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ABSTRACT

We propose a novel compression method for multiview images.
The algorithm exploits the layer-based representation, which par-
titions the data set into planar layers characterized by a constant
depth value. For efficient compression, the partitioned data is de-
correlated using the separable three-dimensional wavelet transform
across the viewpoint and spatial dimensions. The transform is mod-
ified to efficiently deal with occlusions and disparity variations for
different depths. The generated transform coefficients are entropy
coded. Experimental results show that our coding method is capable
of outperforming the state-of-the-art algorithms, like H.264/AVC,
for different data sets.

Index Terms— Image coding, Wavelet transforms

1. INTRODUCTION

In recent years, multiview image and video processing has become
an active research area with significant applications in the gaming in-
dustry, medical imaging, three-dimensional and free viewpoint TV.
The common goal in these fields is to provide an interactive simu-
lation of the real world with photorealistic rendering of the visual
information.

The typical multiview setup assumes a set of synchronized or
unsynchronized cameras that capture the same scene from different
viewpoints. The main challenge is how to process a huge amount
of the acquired data and, at the same time, to achieve artifact-free
rendering. Several solutions have already been proposed, where dif-
ferent approximations have been applied to reduce the data complex-
ity and size. The popular approach is to ‘simulate’ the environment
using complex geometric, illumination and motion models [1]. Al-
though these methods have been successful for computer generated
scenes, they have faced difficulties to efficiently represent compli-
cated natural environments.

In contrast to geometric modeling, Image Based Rendering
(IBR) [2] has been proposed to avoid the complex modeling process
and to render novel viewpoints directly from the acquired data, while
preserving photorealistic rendering even in case of complex scenes.
However, IBR requires a high sampling density across the view-
points, which leads to a large number of captured images or video
sequences. Therefore, to store or transmit this data, an efficient
compression algorithm is essential.

Many compression algorithms with variations in complexity, ef-
ficiency, scalability and random access have been proposed. These
properties are in general influenced by the type of 3D representation
used during novel view synthesis. For instance, in light field com-
pression [3], a common solution is to remove inter-frame correla-
tion and encode the residuals, which is similar to block-based video
coders. An alternative approach is to estimate the scene geometry

and utilize it either for warping the images onto aligned view de-
pendent texture maps [4] or to estimate dense disparity vectors [5].
Furthermore, in [5], the authors use a lifting implementation of the
inter-view wavelet transform to maintain invertibility and inherently
provide a framework to construct scalable bit-streams.

In this paper, we propose a novel compression algorithm for an
array of multiview images. The method exploits the segmentation of
regularly sampled static scenes into a set of coherent layers at differ-
ent depths [6]. The set of layers is compressed using a 3D Discrete
Wavelet Transform (DWT) followed by entropy coding. The pro-
posed algorithm supports both bit-rate and resolution scalability. To
evaluate the performance of our codec, we compare it to H.264/AVC
and we show that our novel compression scheme outperforms the
state-of-the-art codec when encoding natural scenes.

This paper is organized as follows. We discuss the structure and
redundancy of multiview images and review the layer-based repre-
sentation in Section 2. Then, in Section 3, we present the novel
compression algorithm that exploits the layer-based representation.
We show the experimental results and analyze the performance of
our codec in Section 4. Finally, we conclude in Section 5.

2. MULTIVIEW IMAGE REPRESENTATION

In this section, we analyze the redundancy of the data in the Epipolar
Plane Image (EPI) representation of multiview images [7]. Then, we
briefly review the layer-based representation proposed in [6].

2.1. Multiview image data structure and redundancy

Although a huge amount of multiview data is required to achieve
artifact-free rendering, this data set is highly correlated and redun-
dant. Within each image, neighboring light rays are likely to origi-
nate from the same object and, therefore, they contribute to the intra-
frame correlation. In addition, due to the parallax, an object appears
at different pixel locations x and x′ seen from different viewpoint
coordinates (frames) Vx and V ′

x, thus contributing to the intra-frame
correlation (see Fig. 1). Assuming the scene is Lambertian and has
no occlusions, this shift in pixel locations (disparity) ∆x = x − x′

can be represented as a function of the corresponding viewpoint co-
ordinates, depth Z of the object and focal length f, that is,

∆x =
f (V ′

x − Vx)

Z
. (1)

The obtained relation between the viewpoint and spatial coor-
dinates is commonly illustrated as a set of EPI lines. An example
of the EPI lines is shown in Fig. 2(a), where the pixels in the 3D
space are projected onto lines with slopes inversely proportional to
the depth. Notice that such a set of EPI lines is highly correlated.



Fig. 1. Horizontal parallax model used to estimate the pixel disparity.

(a) Multiview image cross-
section. The data can be
analyzed as a set of EPI lines
with varying gradients

(b) Extracted layers

Fig. 2. Multiview image data set cross-section and the extracted layers.

2.2. Layer-Based Representation

To reduce the data complexity, we separate the 3D scene into layers,
where each layer is modeled by a constant depth plane and has a
smaller depth variation than the original scene.

Extraction of layers from a general 3D scene is a non-trivial
task. Here, we use a variation of the level-set segmentation algo-
rithm which was proposed in [6]. An advantage of this unsupervised
method is that it can be extended to an arbitrary number of dimen-
sions. Furthermore, using a semi-parametric methodology, the algo-
rithm efficiently handles occlusions, which is an important property
for the subsequent compression algorithm.

Fig. 2(b) illustrates the extracted layers from the data set in Fig.
2(a). It can be observed that each layer preserves the linear structure
corresponding to an object location in a 3D space.

3. LAYER-BASED COMPRESSION

Our novel compression algorithm consists of several steps. First,
the calibrated images captured at an array of viewpoints are parti-
tioned into correlated layers using a level-set algorithm, as explained
in Section 2.2. To ensure the spatial consistency of the extracted
layers, the occluded pixels are extrapolated along the EPI lines in
a pre-processing step. Then, each layer is separately de-correlated
across the viewpoint dimension using a 1D disparity-compensated
DWT. The low-pass transform coefficients that originate from dif-
ferent layers are grouped together in a merging step to exploit the

spatial correlation more efficiently. Finally, the data is further de-
correlated across the spatial dimensions using the 2D shape-adaptive
(SA) DWT. The resulting transform coefficients are entropy coded
using a modified implementation of EBCOT [9], where the bit allo-
cation is implemented using the Lagrange multiplier method [8].

3.1. Disparity-compensated 1D DWT

The extracted layers obtained using the segmentation algorithm from
[6] might contain occluded regions, as illustrated in Fig. 2(b). Such
spatially inconsistent EPI lines would severely affect the compres-
sion performance generating a number of large magnitude high-pass
coefficients after the transform across the viewpoint dimension. For
that reason, the extracted layers are first pre-processed so that the
missing pixels due to the occlusion are extrapolated along the EPI
lines. The extrapolation is implemented using an average value of all
the non-zero pixels along each EPI line. Notice that such a procedure
increases the total number of pixels, thus, resulting in an overcom-
plete representation. However, to achieve a correct reconstruction,
only the non-occluded EPI lines with the smallest corresponding
depth (the largest slope of the EPI lines) are used, which is realistic
in case the layers are not transparent. Fig. 3 illustrates an exam-
ple of an originally extracted layer and its extrapolated counterpart.
Notice that the extrapolated layers are spatially consistent across the
viewpoint dimension.

To apply the DWT across the viewpoint dimension, we design
new adaptive basis functions using disparity compensated lifting.
The lifting scheme [9] has been chosen for its reduced complexity
and easy invertibility and it allows disparity compensation to be effi-
ciently incorporated into the transform steps. To implement a dispar-
ity compensated Haar transform, we modify the standard equations
by including a warping operator W:

Lo [n] =
Po [n]−W{Pe [n]}

2
(2)

Le [n] = Pe [n] +W{Lo [n]}, (3)

where, Po [n] and Pe [n] represent 2D images with spatial coordi-
nates (x, y) located at odd (2n+1) and even (2n) camera locations,
respectively. Following the implementation, Le [n] and Lo [n] con-
tain the 2D low and high-pass subbands, respectively. A multireso-
lution decomposition is obtained by iteration of the transform on the
low-pass subband component Le [n].

In both (2) and (3), the warping operator W is chosen so that
the correlation within the layers across the viewpoint dimension is
maximally exploited. This is achieved by using a projection that
maps an image onto the same viewpoint as its odd/even complement
in the lifting step. Using (1) and the fact that the layers are modeled
as planes with constant depths, the warping from viewpoint n1 to n2

is defined as:

Wn1→n2{P [n1]} (x, y) = P [n1] (x + ∆x (n2 − n1) , y) , (4)

where ∆x is the disparity between the consecutive images within a
layer.

3.2. Shape-adaptive 2D DWT

To improve the de-correlation efficiency of the spatial transform, the
low-pass subbands from each layer are grouped together into a single
image and they are further jointly processed. Notice that, due to the
pre-processing extrapolation of the EPI lines (as explained in Section



(a) Original owl layer (b) Owl layer with pre-
processing

Fig. 3. Extrapolation of the extracted layers. (a) Extracted layers might have
discontinuities in the EPI lines due to the occlusion, which is not efficiently
captured by the DWT across the viewpoint dimension. (b) The values in the
EPI lines are extrapolated using the mean of the non-occluded pixels.

3.1), the low-pass subbands contain more pixels than in the original
data set. However, such an overcomplete representation does not
affect the compression performance because of a high correlation
between the added pixels and their neighbors. Moreover, since the
segmentation data is known from the layer extraction process, no
additional overhead information about the shape and position of the
extrapolated pixels is required to be transmitted. A comparison be-
tween the original and recombined layers is illustrated in Fig. 4.

The extracted layers are commonly bounded by an irregular
(non-rectangular) shape. For that reason, the standard 2D DWT ap-
plied to the entire spatial domain is inefficient because of a boundary
effect, that is, many large high-pass coefficients are generated by
filtering across this artificial boundary. To improve the coding ef-
ficiency, the SA-DWT [10] is used to encode the texture of the
layers within arbitrary shaped objects. The boundary of the grouped
low-pass components includes the low-pass subband from all the
layers, whereas, the high-pass components are processed separately.
First, the contour of the layers is losslessly encoded using a modified
version of the Freeman code [11]. Then, the DWT is applied within
the layer bounds so that the texture image is symmetrically extended
whenever the wavelet is crossing the contour. The DWT is built as a
separable transform with linear-phase symmetric wavelet filters (9/7
or 5/3), which, together with the symmetric signal extensions, leads
to critically sampled transform subbands. Notice that the complete
segmentation of a layer is fully defined by encoding the contour
of an object in one frame and warping it to the other viewpoints.
Finally, the transform coefficients obtained by the SA-DWT are
partitioned into blocks and arithmetically coded using a variation of
EBCOT [12].

3.3. Layer merging based on rate-distortion performance

Since the original layer segmentation method implemented as in [6]
is not optimized in the rate-distortion sense, it can produce layers
with small size that are expensive to encode (that is, they require too
many bits per pixel). To eliminate such layers and to improve the
rate-distortion performance, we propose a greedy algorithm to merge
the neighbor layers whenever the corresponding rate-distortion per-
formance can be improved.

Given the resulting layer segmentation from Section 3.1, the al-
gorithm searches for two layers with the minimal distance in depths.
Denote such layers as l1 and l2 and the corresponding rates and dis-
tortions obtained by a separate encoding of these layers as R1, R2,
D1 and D2, respectively. Furthermore, denote as l1,2 the layer ob-
tained by merging l1 and l2. The resulting rate and distortion as-
sociated to encoding the merged layer l1,2 are R1,2 and D1,2. The

(a) Tsukuba Layers after applying the DWT

(b) Tsukuba Layers after recombining the lowpass
component of the DWT

Fig. 4. A comparison of the separated and recombined low-pass components
of the layers from the test data set Tsukuba. Notice that the recombined
components resemble a downsampled version of the original signal.

algorithm chooses to encode these layers either separately or jointly
(by merging), so that the chosen solution has a smaller associated
Lagrangian cost D + λR. Thus, if

D1,2 + λR1,2 < (D1 + D2) + λ(R1 + R2), (5)

then the layers are merged and encoded jointly. Otherwise, they are
retained and encoded separately. Notice that the Lagrangian mul-
tiplier λ determines the weight of the bit-rate in the compression
performance and it is preselected. This process continues in an iter-
ative approach until either the Lagrangian cost increases or all of the
layers are merged into one.

4. SIMULATION RESULTS AND ALGORITHM ANALYSIS

To evaluate the performance of our proposed compression algo-
rithms, we compare it to the state-of-the-art H.264/AVC [13] codec.
The 1D array of images is treated as a temporal signal and encoded
using the Main Profile, Level 2.1.

We use three different input data sequences, called ‘Animal
Farm’ (232 × 624 × 16) [6], ‘Tsukuba’ (284 × 382 × 4) and
‘Teddy’(368 × 352 × 4), both from [14]. The data sets vary in
scene and texture complexity. Teddy has a wide range of disparities,
whereas Tsukuba and Animal Farm can be well approximated using
a small number of depth planes. A comparison of our codec against
H.264/AVC is illustrated in Fig. 5. We note that our proposed al-
gorithm outperforms H.264/AVC when encoding the Animal farm
data at all bit-rates. Here, the layer based representation efficiently
captures the 3D scene and the segmentation is accurate. Regarding
the Tsukuba data set, our algorithm shows gains at low-rates up to
1.28dB. At higher bit-rates the performance of both codecs is very



similar. When encoding the Teddy data set, the performance of our
algorithm is comparable to H.264/AVC. In this case, the layer-based
representation does not capture the complexity of the scene. In the
future, we aim to improve these results by modifying the objective
function in the layer extraction algorithm.

5. CONCLUSION

We presented a novel multiview image compression algorithm. The
algorithm is based on the layer-based representation, which parti-
tions the data into correlated layers modeled by a constant depth
plane perpendicular to the camera baseline. To encode the data,
we apply a separable 3D-DWT as a combination of the 1D-DWT
across the viewpoint dimension and the SA-DWT across the spatial
dimensions followed by entropy coding. The algorithm contains two
pre-processing stages to improve the compression efficiency. First,
the occluded pixels are extrapolated along the EPI lines prior to ap-
plying the inter-view transform. Second, low-pass components of
the inter-view transform are recombined into a new subband frame
to efficiently exploit the inter-layer correlation. Moreover, the ex-
tracted layers can be merged and processed jointly whenever such
a procedure improves the rate-distortion performance. The experi-
mental results demonstrate that our algorithm is competitive or even
outperforms H.264/AVC. The future work includes extending the al-
gorithm to operate on a light field and an additional time dimension.
In addition, we aim to improve the layer-extraction algorithm to im-
prove compression performance in complicated scenes.
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Fig. 5. Quantitative coder comparison.


