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ABSTRACT
We propose a compression algorithm for an array of multi-
view images. First, we apply a segmentation algorithm to
partition the data into coherent layers and significantly re-
duce the number of images required for artifact-free render-
ing. Then, we exploit the coherence in each layer by apply-
ing a 1D disparity compensated wavelet transform across
the views followed by a 2D SA-DWT on each of the spatial
subbands. Finally, the data is entropy coded using a modi-
fied version of EBCOT. Experimental results show that our
coder outperforms state-of-the-art H.264/AVC at low bit-
rates and intra-image JPEG-2000 over the complete range
of bit-rates. Furthermore, unlike other multi-view image
compression techniques, our implementation does not rely
on estimating a 3D geometric model of the scene.
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1. INTRODUCTION
The recent development of broadband communication chan-

nels and fast processors have brought into focus multi-view
image and video applications as a framework for simulating
realistic, immersive and interactive environments. The re-
lated applications have already been developed within the
computer graphics and gaming industry striving to the same
targets. However, emerging technologies such as e-commerce,
medical imaging, 3D and free-viewpoint TV, have increased
the requirements not only for compression and transmission
efficiency but also for the quality of reconstruction and ren-
dering. In particular, scalable compression algorithms are
essential in some communication scenarios, such as multi-
media communication in mobile networks.

The key issue in these applications is handling the huge
amount of data needed to achieve artifact-free rendering.
This problem has been addressed in several ways, where var-
ious approximations have been applied to reduce the com-
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plexity and data size. The traditional approach in render-
ing, is to ‘simulate’ the environment using geometric en-
tities, such as 3D models, illumination and texture maps.
Although outstanding results have been achieved using spe-
cialized hardware for purely computer generated scenes, this
technique has difficulties capturing the motion in compli-
cated environments. In addition, to achieve photo-realistic
results, the models must often be developed using time-
consuming and expensive supervised algorithms.

An alternative approach called Image Based Rendering
(IBR) has been widely researched over the last two decades
[12]. The input consists of sampled light rays, which can be
easily acquired using a standard hand-held camera. Unlike
in the traditional time consuming ‘simulating’ approach, the
goal of IBR is to ‘estimate’ the missing samples, and hence
render arbitrary views. The main advantage of IBR is that
the algorithm operates with complexity independent of the
scene and renders photo-realistic novel views. One approach
to rendering is to simply use interpolation. This problem
was studied in [4], where the optimal interpolation kernel
was derived using Shannon’s sampling theory. It was also
shown that to achieve artifact-free rendering (without using
additional geometric information), the sampling rate associ-
ated with the camera spacing must be very high. This leads
to an increase in the transmission and storage capacity re-
quirements. For example, 200MB are required to store an
uncompressed data set that consists of 32 by 32 images with
resolution 256× 256 pixels. Thus, the problem of compres-
sion of such a multi-dimensional signal is crucial.

Many algorithms with variations in complexity, efficiency,
scalability and random access have been proposed. These
properties are in general influenced by the type of 3D repre-
sentation used during novel view synthesis. For instance, in
Light Field compression (densely sampled 2D array of im-
ages), a common solution is to remove inter-frame correla-
tion and encode the residuals, which is similar to block-based
video coders. A different approach is to estimate a 3D geom-
etry and utilize it either for warping the images onto aligned
view dependent texture maps [11] or to estimate dense dis-
parity vectors [6]. Furthermore, in [6], the authors use a
lifting implementation of the inter-view wavelet transform
to maintain invertibility and inherently provide a framework
to construct scalable bit-streams.

In this paper, we propose an algorithm for the compres-
sion of a set of multi-view images. The method exploits the
fact that a regularly sampled static scene can be separately
analyzed as a set of coherent layers at different depths. The
layered representation significantly reduces the number of



images required to achieve artifact-free rendering and still
maintains a photo-realistic reconstruction. The subsequent
sub-sampled layers are individually compressed using a dis-
parity compensated wavelet transform. Our novel algorithm
outperforms the compression using JPEG-2000 over all bit-
rates and H.264/AVC at low bit-rates. Furthermore, it sup-
ports both bit-rate and resolution scalability.

This paper is organized as follows. After discussing the
structure of multi-view data and its layer-based represen-
tation in Section 2, we present the compression algorithm
based on the layered representation in Section 3. Then,
we show the obtained experimental results and compare the
performance to the other related methods in Section 4. Fi-
nally, we conclude in Section 5.

2. MULTI-VIEW IMAGE REPRESENTATION
The representation of multiple view images is very com-

plex and involves the 7D plenoptic function. For that rea-
son, several approximations are commonly made to reduce
this complexity. Here, we review the definition and gen-
eral properties of the plenoptic function and the layer based
representation of a 3D scene.

2.1 Plenoptic Function
The notion of the plenoptic function was introduced by

Adelson and Bergen in their seminal work on the elements
of early vision [2]. The plenoptic function can be empir-
ically derived using an assumption that the space is filled
with infinitesimally thin rays of light. A pencil of rays can
be parameterized by a 3D point in space (Vx, Vy, Vz), where
each ray within these pencils can be defined by its direc-
tion of arrival (θ, φ). Furthermore, two additional variables,
wavelength λ and time t, are required to describe colour and
dynamic scenes, respectively. Thus, the general plenoptic
function is a 7D signal:

I = P7 (Vx, Vy, Vz, θ, φ, t, λ) . (1)

Dealing with seven dimensions is not an easy task. Clearly,
existing hardware is not capable of processing or capturing
such a high dimensional signal. Common simplifications in-
clude dropping the wavelength λ and time t to analyze mono-
chromatic (or separate RGB channels) and static scenes, re-
spectively. These simplifications lead to a widely known
representation called the Light Field [8]. Using additional
assumptions that the intensity of light does not change along
its path and that the viewer is confined outside a bounding
box, the light rays can be parameterized by their intersection
with a focal and a camera plane.

To further simplify the problem, we constrain the camera
plane to be a line and model the data as a 1D array of
images (also known as an Epipolar-plane Image (EPI) data
set). By construction, an EPI data set is inherently highly
redundant. Within each image, successive light rays likely
originate from the same object and therefore contribute to
the intra-frame correlation. In addition, due to the parallax,
an object appears at different pixel locations within each
frame. Using the model illustrated in Figure 1, the disparity
associated with a specific depth can be evaluated as:

∆x = x− x′ =
f (V ′

x − Vx)

Z
, (2)

where Z corresponds to the depth of the object, f is the
focal length, x is the pixel coordinate and Vx is the camera

Figure 1: EPI - Horizontal parallax model used to
estimate pixel disparity.

Figure 2: EPI cross-section along the (Vx, x) plane
reveals that points in a 3D space are mapped onto
lines.

location.
Figure 2 illustrates a cross-section of a 1D array of images.

We observe that the EPI is structured and a point in a 3D
space maps onto a line in the plenoptic domain, whose gradi-
ent is inversely proportional to the depth. Therefore, given
two arbitrary lines that intersect in the (Vx, x) plane, the
correct occlusion ordering can be inferred using the gradient
of both lines.

2.2 Layer Based Representation
To further reduce the complexity of the representation, we

separate the 3D scene into layers, which are independently
compressed.

The concept of the layered representation is to partition
the data into coherent regions having a smaller depth vari-
ation. During novel view synthesis, each layer can be inter-
polated using a basis function, whose support is modified
according to the layer’s average depth. Therefore, using the
representation, we implicitly exploit geometric information
to improve the rendering quality and reduce the compression
problem to a sparsely sampled data set.

However, extraction of layers from a general 3D scene is
a non-trivial task. Here, we use a level-set segmentation
algorithm proposed in [3], where each layer is modelled by
a constant depth plane perpendicular to the camera base-
line. An advantage of this unsupervised algorithm is that
it can be extended to an arbitrary number of dimensions.
Furthermore, using a semi-parametric methodology, the al-
gorithm efficiently handles occlusions, which is an important
property for the subsequent compression algorithm.

Figure 3 shows the extracted layers from the data set in
Figure 2. It can be observed, that each layer preserves the
linear structure corresponding to an object location in a 3D
space. In the following section, we compress the data set by
exploiting the coherence within each layer.



Figure 3: Extracted layers using a level-set segmen-
tation algorithm proposed in [3]. The algorithm ap-
plies joint segmentation across the EPI to impose
coherence throughout the data set. Each layer is
modelled by a plane perpendicular to the camera
baseline.

3. LAYER BASED COMPRESSION
As explained in Section 2, the constraints applied to the

general plenoptic function (1) and the layer based represen-
tation reduce the problem to the compression of a sparsely
sampled 3D data set, where the retained dimensions are the
camera location Vx and the spatial coordinates of the pixels
(x, y). To de-correlate the data, we apply to each layer a
separable 3D discrete wavelet transform (DWT) that con-
sists of the 1D disparity compensated transform across the
views and the 2D shape-adaptive (SA) DWT across the spa-
tial dimensions. However, prior to applying the 3D-DWT,
we use a pre-processing algorithm to ensure the layers are
spatially consistent. Finally, the data is entropy coded using
a modified implementation of EBCOT [13]. The complexity
of the overall algorithm is O (N), where N is the total num-
ber of elements in the data set. Here, we discuss each of the
coding steps in more detail.

3.1 Layer pre-processing
As illustrated in Figure 3, the segmented layers might con-

tain occluded regions, which would degrade the compression
performance generating a number of large high-pass coeffi-
cients in the inter-view transform. To solve this problem,
we extrapolate the missing pixels along the EPI lines in each
layer. The occluded data is computed using an average of all
the non-zero pixels along each EPI line. To preserve realis-
tic reconstruction of the occluded regions, only the pixels in
the nearest layer (with the smallest depth) are shown after
decoding.

3.2 Disparity compensated DWT
Here, we design new basis functions along the view di-

mension using disparity compensated lifting. Lifting [5], has
been chosen for its reduced complexity and easy invertibil-
ity, which allows disparity compensation to be incorporated
into the lifting steps.

To implement a disparity compensated Haar transform,

we modify the standard equations by including a warping
operator W:

Le [n] =
Pe [n]−W{Po [n]}

2
(3)

Lo [n] = Po [n] +W{Le [n]}, (4)

where, Po [n] and Pe [n] represent 2D images with spatial co-
ordinates (x, y) located at odd (2n + 1) and even (2n) cam-
era locations, respectively. Following the implementation,
Le [n] and Lo [n] contain 2D high and low-pass subbands,
respectively. For simplicity, the camera sampling rate has
been normalized to be an integer value. We obtain a multi-
resolution decomposition by re-applying the transform on
the low-pass subband components Lo [n].

In both, (3) and (4), the warping operator is chosen to
maximize the inter-image correlation. This is achieved by
using a projective operation that maps one image onto the
same viewpoint as its odd/even complement in the lifting
step. Using (2) and the fact that the layers are modelled
by a constant depth plane, we define the warping operation
from viewpoint n1 to n2 as:

Wn1→n2{P [n1]} (x, y) = P [n1] (x−∆x (n2 − n1) , y) , (5)

where ∆x is the disparity between consecutive images within
a layer.

3.3 Shape-Adaptive 2D DWT
The extracted layers commonly contain frames with an

object at a particular depth, whereas the rest is considered
as a background and set to zero (or another constant). For
that reason, the standard 2D DWT applied to the entire
spatial domain results in many large high-pass coefficients
generated by filtering across the artificial boundary between
the object and the background.

To improve the coding efficiency, the SA-DWT [9] is used
to encode the texture within arbitrary shaped objects. First,
the contour of the object is losslessly encoded using a mod-
ified version of the Freeman code [10], then, the DWT is
applied to the object domain. To reduce the influence of
the object boundary, the signal is symmetrically extended
whenever the wavelet filtering is crossing the contour. The
DWT is built as a separable transform with linear-phase
symmetric wavelet filters (9/7 or 5/3), which, together with
the symmetric signal extension, leads to critically sampled
transform subbands. We note that the complete segmenta-
tion of a layer is fully defined by encoding the contour of an
object in one frame and projecting it to the other images.

3.4 Quantization Entropy Coding
To encode the transform coefficients we use an implemen-

tation of EBCOT [13]. We apply a modification, where only
the critically sampled transform coefficients corresponding
to each layer and not the zero background are encoded.

The concept of the algorithm is to partition the data into
blocks and for each one obtain an operational rate-distortion
curve by losslessly encoding the data using a context-adaptive
arithmetic coder. Consequently, Lagrangian multipliers are
used to allocate an optimum number of bits to each block
given a rate constraint. An advantage of this algorithm is
that it can be easily modified to support bit-rate and resolu-
tion scalability and also a random access feature. However,
notice that random access can be achieved only approxi-
mately because of the finite length of the spatial wavelet
filter.



Figure 4: Rate-distortion comparison of the layer
based approach with intra-image JPEG-2000 and
H.264/AVC. The layer based approach outperforms
JPEG-2000 at all bit-rates and H.264/AVC at low
bit-rates. Here bpp and PSNR are parameters as-
sociated with the sparsely sampled representation.

4. SIMULATION RESULTS
To evaluate the performance of our layer based compres-

sion algorithm, we compare it to motion JPEG-2000 [1] and
block-based state-of-the-art H.264/AVC (Main Profile, level
2.1) [7]. We use an input data set, called ‘Animal Farm’ [3],
which consists of 32 sparsely sampled images with occlu-
sions, having the resolution of 232× 624 pixels 1. The data
is segmented into four coherent layers using [3]. A negligi-
ble overhead of 0.00087bpp is required to losslessly encode
the segmentation. Figure 4 depicts a quantitative analysis of
the layer based compression algorithm. In comparison to the
intra-view coding using JPEG-2000, we observe a significant
improvement over the complete range of bit-rates, with gains
of up to 8dB. Regarding the state-of-the-art H.264/AVC, we
observe a gain at low bit-rates, at an adequate quality level
of 33dB.

5. CONCLUSION AND FUTURE WORK
In this paper, we have presented a layer based compres-

sion of EPI data sets. Layers are extracted using a recently
developed layer extraction algorithm [3]. The segmented
layers are compressed using disparity compensated lifting
across the view-dimension, followed by a spatial 2D SA-
DWT transform. Furthermore, we have shown that our al-
gorithm outperforms the intra-view JPEG-2000 across the
complete range of bit-rates and H.264/AVC at low bit-rates.
In the future, we aim to extend the algorithm to operate on a
more general Light Field using an adaptively chosen number
of layers.
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