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Motivation
• Energy-efficient sensing inspired by nature (integrate and fire like neurons)
• The pixels are independent and asynchronous
• Pixel “fires” when measuring light intensity changes
• Information stored: location of pixel that fired and time of when it fired

Videos taken from 
Inivation.com



Motivation (cont’d)

• New sensing technologies also lead to new sampling challenges
– How can we embed information related to complex signals into the timing 

information of spikes?
– Besides its theoretical implications, addressing this question will lead to new 

neuromorphic sensing devices 
– Can new sampling results inspire new end-to-end neural networks?



Outline

• Sampling based on timing
– Integrate and fire systems
– Time-based sampling of sparse signals (1D and 2D+t cases)

• Model-based deep learning for event cameras
– End-to-end neural networks for event cameras
– Deep unfolding approach for video reconstruction

• Conclusions and outlook



Bio-Inspired Energy Efficient Sensing

• Current sensing methods are energy inefficient especially when low-latency is needed.
• Example: Rainfall estimation
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Bio-Inspired Energy Efficient Sensing

July 18 July 28 September 2

• Only record the day when the bucket is full and then empty it

Approach 2



Bio-Inspired Energy Efficient Sensing
Approach 2 maps analogue information into a time sequence and is used by nature (e.g., integrate-
and-fire neurons)

Time encoding appears in nature, as a mechanism used by neurons to represent sensory 
information as a sequence of action potentials, allowing them to process information very 
efficiently.



Integrate-and-fire System

Time-Encoding Machines
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July 18 July 28 September 2

Reconstruction from time-encoded information

• Reconstruction achieved by imposing iteratively:
– Consistency constraint
– Signal prior (e.g., bandlimited function) constraint



July 18 July 28 September 2

Reconstruction from time-encoded information

• Reconstruction achieved by imposing iteratively:
– Consistency constraint
– Signal prior (e.g., bandlimited function) constraint



Comparator System
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• The iterative approach proposed by Aldroubi and Grochenig 

Reconstruction from time-encoded information
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Reconstruction from time-encoded information
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• The iterative approach proposed by Aldroubi and Grochenig 

Reconstruction from time-encoded information



• Key result:    if the density of samples D≥1 then perfect reconstruction can be achieved 
(Aldroubi and Grochenig2) 

• Key Issue 1: In the case of uniform sampling the density is 𝐷 = 1. This means that 
current TEMs are less energy efficient than uniform sampling!

• Key Issue 2: Cannot sample sparse (non-bandlimited) signals with the current methods.

Reconstruction from time-encoded information

2A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces” SIAM Review 2001
  



• For integrate-and-fire machines exact reconstruction proved here: A. A. Lazar and L. T. 
Toth, “Time encoding and perfect recovery of bandlimited signals”, ICASSP 2003  

 

Reconstruction from time-encoded information
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Time-based Sampling of Sparse Signals 
Signals:
• We consider sparse continuous-time signals like stream of pulses, piecewise constant or 

regular signals
Sensing Systems:
• We filter before using a TEM
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Our approach for time decoding of signals
• Reconstruction of 𝑥(𝑡) depends on the 

– sampling kernel 𝜑(𝑡) 
– the density of time instants {𝑡)} 

• We achieve a sufficient density of output samples by imposing conditions on:
– The trigger mark of the integrator (integrate-and-fire TEM ).



Integrate and Fire TEM  
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• Given the times 𝑡!, 𝑡", … , 𝑡#, the amplitude values are

Acquisition Models

Integrate-and-fire Time Encoding Machine

The output spikes can be computed as:

yn = y(tn) = ±CT =

Z tn

tn�1

f (⌧)d⌧ =

Z tn

tn�1

Z
x(↵)'(↵� t)d↵d⌧.

R. Alexandru, P.L. Dragotti Time-based sampling and reconstruction of non-bandlimited signals 13



• Equivalently the output samples can be expressed as: 

Acquisition Models

Integrate-and-fire Time Encoding Machine

Equivalently, the output samples can be expressed as:

y(tn) = hx(t), (' ⇤ q✓n)(t � tn�1)i,
where ✓n = tn � tn�1 and q✓n(t) is defined as:

q✓n(t) =

(
1, 0  t  ✓n,

0, otherwise.
R. Alexandru, P.L. Dragotti Time-based sampling and reconstruction of non-bandlimited signals 14

Integrate and Fire TEM  
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Integrate and Fire TEM  
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• When 𝜑(𝑡) is e.g., an E-spline, the equivalent kernel (𝜑 ∗ 𝑞*$)(𝑡 − 𝑡)+") is able to reproduce 
exponentials 

• So trigger mark must guarantee enough samples in a short interval

• Proposition:  when 𝐶! <
,%&$
%-'(

1 − cos -'.
#

 then 𝑡", 𝑡#, 𝑡$ ∈ 𝜏", 𝜏" +
.
#

 and perfect 
reconstruction is possible
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Reproduction of Exponentials 

Pulse shape Reproduction of exponentials



• Key Insight: Reproduction of exponentials can be achieved locally in 
𝐼, using at least two non-uniform shifts of the kernel:

-
!'(

)

𝑐",!𝜑! 𝑡 − 𝑡! = 𝑒*+(& , 𝑁 ≥ 2

• The kernels should be continuous within that local interval 𝐼.

Reproduction of Exponentials

𝑡# 𝑡$𝑡&# 𝑡&$

𝐼

𝑡&# - discontinuity of 𝜑 𝑡 − 𝑡#

𝑡&$ - discontinuity of 𝜑 𝑡 − 𝑡$



Reconstruction of an input Dirac from time-encoded information

• The output samples are: 𝑦 𝑡' = 𝑥 𝑡 , (𝜑 ∗ 𝑞')(𝑡) = 𝑥#𝜑'(𝜏#)
• Since 𝜑' 𝑡 = 𝑎",'𝑒𝜶𝟎* + 𝑎#,'𝑒𝜶𝟏*, we find 𝒄𝟏, 𝒄𝟐, 𝒅𝟏, 𝒅𝟐 such that in 𝐼# = [𝑡$ − 𝑇, 𝑡#]:

𝒄𝟏 𝜑# 𝑡 + 𝒄𝟐 𝜑$ 𝑡 = 𝑒𝜶𝟎*

𝒅𝟏 𝜑# 𝑡 + 𝒅𝟐 𝜑$ 𝑡 = 𝑒𝜶𝟏*

• We then use these coefficients to define the signal moments, in 𝐼# = [𝑡$ − 𝑇, 𝑡#]:
𝑠" = 𝑐#𝑦 𝑡# + 𝑐$𝑦 𝑡$ = 𝑥# 𝑐#𝜑# 𝜏# + 𝑐$𝜑$ 𝜏# = 𝑥#𝑒𝜶𝟎-#
𝑠# = 𝑑#𝑦 𝑡# + 𝑑$𝑦 𝑡$ = 𝑥# 𝑑#𝜑# 𝜏# + 𝑑$𝜑$ 𝜏# = 𝑥#𝑒𝜶𝟏-#

𝑡# 𝑡$𝑡&# 𝑡&$

𝐼



Integrate and Fire – Reconstruction of Pulses  



Reconstruction of close pulses  

21

Reconstruction of a stream of Diracs from time-encoded information

𝑥(𝑡)
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Fig. 13: Universal sampling of a sequence of bursts of Diracs using
the integrate-and-fire TEM. The input signal is shown in (a), the
output non-uniform samples of one channel used for estimation in
(b), and the reconstructed signal in (c).

B. Robustness of the Integrate-and-fire TEM to Noise

In many practical circumstances, the input signal is cor-
rupted by noise, which is typically assumed to be white,
additive Gaussian noise. When this happens, the non-uniform
times {tn} change which means that the sequence of moments
sm is also corrupted, and perfect reconstruction may no longer
be possible. Suppose we filter the noisy input with h(t) to
obtain:

f(t) =

Z +1

�1
[x(⌧) + e(⌧)]h(t� ⌧)d⌧

=

Z t+L

t

x(⌧)h(t� ⌧)d⌧ +

Z t+L

t

e(⌧)h(t� ⌧)d⌧

(a)
⇡

Z t+L

t

x(⌧)h(t� ⌧)d⌧,

where e(t) is white Gaussian noise, and (a) holds assuming
e(t) has average value equal to 0 and L is sufficiently large.

In Fig. 14 we show the reconstruction of a piecewise
constant signal corrupted by white, additive Gaussian noise,
using the method in Section IV-E. The filter is the derivative
of a fourth-order E-spline of support L = 4 which can
reproduce the exponentials e±j ⇡

3 t and e
±j ⇡

6 t, the trigger mark
of the comparator is CT = 0.001, the standard deviation of
the noise is � = 0.1 (SNR= 21.56dB), and the separation
between consecutive discontinuities of the input is larger than
L. The reconstruction of the input from noisy samples is very
accurate. A quantitative analysis of the effect of noise on the
retrieval of this piecewise constant signal is presented in Table
I. The table shows the error of the estimated locations and the
relative error of the estimated amplitudes of the discontinuities
in the input signal, averaged over 10000 experiments.

Fig. 14: Estimation of a piecewise constant signal from noisy samples,
obtained using the integrate-and-fire TEM. The noisy input is shown
in (a), and the reconstruction in (b).

VI. DENSITY OF NON-UNIFORM SAMPLES OBTAINED
WITH AN INTEGRATE-AND-FIRE TEM

In the previous sections, we have presented techniques for
estimation of non-bandlimited signals from timing informa-
tion. We have seen that perfect estimation can be achieved
using simple algorithms, and physically realisable kernels. In
this section we outline the fact that in many settings sampling

TABLE I: Effect of noise on the estimation of a piecewise
constant signal, from spikes obtained using the integrate-and-
fire TEM. The error ✏t is the average absolute difference
between the true and estimated locations, and ✏A is the relative
error of the estimated amplitudes of the input discontinuities.

� ✏t ✏A
0.01 2.61⇥ 10�4 6.21⇥ 10�5

0.05 0.0015 2.1509⇥ 10�4

0.1 0.0042 0.0026

based on timing using our integrate-and-fire system is an
efficient way to acquire signals, resulting in a smaller density
of samples, compared to classical sampling.

As a case in point we consider the retrieval of bursts of K
Diracs, described in Section IV-D. We have seen that perfect
reconstruction from timing information can be achieved, pro-
vided the separation between consecutive bursts is at least L,
and that the Diracs within any burst are sufficiently close. In
particular, let us denote the maximum separation between the
last and first Dirac within a burst with � = max(⌧K � ⌧1) <
L
2 , which can be determined according to Eq. (32) and (33).
Moreover, let us assume the input is sufficiently sparse, such
that the average separation between consecutive bursts is L+S,
with S > 0. Under these assumptions, the results in [6]
show that in order to retrieve the K Diracs from uniform
samples, we need at least 2K samples within the interval
L�� following the burst of Diracs. As a result, the uniform
sampling period must satisfy T  L��

2K . Then, the number
of uniform samples we record within an interval of length
L + S is L+S

T = 2K(L+S)
L�� . On the other hand, in the case

of time encoding using the integrate-and-fire TEM in Fig. 3,
the results in Section IV-D show that we need to record 4
output samples for each of the K channels (or equivalently,
4K samples for the case of single-channel sampling), for
each burst of K Diracs. We note that Eq. (33) shows that
in many situations, the TEM outputs more than 4 spikes per
channel. Nevertheless, these samples can be discarded since
they are not used in estimation. For example, one way to stop
recording spikes once we have obtained 4 non-zero samples,
is to increase the trigger mark CT of the comparator in Fig.
3, for a duration of L��.

Moreover, when the input is constant (zero), the integrate-
and-fire TEM does not fire, and hence there are no output
samples. Therefore, in an interval of size L + S, the number
of stored samples from a K-Dirac burst is 4K, 8S.

Furthermore, 2K(L+S)
L�� > 4K for S � L�2� > 0 and 8K,

which shows that the average number of non-uniform spikes
required for the retrieval of K Diracs is lower than the number
of uniform samples required to estimate the same number of
free input parameters, when the input is sufficiently sparse.

VII. CONCLUSIONS

In this work we established time encoding as an alternative
sampling method for some classes of non-bandlimited signals.
The proposed sampling scheme is based on first filtering
the input signal, before retrieving the timing information
using a crossing or integrate-and-fire TEM. We demonstrated
sufficient conditions for the exact recovery of streams of

Integrate and Fire – Reconstruction of Pulses  



Integrate and Fire – Piecewise Constant Signals

This is equivalent to the way a pixel operates in neuromorphic video cameras



Integrate and Fire – Piecewise Constant Signals

Filtered Stream of Diracs



Energy Efficient Sampling -Results
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signal with the E-spline '(t). The discontinuities dx(t)
dt can

be estimated from the output spikes, by extending the results
of Proposition 5 to the case of a P -order E-spline 'P (t),
with P � 2. In this case, the E-spline 'P (t) of support L

can reproduce P � 2 different complex exponentials e
j!mt,

with !m = !0 + �m. and m = 0, 1, ..., P � 1. Moreover,
choosing � = �2!0

P�1 and P even ensures the kernel 'P (t)
is a real-valued function. As before, the separation between
consecutive Diracs must be larger than L and the trigger mark
of the comparator must satisfy:

0 < CT <
Amin

P + 2

Z L
P

0

'P (�⌧)d⌧. (36)

Suppose we wanted to estimate the k
th discontinuity in the

signal dx(t)
dt , of amplitude zk and located at ⌧k, and let us

denote the locations of the first output spikes after ⌧k with
tn, tn+1, ...tM . Then, using a similar proof as in Section IV-B,
we can show that the constraint in Eq. (36) guarantees that
⌧k 2 I = [tn+P � L

P , tn]. Then, we can compute the following
signal moments:

sm =
PX

i=1

c
I
m,ny(tn+i)

(a)
= zk

PX

i=1

c
I
m,n('P ⇤ q✓n+i)(⌧k � tn+i�1)

(b)
= zke

j!m⌧k , for m = 0, 1, ..., P � 1.

In these derivations, (a) follows from Eq. (7), and (b) holds
given ⌧k 2 [tn+P � L

P , tn], and the fact that none of the
kernels ('P ⇤ q✓n+i)(⌧k � tn+i�1) have any discontinuities
in [tn+P � L

P , tn], for i = 1, 2, ..., P . As before, we can use
Prony’s method to estimate zk and ⌧k from the signal moments
sm. Finally, we can retrieve the piecewise constant signal x(t)
once we have estimated its discontinuities dx(t)

dt .
The sampling and reconstruction of a piecewise constant

signal are depicted in Fig. 11. The filter is the derivative of
the fourth-order E-spline, of support L = 4, as seen in Fig.
11(b), the separation between input discontinuities is larger
than the kernel’s support L, as depicted in Fig. 11(a), and the
comparator’s trigger mark is CT = 0.001. The estimation of
the input is exact to numerical precision.

Fig. 11: Sampling of a piecewise constant signal using the integrate-
and-fire TEM. The input is shown in (a), the sampling kernel in (b),
the non-uniform samples used for estimation of the first two input
discontinuities in (c), and the reconstructed signal in (d).

V. GENERALIZED TIME-BASED SAMPLING

To highlight the potential practical implications of the
methods developed in the previous sections, we present here
extensions of our framework to deal with arbitrary kernels and
the noisy scenario, and show that reliable input reconstruction
can be achieved also in these scenarios.

A. Sampling with Arbitrary Kernels

In the previous sections we have presented methods for
perfect retrieval of certain classes of non-bandlimited signals
from timing information. We have seen that these methods
require the sampling kernel '(t) to locally reproduce expo-
nentials, in order to be able to map this problem to Prony’s
method. In reality, however, the sampling kernel may not
have the exponential reproducing property as in Eq. (13). Let
us now consider an arbitrary kernel '̃(t), and find a linear
combination of its non-uniform shifted versions that gives the
best approximation of P exponentials f(t) = e

j!mt within
an interval I , for !m = !0 + �m, m = 0, 1, ..., P � 1,
and � = �2!0

P�1 . In other words, we want to find the optimal
coefficients c

I
m,n such that:

NX

n=1

c
I
m,n'̃(t� tn) ⇡ e

j!mt
, (37)

for t 2 I and n = 1, 2, ..., N , with N being the number of
kernels '̃(t� tn) overlapping I .

We find the coefficients cm,n using the least-squares ap-

proximation method described in [38]. The coefficients are
computed using the orthogonal projection of f(t) onto the
space spanned by the non-uniform shifts '̃(t� tn), such that:

hf(t)�
NX

k=1

c
I
m,k'̃(t� tk), '̃(t� tn)i = 0, (38)

for t 2 I and n = 1, 2, ..N .
Furthermore, Eq. (38) is equivalent to:

hf(t), '̃(t� tn)i =
NX

k=1

c
I
m,kh'̃(t� tk), '̃(t� tn)i,

which represents a system of N equations from which we can
determine the N coefficients cIm,k, for each m = 0, 1, ..., P�1.

We then use the calculated coefficients cIm,k to compute the
signal moments as in Section IV. Finally, the estimation of
the input can be further refined using the Cadzow iterative
algorithm in order to increase the accuracy of the signal
moments, before applying Prony’s method [39], [40].

The sampling and reconstruction of bursts of 2 Diracs are
depicted in Fig. 13. We use the multi-channel estimation
method presented in Section IV-D, where the filter of each
channel is a third order B-spline �3(t), such that the modified
kernel (�3 ⇤ q✓n)(t) in Eq. (5) cannot reproduce exponentials.
Moreover, we aim to approximately reproduce 4 different
exponentials for each channel, and hence we require a number
of 4 non-uniform samples, as discussed in Section II-B. In
Fig. 12, we depict the approximate exponential reproduction
in Eq. (37), within the interval I = [0.82, 1.4] overlapping
the first burst of Diracs. Finally, the estimation of the input is
close to exact, as depicted in Fig. 13(c).

Fig. 12: Approximate exponential reproduction using non-uniform
shifts of the kernel (�3 ⇤ q✓n)(t). The kernels are shown in (a), and
the exponential reproduction using these shifted kernels in (b).

If the distance 𝑆 between discontinuities 
is on average 𝑆 > (𝐿 − 1)𝑇	with 𝑇 being 
the sampling period in uniform sparse 
sampling then the new time encoding 
framework3 is more efficient than 
sparse sampling (lower sampling 
density

3R. Alexandru and P.L. Dragotti, Reconstructing Classes of Non-bandlimited Signals from Time 
Encoded Information, IEEE Trans. on Signal Processing, vol.68, 2020. 



Integrate and Fire and Neuromorphic Cameras
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Sensing Diversity for Neuromorphic Cameras

• Key insight: design an end-to-end neural network where the 
acquisition process is part of the learned architecture

• Key approach: each pixel behaves differently
• The network architecture for reconstruction is model-based

 

Video-to-events-to-video (V2E2V)
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• Validate how alternative event generation strategies improve video reconstruction

• Finetune CISTA-LSTC for 1 epoch

• Reconstruct 1 frame using events generated from every 10 HFR frames
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Fig. 6. Video-to-events-to-video flowchart. The E2V part is realised with a customized v2e, where different fc and C for adjacent pixels are applied.

The V2E part is implemented with our CISTA-LSTC network.

pixels corresponding to !!, #!
pixels corresponding to !", #"

Fig. 7. Schematic of the sensing diversity approach for adjacent pixels

µ = [0.2, 0.4, 0.6, 0.8, 1] randomly and � = 0.03. The values
for positive and negative events are also different, where
Cn = �Cp,� ⇠ N (1, 0.1). Lowpass filtering is executed
randomly on half of sequences with a cutoff frequency of
200 Hz. The refractory period is set to 1ms. The leak rate
and shot noise rate are 0.1 Hz and 1 Hz respectively.

We simulate 1100 sequences, 2s long. We use 1000 se-
quences for training and another 100 for testing. The image
size is 240⇥ 180 which is the same as that of DAVIS240C.

Two real datasets, the Event Camera Dataset (ECD) [43]
and the High Quality Frames (HQF) [28], are also used
for testing. They are both captured by DAVIS240C. ECD
includes 7 video sequences for different scenes with random
movement. HQF provides 14 sequences with a wider range
of motions, contrast thresholds and scene types. The quality
of intensity images in HQF is better than ECD, with less
noise and motion blur. In the testing of the reconstruction
network, we use the first 550 frames in ECD and first 300
frames in HQF of each sequence.
Training details During training, we limit the number of
events NE 2 [0.8, 1.2] ⇥ NL for each reconstruction with
NL = 15000 to achieve stable reconstruction.

We use a many-to-one scheme to implement backpropa-
gation, which means that loss is only calculated at the end
of a sequence. The length of sequence L is around 15 frames.
The loss function is combination of L1, SSIM and perceptual
loss (LPIPS) [50], as follows:

Ls = kIL � ÎLk1 + (1� SSIM(IL, ÎL)) + d(IL, ÎL), (12)

where d(IL, ÎL) indicates the perceptual loss (LPIPS).
Other training details include that batch size is 1, learn-

ing rate is initialised with 0.0001 and decays 10% every
10 epochs, training for 20 epochs. Considering the length

of sequence is not fixed and the limitation of memory
consumption, we choose batch size of 1. The choice of 20
epochs is also motivated by training time considerations. We
observed that the results are good enough after 20 epochs
and that it is fair to compare different models when training
with 20 epochs.

Evaluation In evaluation, the limitation to number of events
NE are the same with training on the simulated datasets.
However, ground truth intensity images are only available
at a fixed frame rate. We thus split events between two
consecutive frames into several groups according to NL

for reconstruction. In addition, we filter hot pixels with
large value in event voxel grids before reconstruction. Af-
ter reconstruction, we implement contrast-limited adaptive
histogram equalization (CLAHE) for both ground truth and
reconstructed images, so that they are comparable.

In our experiments, peak signal-to-noise ratio (PSNR),
structural similarity (SSIM) and perceptual loss (LPIPS) are
used as image quality metrics.

5.2 Comparison against other reconstruction networks

We compare our method with three state-of-the-art net-
works. E2VID [19], [20] is a Unet architecture with Con-
vLSTMs and residual blocks. In their training, a temporal
consistency loss using optical flow is introduced apart from
the reconstruction loss. FireNet [21] simplifies E2VID since it
uses fewer layers, smaller kernel size and has no downsam-
pling aiming to achieve faster image reconstruction without
decreasing accuracy. SPADE-E2VID [22] adds a SPADE layer
to the architecture of E2VID to fuse previous frames to
achieve temporal consistency. These networks are retrained
using our datasets and training strategies.

Reconstruction results are shown in Fig. 8 and Table 1.
Our CISTA-LSTC outperforms others on all testing datasets,
especially on SSIM and LPIPS. FireNet has lower ability
to recover intensity and reconstructed frames are noisier.
E2VID generates clear edges and performs the second best,
but it has a relatively lower ability to recover intensity
for some dark large areas (see desk) and more bleeding
effects are visible (see shapes 6dof) compared with ours.
Actually, SPADE-E2VID produces the sharpest edges (see
poster pillar2) and has fewer bleeding effects, but these
images have very high contrast which makes them seem
not natural. This is why it performs worse on real dataset,
especially on PSNR. On the simulated dataset, SPADE-
E2VID performs the second best on SSIM and LPIPS. Our
CISTA-LSTC keeps a balance between intensity recovery
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Explicit embedding of priors and constraints in deep networks
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Dictionary Learning
• The network architecture for reconstruction is model-based: intensity and 

event frames share the same sparse representation
• The dictionary is usually learned 

Introduction

• Sparse representation problem
• Find a K-sparse signal 𝒙 (||𝒙||𝟎 = 𝐾) from noisy observation 𝒚
• Dictionary 𝑫 is a fat matrix
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Model of dependency between intensity and 
events

Assumption: intensity and 
event frames share the same 
sparse representation
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Deep Unfolding Strategy

• The network architecture for reconstruction is model-based: intensity and 
event frames share the same sparse representation 𝑍&

• The sparse vector can be found using ISTA: 𝑍&/ = ℎ0(𝑍&/*( + 𝐷/1(𝑋& − 𝐷/𝑍&2*()
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Fig. 2. CISTA-LSTC network – CISTA network with long short-term temporal consistency (LSTC) constraints. A head layer WX fuses and

downsamples input event voxel grid Et
t�1 and predicted intensity image Ît�1. The LSTC initialises sparse code Z0

t with previous sparse code

to keep temporal consistency (see Fig. 4). ISTA blocks (see Fig. 3) estimates sparse codes iteratively and finally intensity image Ît is reconstructed

by the LSRC unit (see Fig. 4), which includes a ConvLSTM unit and an upsampling synthesis layer.

+

	"!	#!

		ℎ"!

%#

-

&#!
ISTAk

&#!$%

Fig. 3. The kth ISTA block to estimate sparse codes Zk
t . Dk is used as

a dictionary for input Xt. Dk and Pk are convolutional layers, h✓k
is a

soft thresholding function with a learned threshold vector ✓k.

denotes the Hadamard product. The LSTC block not only
uses current input Xt but also uses sparse codes from the
last reconstruction to initialise Z0

t
. With the assistance of

previous sparse codes, Z0
t

can be well initialised. The dif-
ference between the LSTC block and standard ConvLSTM
mainly lies in the input. The ConvLSTM only has one input
and keeps the memory of the previous state, while the
proposed LSTC takes the last updated sparse codes ZK

t�1
from previous reconstruction as another input, apart from
current input Xt.

Second, given the sparse codes, in order to achieve
intensity coherence, we replace the simple synthesis stage in
Eq. (4) with the long short-term reconstruction consistency
(LSRC) unit shown in Fig. 4. It consists of a ConvLSTM
unit and a synthesis convolutional layer with upsampling
followed by a Sigmoid activation to generate the final pre-
dicted intensity frame Ît. The ConvLSTM unit takes sparse
code ZK

t
as input and at�1 as a state to keeps memory of

the previous reconstruction. The upsampling layer followed
by a Sigmoid activation then acts as a synthesis dictionary to
reconstruct intensity frame It and upsample it to the target

dimension.
To summarize, the overall CISTA-LSTC network is de-

picted in Fig. 2. A head layer WX followed by the LSTC
initialises Xt and Z0

t
, respectively. As highlighted before

WX # is a convolutional layer that fuses Et�1 and Ît�1 to
give us Xt. Sparse codes are obtained using K ISTA blocks
and finally intensity is reconstructed by the block LSRC. All
layers use 3⇥ 3 convolutions with a stride 1 except for WX

whose stride is 2 to perform downsampling. We choose 64
channels for Dk, 128 channels for Pk and K = 5 in our
experiments.

4 VIDEO-TO-EVENTS GENERATION

In this section, we explore how to improve event generation.
Neuromorphic cameras could be potentially improved by
exploring how to adjust some important parameters for
different pixels in the camera. We leverage an existing event
simulator, v2e [28] for this analysis. In Section 4.1, we focus
on two parameters, the contrast threshold and the cutoff
frequency for lowpass temporal filtering. We show that
applying different values for adjacent pixels can improve
the performance without increasing the overall number of
events (see Section 4.2). In Section 4.3, we then construct an
end-to-end video-to-events-to-video (V2E2V) architecture to
verify our assumptions .

4.1 Key factors in Event Generation

v2e [28] designs a realistic event simulator considering
physic limitations, including linear to logarithmic mapping,
intensity-dependent lowpass filtering, leak events and shot
noise, as shown in Fig. 5. Our modifications are based on
the working of v2e.



Model-based reconstruction from events

• The network architecture for reconstruction is model-based: intensity and 
event frames share the same sparse representation

 

E2V – CISTA-LSTC network
• Convolutional ISTA network with long short-term consistency constraints
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Fig. 9. Comparison of reconstructed images for slow motion in slow and fast desk. The movement slows down to static and then speeds up from

left to right. CISTA-LSTC has better temporal consistency.

Fig. 10. Training loss for variations of CISTA-LSTC.

diversity is less significant since lowpass filtering decreases
the number of events, but results are still better than the nor-
mal approach, especially on PSNR. Rows 6-10 in Table 5.5
list the results of diversity in fc, and Fig. 13 show the com-
parison of reconstructed images and events. Row 6 is the re-
sults of normal lowpass filtering, which reduces the number
of events and deteriorates reconstruction quality compared
with no filtering case (see row 1). Noise is reduced but edges
are blurred, comparing the first two columns of Fig. 13. After
enlarging the bandwidth for part of pixels, image quality
improves. With (ql, qs) = (1,�) and (ql, qs) = (�, 1),
we mean that only a part of pixels implements lowpass
filtering with fc = 200Hz while the others keep the original
signals. (ql, qs) = (�, 1) is better than (ql, qs) = (1,�)
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Fig. 11. Comparison of video reconstruction between variations of

CISTA-LSTC. The LSRC unit helps retrieve intensity and the LSTC unit

further improves temporal consistency.

and than no filtering case, which indicates that lowpass
filtering for a smaller portion (1/4) of pixels can protect
the clearness of edges and reveal more small changes at
the same time, see fc(1,�) and fc(�, 1) in Fig. 13. In
addition, we further implement lowpass filtering with a
relatively large bandwidth fc = 200⇥2 = 400Hz for part of
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Sensing Diversity for Neuromorphic Cameras

• Key insight: design an end-to-end neural network where the 
acquisition process is part of the learned architecture

• Key approach: each pixel behaves differently
• The network architecture for reconstruction is model-based

 

Video-to-events-to-video (V2E2V)
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• Validate how alternative event generation strategies improve video reconstruction
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Fig. 6. Video-to-events-to-video flowchart. The E2V part is realised with a customized v2e, where different fc and C for adjacent pixels are applied.

The V2E part is implemented with our CISTA-LSTC network.
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Fig. 7. Schematic of the sensing diversity approach for adjacent pixels

µ = [0.2, 0.4, 0.6, 0.8, 1] randomly and � = 0.03. The values
for positive and negative events are also different, where
Cn = �Cp,� ⇠ N (1, 0.1). Lowpass filtering is executed
randomly on half of sequences with a cutoff frequency of
200 Hz. The refractory period is set to 1ms. The leak rate
and shot noise rate are 0.1 Hz and 1 Hz respectively.

We simulate 1100 sequences, 2s long. We use 1000 se-
quences for training and another 100 for testing. The image
size is 240⇥ 180 which is the same as that of DAVIS240C.

Two real datasets, the Event Camera Dataset (ECD) [43]
and the High Quality Frames (HQF) [28], are also used
for testing. They are both captured by DAVIS240C. ECD
includes 7 video sequences for different scenes with random
movement. HQF provides 14 sequences with a wider range
of motions, contrast thresholds and scene types. The quality
of intensity images in HQF is better than ECD, with less
noise and motion blur. In the testing of the reconstruction
network, we use the first 550 frames in ECD and first 300
frames in HQF of each sequence.
Training details During training, we limit the number of
events NE 2 [0.8, 1.2] ⇥ NL for each reconstruction with
NL = 15000 to achieve stable reconstruction.

We use a many-to-one scheme to implement backpropa-
gation, which means that loss is only calculated at the end
of a sequence. The length of sequence L is around 15 frames.
The loss function is combination of L1, SSIM and perceptual
loss (LPIPS) [50], as follows:

Ls = kIL � ÎLk1 + (1� SSIM(IL, ÎL)) + d(IL, ÎL), (12)

where d(IL, ÎL) indicates the perceptual loss (LPIPS).
Other training details include that batch size is 1, learn-

ing rate is initialised with 0.0001 and decays 10% every
10 epochs, training for 20 epochs. Considering the length

of sequence is not fixed and the limitation of memory
consumption, we choose batch size of 1. The choice of 20
epochs is also motivated by training time considerations. We
observed that the results are good enough after 20 epochs
and that it is fair to compare different models when training
with 20 epochs.

Evaluation In evaluation, the limitation to number of events
NE are the same with training on the simulated datasets.
However, ground truth intensity images are only available
at a fixed frame rate. We thus split events between two
consecutive frames into several groups according to NL

for reconstruction. In addition, we filter hot pixels with
large value in event voxel grids before reconstruction. Af-
ter reconstruction, we implement contrast-limited adaptive
histogram equalization (CLAHE) for both ground truth and
reconstructed images, so that they are comparable.

In our experiments, peak signal-to-noise ratio (PSNR),
structural similarity (SSIM) and perceptual loss (LPIPS) are
used as image quality metrics.

5.2 Comparison against other reconstruction networks

We compare our method with three state-of-the-art net-
works. E2VID [19], [20] is a Unet architecture with Con-
vLSTMs and residual blocks. In their training, a temporal
consistency loss using optical flow is introduced apart from
the reconstruction loss. FireNet [21] simplifies E2VID since it
uses fewer layers, smaller kernel size and has no downsam-
pling aiming to achieve faster image reconstruction without
decreasing accuracy. SPADE-E2VID [22] adds a SPADE layer
to the architecture of E2VID to fuse previous frames to
achieve temporal consistency. These networks are retrained
using our datasets and training strategies.

Reconstruction results are shown in Fig. 8 and Table 1.
Our CISTA-LSTC outperforms others on all testing datasets,
especially on SSIM and LPIPS. FireNet has lower ability
to recover intensity and reconstructed frames are noisier.
E2VID generates clear edges and performs the second best,
but it has a relatively lower ability to recover intensity
for some dark large areas (see desk) and more bleeding
effects are visible (see shapes 6dof) compared with ours.
Actually, SPADE-E2VID produces the sharpest edges (see
poster pillar2) and has fewer bleeding effects, but these
images have very high contrast which makes them seem
not natural. This is why it performs worse on real dataset,
especially on PSNR. On the simulated dataset, SPADE-
E2VID performs the second best on SSIM and LPIPS. Our
CISTA-LSTC keeps a balance between intensity recovery
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with sensing diversitywithout sensing diversity



Conclusions

• Neuromorphic sensing systems inspire a new paradigm for sampling

• Sampling provides insights into the design of event-driven systems 
(end-to-end learning)

• Model-based deep learning leads to lighter and more universal 
architectures



Thank you!
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