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ABSTRACT

We propose a novel multiview compression method for multiview
images. The algorithm supports random access for interactive appli-
cations and has low storage requirements. The fundamental compo-
nent of the method is the layer-based representation, which partitions
the data set into redundant layers characterized by a constant depth
value. We exploit the redundant property of each layer and remove
the side information uncertainty using Distributed Source Coding
(DSC) principles. In comparison to independent coding, our method
achieves a PSNR improvement of 3dB. Furthermore, we present a
rate-distortion (RD) analysis which demonstrates that the proposed
algorithm can achieve a better performance in comparison to inde-
pendent coding.

1. INTRODUCTION

In recent years, Image Based Rendering (IBR) has been proposed as
an alternative to the traditional rendering algorithms. The approach
has a lower computational complexity and achieves photorealistic
results by interpolating the novel viewpoints from existing data. To
obtain artifact-free results, however, the scene must be sampled with
a large number of cameras. These images are either transmitted or
stored, which means efficient compression is an essential part of IBR
systems [1].

The majority of the compression literature has focused on hi-
erarchical prediction [2] or subband coding [3, 4]. Although these
algorithms achieve high compression, they have limited random ac-
cess. These techniques are, therefore, not suitable in an interactive
setting, where the images are stored at a server and transmitted to the
remote users on request. The key point is that the viewing trajectory
is unknown prior to encoding.

A number of techniques have been proposed which achieve high
compression and still maintain random access. For example, in [5]
the authors propose storing multiple representations of an image for
a set of possible predictions to reduce the transmission rate and elim-
inate drift. This method, however, requires high storage require-
ments at the server. A different approach [6, 7] has been to use DSC
principles to reduce the storage size and eliminate the side informa-
tion uncertainty.

In this paper we propose a novel multiview image coding
method with random access and low storage requirements at the
server. The fundamental component of the algorithm is the layer-
based representation [8], which partitions the data set into layers
each modeled by a constant depth plane. The redundancy of each
layer is exploited using a spatial Discrete Wavelet Transform (DWT)
and DSC principles, which we also use to remove side information
mismatch at the user. The obtained transform coefficients are effi-
ciently entropy coded and transmitted to the remote user on request.
Additionally, the algorithm is complemented with a model which

demonstrates that the approach can achieve a better RD performance
than independent coding of images.

The outline of this paper is as follows. Multiview data structure
and the layer-based representation are reviewed next. In Section 3
we present the proposed algorithm and in Section 4 discuss its RD
performance. The results are presented in Section 5 and the paper is
concluded in Section 6.

2. REVIEW OF MULTIVIEW IMAGE REPRESENTATION

In this section, we analyze the redundancy of multiview images and
review the layer-based representation. For clarity, we simplify the
setup to a 1D array of evenly spaced cameras perpendicular to the
baseline, also known as the EPI [1]. This type of data set is parame-
terized as:

I=Ps(z,y, V), (D

where [ is the pixel intensity, (x, y) are the spatial coordinates of the
image and V is the camera location.

2.1. Multiview image data structure and redundancy

Assuming the scene is Lambertian and has no occlusions an object
appears at different pixel locations x and =’ seen from different view-
point coordinates (frames) V,, and V/. This shift in pixel locations
(disparity) Ax = x — ’ can be represented as a function of the cor-
responding viewpoint coordinates, depth Z of the object and focal
length f, that is,
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The obtained relation between the viewpoint V, and the spatial
coordinates x’ is also known as EPI line, along which the pixel in-
tensity is constant. Observe that the occlusion ordering can also be
predicted. Since the disparity Az is inversely proportional to the
depth, when two lines intersect, the line corresponding to the larger
disparity will occlude the other.

Ar = ()

2.2. Layer-Based Representation

The layer-based representation is an extension of the EPI line con-
cept. The representation partitions the data into redundant regions
where each layer is a collection of EPI lines modeled by a constant
depth. Fig. 1(b) illustrates the representation of the dataset in Fig.
1(a). It can be observed that each layer preserves the linear structure
corresponding to an object location in a 3D space.

Extraction of layers from a general 3D scene is a non-trivial
task. Here, we use a variation of the level-set segmentation algo-
rithm which was proposed in [8]. An advantage of this unsuper-
vised method is that it can be extended to an arbitrary number of



Fig. 1. (a) Multiview image cross-section. The data can be analyzed as a set
of EPI lines with varying gradients. (b) Layer-based representation.
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dimensions. Additionally, the algorithm efficiently handles occlu-
sions, which is an important property for the subsequent compres-
sion algorithm.

3. PROPOSED ALGORITHM

In this section we propose our novel approach to encoding multiview
images. First, we describe the general overview of the algorithm and,
then, we outline an approach to obtain bit rate scalability.

3.1. Algorithm Overview

The concept of the proposed algorithm is to substitute the inter-view
transform with DSC coding. This property allows the decoder to
correctly reconstruct the transmitted data given any side information
available in the cache of the user. The DSC ideas are applied to
each layer independently in the spatial transform domain. We note
that the redundant properties of the layers reduce the number of data
bits which must be transmitted, thus providing a bit-rate saving in
comparison to independent encoding of the images. Next, we outline
the encoding process for one layer, which can be generalized to the
complete dataset.
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Fig. 2. (a) Due to occlusions, extracted layers might have discontinuities in
the EPI lines. (b) Occluded pixels are interpolated using the mean of the non-
occluded pixels and each image is disparity compensated onto a common
view. The layer contour outlined with the red curve is efficiently encoded
using a modified version of the Freeman algorithm [9] and transmitted.

Consider a layer from the Animal Farm dataset shown in Fig.
2(a). Initially, a preprocessing step is applied where the occluded
regions are interpolated using the mean along the EPI lines and each
image is disparity compensated onto a common view. The obtained
layer is shown in Fig. 2(b). Note that the layer contour in each im-
age is constant. This boundary is losslessly encoded using modified
version of the Freeman algorithm [9] and transmitted along with the
disparity.

In the following step, we reduce the intra-view redundancy by
applying a 9/7 DWT to each image. We use a shape-adaptive im-
plementation as proposed in [10] to remove the boundary effects as-
sociated with the irregular contour. Then, the resulting DWT sub-
bands are quantized in a similar approach to [4], where the step-size
is chosen using a Lagrangian multiplier A\. The obtained low-pass
transform coefficients from the three images are illustrated in Fig. 3.
Observe that the subbands are correlated across the views, which is
exploited by the DSC algorithm in the following stage.

Recall that the cache of the remote user may contain DWT
blocks from any image as side information. Our approach is to use
DSC principles to remove the side information uncertainty. Consider
the following model:

y=z+mn, (3)
where y is the transform coefficient requested by the user, x is the
side information available in the cache and n is the residual sig-
nal. Recall that y can be correctly reconstructed transmitting at least
[log, (2n) + 1] least significant bits (LSB) from y. To encode a
sequence of blocks shown in Fig. 3, we take the worst case scenario,
where any image can be used as side information. For example, the
transform sequence {55, 51, 53} requires [log, 8 + 1] = 4 LSB to
correctly reconstruct the data.

Observe that the outlined approach is inefficient when the trans-
form coefficients across the views are the same except for one frame.
For example in a sequence {55, 55,57} we have to transmit 3 LSB
from each coefficient. Intuitively, a better solution would be to set
57 to 55, so that zero LSB are encoded. We solve this problem in
an RD sense as follows: For each set of transform coefficients, we
find the value which corresponds to the largest error and set it to the
median of the set. Then, we evaluate the change in distortion AD
and estimate change in rate AR. Using a greedy approach, if

AD +AAR <0 @

we make the substitution and iterate the process until the cost is pos-
itive. The trade-off between rate and distortion is set using A, which
is determined when choosing the quantization step-size.

The server subsequently encodes the data using a bit-plane con-
text adaptive arithmetic coder to attain rates close to the entropy of
the source. The number of retained LSB is also encoded and trans-
mitted with the data. This information is stored by the user for future
reference. Note that the number of retained LSB provides a bit-plane
significance map, which is further exploited by the entropy coder to

reduce the encoding rate.
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Fig. 3. Quantized low-pass subbands from three images. Observe that the
blocks are correlated across the views.

3.2. Bit rate scalability

Wavelet based coding inherently supports scalable compression.
This means that the data can be encoded once at the server and
decoded multiple times for different target bit rates. To support bit
rate scalability we operate as follows: for each residual block, we
choose a transmission mode which minimizes the RD cost

D; + A7 R;, ©)



where D; is the distortion and R; is the transmission cost of the i-
th mode and A7 is chosen to meet a target bit rate. Note that to
support interactive viewing, we evaluate the RD values off-line and
store them at the server.

The blocks have three different modes. These are ‘skip’, ‘skip-
2’ and ‘Isb’. The first skip mode sets the data to zero and the second
uses the side information in the cache as a prediction. The ‘Isb’
mode, however, transmits the residual bits to correctly reconstruct
the data.

4. THEORETICAL MODELING

In this section we present a theoretical model of our encoding
scheme. The aim of the model is to show that the proposed algorithm
can achieve improved compression performance over independent
coding. First, we present a synthetic data model which well approx-
imates real multiview images, then we evaluate the RD relation of
the independent and the proposed DSC algorithm for this class of
signals.

4.1. Data Modeling
4.1.1. 2D a—Lipschitz model

We model the layer images using a globally smooth 2D «a-Lipschitz
function fo (z,y), which satisfies the following condition:

) a/2
(©)
where K > 0. Transforming the signal using a 2D wavelet having

at least |« + 1| vanishing moments yields wavelet coefficients with
the following decay [11]:

| fo (@1,91)— fo (@2,92) [S K (|21 — 22 |° + [ 11 — 92 7
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where j is the wavelet scale and constant A > 0. A linear compres-
sion scheme based on (7) can be designed by appropriately choosing
constant quantization step size across all the subbands [11]. It can be
shown that a high bit-rate assumption of the compression algorithm
yields the following RD function:

D(R) <cR™ %, (8)

where R is the total number of bits allocated to encoding the signal
and constant ¢ > 0.

4.1.2. Contour Model

In practice, the layers are outlined by a segmentation and are there-
fore not globally a-Lipschitz smooth. To obtain the decay in (8), we
transmit the contours and encode the texture using a shape adaptive
scheme. We model the contour of the texture as a piecewise lin-
ear curve having V vertices. The RD function due to quantizing the
location of the vertices can be upper bounded as [4]:

D (R) < A’T?v2 F/2V, )

where A is the maximal magnitude of the texture and 7 is the max-
imal length of a side of the bounding box. The RD function is ob-
tained by upper bounding the number of pixels affected due quantiz-
ing the vertex locations and then scaling this number by the ampli-
tude of the texture to obtain the distortion.

4.1.3. Multiview Image Model

Using the analysis in Section 2.1, the layer images are modeled as a
shifted version of the first view and a 2D a-Lipschitz error term. The
error term corresponds to either lighting changes, layer extraction
errors or non-Lambertian surfaces.

filz,y)=fi(@+(i—1)Az,y) +e,(z,y),  (10)

where Az is the layer disparity defined in (2) and ¢ is the image
location.

4.2. Independent Encoding

In the case of independent encoding, the 2D a-Lipschitz signal and
the layer contour are separately encoded from each view. Using (8)
and (9), the total distortion due to encoding the texture and the con-
tour is bounded as:

Dina (Re) < Y ei (RL) ~ + NA?T?V2- /2

=1

where Rfv and R, is the rate allocated to the a-Lipschitz texture in
the i-th view and the contour encoding rate in each image, respec-
tively and N is the total number of views. The total bit-rate can be
shown to be:

N
Ri. =) R, + NR.. (12)

i=1
The correct rate allocation which minimizes the distortion for a total
bit budget can be solved using Lagrangian multipliers. A high rate

analysis yields:
N 1\ 1
. a+1
Ro~Re (> (2 13
T t ( <Ci ) ( )

=1
and

A*T?%1n (2)

R, =2V log, < ac,

) +2V (a+1)logy Ry.  (14)
The minimized RD function in terms of the total rate can be obtained
by substituting (13) and (14) into (11).

4.3. Proposed Algorithm

Using (10) we note that the wavelet coefficients in the residual
frames can described using:

& =d] +d, (15)
where d{ and d/ denote the disparity compensated wavelet coef-
ficients in the first frame and the wavelet coefficients of the a-
Lipschitz error, respectively. By definition, the wavelet coefficients
of the a-Lipschitz error can be upper bounded as:

|dl]| < A2 (et (16)

Referring to (3), this analysis can be used to determine the number of
LSB which must be transmitted to correctly reconstruct the texture.
A similar analysis can be applied when the subbands of the signal
are quantized.

The RD function of a globally smooth 2D «-Lipschitz signal,
which is encoded using a DSC scheme can be shown to have the



same RD behaviour as in (8). Therefore, the total RD due to encod-
ing the dataset at the server using the DSC scheme is identical to (11)
with different scaling constants. This behaviour will be validated in
the following section.

Note that the RD bound in (8) can only be attained when the tex-
ture is globally a-Lipschitz smooth. This supports our layer-based
coding scheme which partitions the data into redundant regions.

5. SIMULATION RESULTS AND ALGORITHM ANALYSIS

To evaluate the proposed algorithm, we compare the RD perfor-
mance of our method to JPEG2000. To attain a fair comparison we
have modified JPEG2000 to include the same entropy coding as our
algorithm. In addition we compare the results with H.264/AVC High
Profile when the viewing trajectory of the user is known by the server
prior to encoding.

We first show that the proposed method achieves the RD perfor-
mance presented in Section 4.3 for the signal model of Section 4.1.
We then present numerical results on real data.

To this end, we encode an v = 1.5 Lipschitz multiview image
array consisting of four images. The data is encoded using a lin-
ear compression strategy where the optimal rate allocation for each
image is obtained using (13). The model parameters are estimated
by separately encoding each image in DSC or independent mode.
Fig. 4 shows the theoretical and practical results when encoding the
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Fig. 4. Practical and theoretical RD performance when encoding an o = 1.5
Lipschitz signal. The proposed algorithm achieves an improved performance
in both practical and theoretical cases. Observe that the rate of decay in both
the theoretical and practical cases is the same.

a-Lipschitz signal. Observe that the performance of the proposed
algorithm is better in both the theoretical and practical results. As
conjectured in Section 4.3, the independent and proposed algorithms
have the same rate of decay but with different scaling constants.

To analyse the performance when encoding real data, we use
a multiview image sequence called Tsukuba [282 x 382 x 4] from
[12]. The first image of each layer is transmitted using the intra
modality. Then, to mimic random access, the other images are ran-
domly chosen and DSC encoded using the proposed method. Fig.
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Fig. 5. Comparison of the proposed algorithm with H.264/AVC High Profile
and independent compression when encoding Tsukuba.

5 shows a quantitative comparison of the proposed scheme with
H.264/AVC and independent coding. Observe that the predictive
structure of H.264/AVC would require a significantly larger storage
size to allow interactive viewing and is therefore not a fair com-
parison. However, we demonstrate that the proposed algorithm is
competitive at low rates and incurs a 15% rate loss at 0.26bpp. In
comparison to independent coding our approach achieves a gain of
3dB at 0.3bpp. Due to a lack of space, we only show experimen-
tal results for one real dataset. However, similar results have been
obtained when encoding Teddy [12].

6. CONCLUSION

We presented a novel multiview image compression algorithm with
random access at image level. The fundamental component of the
algorithm is the layer-based representation, which partitions the data
into redundant layers each modeled by a constant depth value. Each
layer is encoded independently and we use robust DSC coding prin-
ciples to remove the side information ambiguity at the decoder. The
algorithm achieves an improved RD performance with gains of up to
3dB over independent encoding. Furthermore, we have presented a
RD analysis of our algorithm which demonstrates that the proposed
approach can achieve a better performance in comparison to inde-
pendent coding. Future work includes making the algorithm robust
to segmentation errors which affects the RD performance of the pro-
posed scheme.

7. REFERENCES

[1] C. Zhang and T. Chen, “A survey on image-based rendering—
representation, sampling and compression,” Signal Processing: Image
Communication, vol. 19, no. 1, pp. 1-28, 2004.

[2] M. Magnor and B. Girod, “Data compression for light-field rendering,”

IEEE Transactions on Circuits and Systems for Video Technology, vol.

10, no. 3, pp. 338-343, Apr 2000.

B. Girod, C.L. Chang, P. Ramanathan, and X. Zhu, “Light field com-

pression using disparity-compensated lifting,” IEEE Transactions on

Image Processing, pp. 761-764, 2003.

[4] A. Gelman, P.L. Dragotti, and V. Velisavljevic, “Multiview image cod-
ing using depth layers and an optimized bit allocation,” submitted to
IEEE Transactions on Image Processing.

3

—

[5] P. Ramanathan and B. Girod, “Random access for compressed light
fields using multiple representations,” in Multimedia Signal Process-
ing, 2004 IEEE 6th Workshop on, 2004.

[6] N.-M. Cheung, A. Ortega, and G. Cheung, “Distributed source coding
techniques for interactive multiview video streaming,” in Proceedings
of the 27th conference on Picture Coding Symposium, Piscataway, NJ,
USA, 2009, PCS’09, pp. 269272, IEEE Press.

A. Aaron, P. Ramanathan, and B. Girod, “Wyner-ziv coding of light
fields for random access,” in Multimedia Signal Processing, 2004 IEEE
6th Workshop on, 2004.

J. Berent and P.L. Dragotti, “Plenoptic manifolds: Exploiting structure

and coherence in multiview images,” IEEE Signal Processing Maga-

zine, vol. 24, no. 6, pp. 34—44, November 2007.

Y.K. Liu and B. Zalik, “An efficient chain code with huffman coding,”

in Pattern Recognition, vol. 38, no. 4, pp. 553 — 557, 2005.

[10] S. Li and W. Li, “Shape-adaptive discrete wavelet transforms for ar-
bitrarily shaped visual object coding,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 10, no. 5, pp. 725-743, Aug
2000.

[11] S. Mallat, A Wavelet Tour of Signal Processing, Third Edition: The
Sparse Way, Academic Press, 3rd edition, 2008.

[12] D. Scharstein and R. Szeliski, “Middlebury data sets,” vi-

sion.middlebury.edu/stereo/.

[7

[

[8

—_—

[9

—



