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» The revolution in sensing, with the emergence of many new sensing and imaging techniques, offers
the possibility of gaining unprecedented access to the physical world
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Two-photon microscopy

Electron Microscopy” High-speed cameras

“From Wikimedia Commons, By Vossman - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=4560672
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London Outline

« The sampling problem
A bit of history:
— The linear case: Shannon sampling theorem

— The non-linear case: sparse sampling and sampling signals with
finite rate of innovation

Bio-Inspired energy-efficient sampling and sampling based on timing
— Integrate and fire system

Sampling along unknown trajectories
— Estimating diffusion fields using mobile sensors

Conclusions and outlook
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‘ { X h(t)= @(-t/T) M YE<x(),9(t/T-n)>

l T

|

Acquisition Device

Note that

> y(t) = h(t) * x(t) = ffooo x(T)h(t — 7)dT
y(nT) = ffooo x(T)h(nT — 7)dT = f_oooo x(T)e(r/T — n)dT
(x(t), o(t/T — n))

» (t) is the time reversed version of the acquisition device and is called sampling
kernel.

I




'L’Qﬁgrc',ﬂ College A pit of History: the shift-invariant model

- Typically, signals are represented as follows (e.g., bandlimited functions):

x(t) = Z Y (% - n)

« which leads to this sensing system and to a linear reconstruction process

T N
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London

* No real-life signals are bandlimited, .
but they might be sparse in a ‘ l
domain or in a parametric space |
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L h(t)= @(~t/T) yo 7T< Yr=<x(1),@ (t/T-n)>

n Y
J

) 4 (EEEEEEEEEEEEEEEEEEEEEEEEEE )
- Discretize the input (this leads to a ‘ EEEEEEEEESESESEEEESEEEEEEEN
sparse vector x ) I T T

. . . . n ANEEEEEESEEEEEEEEEEEEEEEEEN
«  Discretize the sampling kernel (this leads n — AN ENEEEEEEEEEEEEEEEEEEEEEEE
to a fat matrix D) _ S ESamasmamamaSamasmamasES

- Reconstruct the signal from a small A e ieiniieiniaisiniaiai
number of measurements y using o ) m>n ]

convex optimization methods

(1, minimization) D
«  Strong recovery guarantees [Donoho:06,

Candes et al.:06] y
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London

* No real-life signals are bandlimited, l
but they might be sparse in a domain | l
or in a parametric space
* For example, sparse parametric |

signals (i.e., signals with finite rate
of innovation (FRI) [VetterliMB:01]).

X() = ) xp(t - t) [ - H | A A

k

« Key issue is how to retrieve the free l V

parameters of these signals from '
samples
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- Assume that x(t) = Xr_; x,6(t — t;)

* The key idea is to connect sparse sampling to a method broadly used in e.g.
array signal processing and known as Prony’s method

K
— m
yn_)Sm_zbkuk ’
k=1

where bk = xkej“)otk, Ui = ej)ltk

* Retrieving the pulse locations u; and the amplitudes x; from s,, is a classical
problem first solved by Baron de Prony in 1795.
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Sparse Sampling: Core Approach

Yn = (X(t), <,0(t — Tl)) z Cm,n(p(t - Tl) ~ ejwmt

Shape of the sampling kernel Reproduction of exponentials
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« We want to find coefficients c,, , such that };,, c;, o (t — n) = f,,(¢t) in the
least-square sense.

- We need to compute the orthogonal projection of f,,,(t) onto span{e(t —n)},
«  This means (f,,(t) — Xn cmn@(t —n),@(t — k)) = 0 (orthogonality principle)

* Leveraging the fact that we are considering uniform shifts of ¢ (¢) and that in
our case f,,,(t) = e/“m! we end-up with an exact expression™:

_ P(wp)el Pm”
mn — d(\p(ejwm)

where a,(e/“m ) is the z-transform of (p(¢t — n), p(t)) at z = e/“m.

1J. Uriglien, T. Blu, and P. Dragotti, “FRI sampling with arbitrary kernels,” IEEE Transactions on Signal Processing, vol. 61, no. 21, pp. 5310-5323, 2013. 11
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Sparse Sampling: Core Approach

» Compute a linear combination of the samples: s, = > cm nyn for
some choice of coefficients cp, p

» Because of linearity of inner product, we have that
Sm = ), CmnYn
= > Cmn(x(t),o(t/T —n)) m=12 L
= (x(t),3, cmnp(t/T —n)) m=12..,0L

> Assume that > cpap(t/ T — n) ~ e/mt/T for some frequencies wy,
m=12,..L
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Sparse Sampling: Core Approach

Then
Sm — Zn Cman-yn

= X(t), 225 Cmnp(t/ T — n))

= [T_x(t)emtdt, m=0,1,..,L
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» Assume x(t) is a stream of K Diracs on the interval of size N:
x(t) = S50 xid(t — te), te € [0, N).

» We restrict jw,, = jwo+jmA m=1 .. L and L >2K.

» We have N samples: y, = (x(t),¢(t —n)), n=0,1,...N — 1:

» We obtain

Sm = Z,I:I:_ol Cm,nYn

= [Z x(t)evmtdt,

oo

. Wmtk
= Zk o Xke’
— k— 0 ej k=0 XkUk ’ m = 17 ceey L.
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*  To summarize:

IN—1 \ K N-1
—1 - —
Sm —.y Cm,n Yn|= ;“ Xk S“ Cm,n¢[tk Tl]
',n=0 ' k=1 n=0
K L = -
~ Z xke]wmtk — Z xke]wotk (e])ltk) Z bkuk ,
k=1 k=1

where bk = xkejwotk, U = ejlltk

- The amplitudes x;, and locations t;, can now be retrieved using Prony’s
method.




imperial College - Sampling Stream of Decaying Exponentials

5 5
0.06 — y(b)
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(a) Input signal, x(t) (b) Filtered and sampled signal (c) Reconstructed signal
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J.Onativia, S. Schultz and P.L. Dragotti, A finite rate of innovation algorithm for fast and accurate spike
detection from two-photon calcium imaging, Journal of Neural Engineering, 10 (4), August 2013.
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London Sparse Sampling — Application in Neuroscience
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J.Onativia, S. Schultz and P.L. Dragotti, A finite rate of innovation algorithm for fast and accurate spike
detection from two-photon calcium imaging, Journal of Neural Engineering, 10 (4), August 2013.
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London Sparse Sampling — Application in Neuroscience

1 : :

O - ,—..:'-'-‘ e .

< 08 / e - * The algorithm outperforms

o P state-of-the art methods

= 06 e 1+ Can operate in real-time

B ;.2 | —ER]I simultaneously on 80 streams

S o4 ”" - - —=Fastdeconv|l * Increase in resolution by factor 3

5 oot |- Deriv.&thres.|

=1 L Filter&thres.
0 L

0.61 0.62 0.63 0.04
false positive rate

o
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Low-res input 64 x64 pixels Final result 256x256 pixels

X. Wei and P. L. Dragotti, FRESH -FRI-based single image super-resolution algorithm, IEEE Trans on Image
Processing, Vol.25(8), pp. 3723-3735, August 2016.
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Spatiotemporal Sensor Measurements
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J. Murray-Bruce and P.L. Dragotti, A Sampling Framework for Solving Physics-driven Inverse Source
Problems, IEEE Trans. on Signal Processing, Vol. 65(24), pp. 6365-6380, December 2017
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Real Temperature Field Reconstruction of Temperature

y-location
y-location
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J. Murray-Bruce and P.L. Dragotti, A Sampling Framework for Solving Physics-driven Inverse Source
Problems, IEEE Trans. on Signal Processing, Vol. 65(24), pp. 6365-6380, December 2017
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» Current sensing methods are energy
inefficient especially when low-latency is
needed (e.g., commercial ultra-fast
cameras)

» Often sampling happens at unknown
locations (e.g, unknown trajectories,
unknown projections)
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Bio-Inspired Energy Efficient Sensing

«  Current sensing methods are energy inefficient especially when low-latency is needed.
- Example: Rainfall estimation

gEGUUY

L] 1 1 L) L) L) -

July 10 July 20 July 30 August 9 August 19 August 29
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Approach 2

Only record the day when the bucket is full and then empty it

July 18 July 28 September 2
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Approach 2 maps analogue information into a time sequence and is used by nature (e.g., integrate-
and-fire neurons)

Time encoding appears in nature, as a mechanism used by neurons to represent sensory

information as a sequence of action potentials, allowing them to process information very
efficiently.
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Energy-efficient sensing inspired by nature raises a fundamental representation
question:
— How can we embed information related to complex signals into the timing information of
spikes?
— Besides its theoretical implications, addressing this question will lead to new
neuromorphic sensing devices

Video taken from Inivation.com
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Integrate-and-fire System

Cr
x(t) Y(®) | Threshold _ t
— 1 Integrator Detector _ﬁ ty |ta|ts ts
7y ' _CT
; spike triggered reset
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London Time-Encoding Machines

Comparator System

Zero—crossing‘ ty, L2seees tn
x(t) + T detector
oo '\
+—>
1

Aoy
_ 1s)
T, =—

fs

« At the crossing times, x(t,,) — g(t,,) = 0 hence x(t,,) = g(t,).

——Input signal y (t)
——Comparator's reference signal
* Output non-uniform times




imperial College Reconstruction from time-encoded information

«  Given the retrieved non-uniform samples x(t,), x(t,), ..., x(t,) can we
reconstruct x(t)?




imperial College Reconstruction from time-encoded information

- Key result:? if the density of samples D > 1 then perfect reconstruction can
be using an iterative approach proposed by Aldroubi and Grochenig’

598

v

July 18 July 28 September 2

2A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces” SIAM Review 2001




imperial College Reconstruction from time-encoded information

- Key result:" if the density of samples D > 1 then perfect reconstruction can
be Using an iterative approach proposed by Aldroubi and Grochenig’

v

July 18 July 28 September 2

2A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces” SIAM Review 2001
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» The iterative approach proposed by Aldroubi and Grochenig

Input Function f(t)
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» The iterative approach proposed by Aldroubi and Grochenig

Non-uniform Sampling
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» The iterative approach proposed by Aldroubi and Grochenig

Piecewise Constant Interpolation
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» The iterative approach proposed by Aldroubi and Grochenig

Projecting onto V(p) - Iteration: 1
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» The iterative approach proposed by Aldroubi and Grochenig

Non-uniform Sampling
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» The iterative approach proposed by Aldroubi and Grochenig

Non-uniform Sampling

‘ i
TN
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» The iterative approach proposed by Aldroubi and Grochenig

Piecewise Constant Interpolation
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» The iterative approach proposed by Aldroubi and Grochenig

Projecting onto V (¢) - Iteration: 2
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» The iterative approach proposed by Aldroubi and Grochenig

Projecting onto V() - Iteration: 1
. d . . : : : Projecting onto V() - Iteration: 2

151
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» The iterative approach proposed by Aldroubi and Grochenig

Projecting onto V' (¢) - Iteration: 2
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» The iterative approach proposed by Aldroubi and Grochenig

Projecting onto V(y) - Iteration: 3
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» The iterative approach proposed by Aldroubi and Grochenig

Projecting onto V(¢) - Iteration: 5
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» The iterative approach proposed by Aldroubi and Grochenig

Projecting onto V () - Iteration: 15
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* Key result: if the density of samples D > 1 then Ktj(t) form a basis

* Key Issue 1: In the case of uniform sampling the density is D = 1. This means that
current TEMs are less energy efficient than uniform sampling!

« Key Issue 2: Cannot sample sparse (non-bandlimited) signals with the current
methods.
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« We leverage two main ideas from sparse sampling:
— The sampling kernels can reproduce exponentials
— Reconstruction is achieved using Prony’s method

x(® h(t)= @(~t/T) M

Acquisition Device

y=<x(t),p(t/T-n)>
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London Time-based Sampling of Sparse Signals

Signals:

*  We consider sparse continuous-time signals like stream of pulses, piecewise constant or

regular signals
Sensing Systems:
*  We filter before using a TEM

V o p(-t)

f(t)

1
Cr
t
Integrator y() »| Threshold — | | t
Detector : t1 |t21ts  ts
t o —Cr
. spike triggered reset | __ 1

y(tn) = (x(t), on(t — tn))




imperial College  Our approach for time decoding of signals

« Reconstruction of x(t) depends on the
— sampling kernel ¢(t)
— the density of time instants {t,,}

*  We achieve a sufficient density of output samples by imposing conditions on:
— The trigger mark of the integrator (integrate-and-fire TEM ).
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* Key Insight: Reproduction of exponentials can be achieved locally in

I, using at least two non-uniform shifts of the kernel:
N

Z Crn@(t —t,) = e mi N > 2

n=1
 The kernels should be continuous within that local interval 1.

tq1 - discontinuity of o (t — t;)

tqz - discontinuity of @(t — t,)
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x18(t —71)

x(t) f(o) Y() | Threshold

CTI T

o @(-t) Integrator T | : Lo

Detector i ty |tal|ts t4 Wl @raE-t ]
T i1 —C (9% 4,)(t — 1)

or= 3

« The sampling kernel ¢(t) and its non-uniform shifts reproduce e/®etand
e~J@of and 0 < w, < = where L is the support of (t).

* What is the minimum value of the trigger mark C; that would allow the perfect
reconstruction of stream of pulses or piecewise constant signals?
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London Integrate and Fire TEM
115('-“—"—'1)‘
Cr
x(t f(t t |
—()> p(—t) © Integrator Y(® | Threshold — | t oty — £)
Detector ; ty [ta|ts  ty | e a-t
\ —C
I spike triggered reset _____ ! Cpee
e — ; ‘.1” -f1' 232
. , :

» Trigger mark must guarantee enough samples (three samples) in a short interval

* Proposition: when Cr < “:"Tiz"(l — Cos (“’T"L)) then ty, t,,t3 € [T1,T1 + %] and
0
perfect reconstruction is possible
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1t Q =—© |nput signal —® Output non-uniform spikes
Filtered input
w——— Qutput of integrator 01
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N 0
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D-Z ‘ D-i If the distance S between discontinuities

J o is on average S > (L — 1)T with T being
05 - . . . .
04 the sampling period in uniform sparse
! 06 sampling then the new time encoding
] 5 10 15 20 25 30 -4 -3 -2 -1 ] . . .
(a) (b) framework? is more efficient than
<10” 1 sparse sampling (lower sampling
] .
rli density
-2 0.5
4 T
-6
05
-8
-1
-10
2 3 4 5 6 7 0 5 10 15 20 25 30
(c) ()

3R. Alexandru and P.L. Dragotti, Reconstructing Classes of Non-bandlimited Signals from Time
Encoded Information, IEEE Trans. on Signal Processing, vol.68, 2020.
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London
o ) Time encoding at each pixel
Diversity of pixels s
Cr
L
f "’1& @r1(0) = tetu(t) i i (F) TEM  — —J—H—L,i
. . AT My
Spatial filter ~6 Ty
Tm;_,kz
gx,y,t) Vpiey (8) a0
—» Pxy (x,y) fma, (t), 0.5 (t) = te?Ttu(t e ™ |— ] ¢
_CT
_L_Inszg
c
Fing ey (©) i iey (£) ! :
e —ra(D) = te*u(e TEM [ — —
Each pixel has a ~Cr

different temporal filter
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The problem we consider is localising diffusion sources and
estimating the trajectory of the mobile sensor, from samples
taken along unknown trajectories.

This is similar to the classic SLAM problem in computer vision,
but is now driven by the physics of the field (Diffusion-SLAM)
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» The problem of sampling at unknown location is not new, e.g, [Browning TSP
2007]

* The problem can be combinatorial

* The solution is normally not unique

* Many applications: cryo-EM, SLAM

* In our case (Diffusion-SLAM)
» The problem is sufficiently constrained to admits an algebraic solution
» Solution is unique up to a rigid rotation
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The diffusion field generate by a source k will propagate according to the Green’s function,
as follows:

_lx—Skl?
age 4”(t_rk)H(t - Tk)

fk(xr t) = 47T‘Ll(t _ Tk)

where:

x - location of measurement f; (x, t)

a, = amplitude of the diffusion source

T}, > activation time of the diffusion source
S, = coordinates of source k in R, space
H(t) - unit step function

u -2 diffusivity of the medium
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Given spatial measurements
of the diffusion field the aim
is to:

1. Estimate the locations
and amplitudes of the
sources

2. Reconstruct the
trajectory of the mobile
sensor

[ 4
S
N

Sk localised diffusion source k

\J
oo
2 S S e
b; start point of line j ...' :
9jn samplingpointnonlinej & & )
Yy projection of point Sy ..’. E Line1l
onto line j & .
L . P
o S e 121
.o. Zx—": y
o L]
Line 2 & ©
.. -
"4 .
... : Y2,1
.. .
P 4 <
i L]
3 d .
K] 1,1 H Pl,l
{ six=——=pu
.. £l
o.. : Yl.l
F 4 s
s q13 : |
; b3 Line 3 b,
(b) (c)
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The problem is sparse Slocie e b,
1. K sources to estimate U samplngpintnontne 3
2. Trajectory is piecewise ey
linear so only the vertices e
. Line2 & .
of each line needs to be .
estimated
3. The projection of the field £ st P
on each line is an FRI s
signal (stream of pulses) aw—i |
4. The location of each b Line 3 b,

pulse can be estimated
using sparse sampling
theory

A 4
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bj+17bj

* Theslope of the line is ¢; = —

J
T

° So Yk,j = (b] — Sk) Cj

M We deﬁne 'Qk,j = Yk+1,j - Yk,j = (Sk+1 - Sk)ch

[ (82 — Sl)Tcl ce <82 — Sl)TCL
Q (Sg - Sz)Tcl ce (Sg — SQ)TCL
(Sk — SK_l)Tcl ce (Sk — SK_l)TCL_
(S2 —S1)”
(S5 —S2)"
= . [01 cy . CL} =SC

(K—1)x2
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» We factorize Q using the SVD
» Given C we find the trajectory
» We then find the locations of the

sources
[ Sy —S1)Ter ... (Se—S1)Tc |
o (S3 —8S2)Tcy . (S3 —S2)Tcr
(Sk—Sx—)Ter ... (S~ Sk_i)Ter]
(S2 — Sl); ]
_| & - S2) [er e ... o] =SC
(Sk — SK—1)T 2% L

" ]

(K—1)x2
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Noiseless field measurements - Noisy field measurements 2
50 ‘ ®  Change in the trajectory 2 ‘ . Change in the trajectory 50 ‘ Resynthesized fisld measurements
®  Change in the trajectory
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R. Alexandru, T. Blu and P.L. Dragotti, "D-SLAM: Diffusion Source Localization and Trajectory Mapping,"
IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2019.
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0.8 True source location

J Estimated source location
[ ! True trajectory
. Estimated trajectory
|
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R. Alexandru, T. Blu and P.L. Dragotti, "D-SLAM: Diffusion Source Localization and Trajectory Mapping,"
IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2019.
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Sampling is alive and well &

* In sampling, sparsity is king
* In many real-life problems:
« We always need better resolution (e.g. neuroscience)
« We often sample at unknown locations (SLAM, Cryo-EM)
« Sampling might be irregular (e.g., along trajectories)
« Time-based sampling is still un-explored but essential for fast
energy efficient devices
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Thank you!
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