen in terms of subjective performance in Fig. 18.

On the other hand, observe that in order to facilitate random access, the interactive method trades-off
compression performance. In comparison to the centralized algorithm, the PSNR reduction is 3.5dB (at 0.3bpp)
and 3dB (at 0.09bpp) when encoding the Tsukuba light field and Animal Farm EPI, respectively.



(a) Tsukuba light field. (b) Animal Farm EPI volume.

Figure 17. Quantitative comparison of the proposed interactive method and JPEG 2000. (a) Tsukuba light field. (b)
Animal Farm EPI volume.

(a) (b)

(c) (d)

Figure 18. Qualitative comparison of the proposed interactive algorithm with JPEG 2000. (a) Animal Farm encoded
using JPEG 2000 at 0.07bpp (PSNR 31.33dB). (b) Animal Farm encoded using the proposed interactive method at
0.07bpp (PSNR 33.76dB). (c) Tsukuba light field encoded using JPEG 2000 at 0.13bpp (PSNR 26.83dB). (d) Tsukuba
light field encoded using the proposed interactive method at 0.134bpp (PSNR 29.44dB).



6. CONCLUSION

In this paper we have presented two compression methods for multiview images. The fundamental component of
both algorithms is the layer-based representation which partitions the multiview data into layers, each related to
a constant depth in the scene. The first method is a centralized scheme which jointly encodes the images using
a multi-dimensional DWT. The transform is implemented in a separable fashion, first by applying a 2D DWT
across the viewpoint and then the image dimensions. We modify the viewpoint DWT to efficiently deal with
occlusions and depth variations. Although the method attains high compression performance, it requires that all
data is transmitted to the user. By contrast, in an interactive communication scenario only a subset of the images
is requested by a remote user. We deal with this issue in the second algorithm by using DSC principles to reduce
the inter-view redundancy. The approach removes the side-information uncertainty and facilitates random access
at the image level. We have shown that the proposed centralized and interactive schemes outperform H.264/MVC
and JPEG 2000, respectively.
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