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Motivation

• The revolution in sensing, with the emergence of many new sensing and imaging techniques, offers 
the possibility of gaining unprecedented access to the physical world

*From Wikimedia Commons, By Vossman - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=4560672

Two-photon microscopy
Electron Microscopy*

Sensor networks to monitor dispersion of bio-chemical 
agents 

D-SLAM: Diffusion Source Localization And 
trajectory Mapping

Problem statement

The problem we consider is localising diffusion sources and 
estimating the trajectory of the mobile sensor, from samples 
taken along unknown curves.

Diffusion field

Mobile sensor trajectory
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High-speed cameras



Outline

• The sampling problem
• A bit of history: 

– The linear case: Shannon sampling theorem
– The non-linear case: sparse sampling and sampling signals with 

finite rate of innovation
• Bio-Inspired energy-efficient sampling and sampling based on timing

– Integrate and fire system
• Sampling along unknown trajectories

– Estimating diffusion fields using mobile sensors
• Conclusions and outlook



The Sampling Kernel

T

x(t)
!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

Note that

I y(t) = h(t) ⇤ x(t) =
R1
�1 x(⌧)h(t � ⌧)d⌧

I yn = y(nT ) =
R1
�1 x(⌧)h(nT � ⌧)d⌧ =

R1
�1 x(⌧)'(⌧/T � n)d⌧

= hx(t),'(t/T � n)i
I '(t) is the time reversed version of the acquisition device and is called sampling

kernel.

Pier Luigi Dragotti
Sensing the physical world: Sparse Sampling meets Strang-Fix and Baron de Prony

Sampling: The Set-up



Classical Sampling Formulation

I Sampling of x(t) is equivalent to projecting x(t) into the shift-invariant
subspace V = span{'(t/T � n)}n2Z.

I If x(t) 2 V , perfect reconstruction is possible.

I Reconstruction process is linear: x̂(t) =
P

n yn'(t/T � n).

I For bandlimited signals '(t) = sinc(t).

φ(t)~

~
x(t)

y
T

n φ(t)
x(t)^

Pier Luigi Dragotti
Sampling and Reconstruction driven by Sparsity Models: Theory and Applications

A bit of History: the shift-invariant model 

• Typically, signals are represented as follows (e.g., bandlimited functions):

𝑥 𝑡 =$
!

𝑦!𝜑
𝑡
𝑇 − 𝑛

• which leads to this sensing system and to a linear reconstruction process 



A bit of History: Sparsity and  Sampling

• No real-life signals are bandlimited, 
but they might be sparse in a 
domain or in a parametric space



Compressed Sensing Formulation

• Discretize the input (this leads to a 
sparse vector 𝒙)

• Discretize the sampling kernel (this leads 
to a fat matrix 𝑫)

• Reconstruct the signal from a small 
number of measurements 𝒚 using 
convex optimization methods 
( l! minimization) 

• Strong recovery guarantees [Donoho:06, 
Candes et al.:06]

Introduction

• Sparse representation problem
• Find a K-sparse signal 𝒙 (||𝒙||𝟎 = 𝐾) from noisy observation 𝒚
• Dictionary 𝑫 is a fat matrix
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Problem Statement

You are given a class of functions. You have a sampling device. Given the
measurements yn = hx(t), '(t/T � n)i, you want to reconstruct x(t).

T

x(t)
!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

Natural questions:

I When is there a one-to-one mapping between x(t) and yn?

I What signals can be sampled and what kernels '(t) can be used?

I What reconstruction algorithm?

Pier Luigi Dragotti
Sparse Sampling



A bit of History: Sparsity and  Sampling

• No real-life signals are bandlimited, 
but they might be sparse in a domain 
or in a parametric space

• For example, sparse parametric 
signals (i.e., signals with finite rate 
of innovation (FRI) [VetterliMB:01]). 

𝑥 𝑡 =$
"

𝑥"𝜑 𝑡 − 𝑡"

• Key issue is how to retrieve the free 
parameters of these signals from 
samples



• Assume that 𝑥 𝑡 = ∑"#$% 𝑥"𝛿(𝑡 − 𝑡")
• The key idea is to connect sparse sampling to a method broadly used in e.g. 

array signal processing and known as Prony’s method

• Retrieving the pulse locations 𝑢" and the amplitudes 𝑥" from 𝑠& is a classical 
problem first solved by Baron de Prony in 1795.

9

𝑦! → 𝑠& = $
"#$

%

𝑏"𝑢"& ,

where 𝑏" = 𝑥"𝑒'(!)", 𝑢" = 𝑒'*)"

Sparse Sampling: Core Approach



$
!

𝑐&,!𝜑(𝑡 − 𝑛) ≈ 𝑒'(#)

10

Shape of the sampling kernel Reproduction of exponentials

Sparse Sampling: Core Approach

𝑦! = 𝑥 𝑡 , 𝜑(𝑡 − 𝑛)



• We want to find coefficients 𝑐&,! such that ∑! 𝑐&,!𝜑(𝑡 − 𝑛) ≈ 𝑓& 𝑡 in the 
least-square sense.

• We need to compute the orthogonal projection of 𝑓&(𝑡) onto 𝑠𝑝𝑎𝑛 𝜑 𝑡 − 𝑛 !

• This means ⟨𝑓& 𝑡 − ∑! 𝑐&,!𝜑 𝑡 − 𝑛 , 𝜑 𝑡 − 𝑘 ⟩ = 0 (orthogonality principle)
• Leveraging the fact that we are considering uniform shifts of 𝜑 𝑡 and that in 

our case 𝑓& 𝑡 = 𝑒'(#), we end-up with an exact expression1:

𝑐&,! =
=𝜑 𝜔& 𝑒'(#!

?𝑎,(𝑒'(#)

where ?𝑎, 𝑒'(# is the z-transform of ⟨𝜑 𝑡 − 𝑛 , 𝜑 𝑡 ⟩ at 𝑧 = 𝑒'(#.

11

Computation of the coefficients 𝒄𝒎,𝒏

1J. Urigüen, T. Blu, and P. Dragotti, “FRI sampling with arbitrary kernels,” IEEE Transactions on Signal Processing, vol. 61, no. 21, pp. 5310–5323, 2013.



Sparse Sampling: Core ApproachFrom Samples to Signals

I Compute a linear combination of the samples: sm =
P

n cm,nyn for
some choice of coe�cients cm,n

I Because of linearity of inner product, we have that

sm =
P

n cm,nyn

=
P

m cm,nhx(t), '(t/T � n)i m = 1, 2, ..., L.

= hx(t),
P

n cm,n'(t/T � n)i m = 1, 2, ..., L.

I Assume that
P

n cm,n'(t/T � n) ' e j!mt/T for some frequencies !m

m = 1, 2, ..., L

Pier Luigi Dragotti
Sampling in the 21st century: at the heart of hybrid analogue/digital processing



From Samples to Signals

Then
sm =

P
n cm,nyn

= hx(t),
P

n cm,n'(t/T � n)i

=
R 1

�1 x(t)e j!mtdt, m = 0, 1, ..., L.

Pier Luigi Dragotti
Sparsity and Sampling: at the Heart of Hybrid Analogue/Digital Processing

Sparse Sampling: Core Approach



Sparse Sampling: Core ApproachSampling Streams of Diracs

I Assume x(t) is a stream of K Diracs on the interval of size N:

x(t) =
PK�1

k=0 xk�(t � tk), tk 2 [0,N).
I We restrict j!m = j!0 + jm� m = 1, ..., L and L � 2K .
I We have N samples: yn = hx(t), '(t � n)i, n = 0, 1, ...N � 1:
I We obtain

sm =
PN�1

n=0 cm,nyn

=
R 1

�1 x(t)e j!mtdt,

=
PK�1

k=0 xke j!mtk

=
PK�1

k=0 x̂ke j�mtk =
PK�1

k=0 x̂kumk , m = 1, ..., L.

Pier Luigi Dragotti
Sensing the physical world: Sparse Sampling meets Strang-Fix and Baron de Prony



• To summarize:

𝑠& = $
!#-

./$

𝑐&,! 𝑦! = $
"#$

%

𝑥" $
!#-

./$

𝑐&,!𝜑 𝑡" − 𝑛

≈ $
"#$

%

𝑥"𝑒'(#)" = $
"#$

%

𝑥"𝑒'(!)" 𝑒'*)" & = $
"#$

%

𝑏"𝑢"& ,

where 𝑏" = 𝑥"𝑒'(!)", 𝑢" = 𝑒'*)"
• The amplitudes 𝑥" and locations 𝑡" can now be retrieved using Prony’s 

method.

15

Sparse Sampling: Core Approach



Sampling Stream of Decaying Exponentials
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Sparse Sampling – Application in Neuroscience
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J.Onativia, S. Schultz and P.L. Dragotti, A finite rate of innovation algorithm for fast and accurate spike 
detection from two-photon calcium imaging, Journal of Neural Engineering, 10 (4), August 2013.
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J.Onativia, S. Schultz and P.L. Dragotti, A finite rate of innovation algorithm for fast and accurate spike 
detection from two-photon calcium imaging, Journal of Neural Engineering, 10 (4), August 2013.

Sparse Sampling – Application in Neuroscience
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• The algorithm outperforms
state-of-the art methods

• Can operate in real-time 
simultaneously on 80 streams

• Increase in resolution by factor 3

Sparse Sampling – Application in Neuroscience



Low-res input 64 x64 pixels Final result 256x256 pixels

Sparse Sampling – Image Super-resolution

X. Wei and P. L. Dragotti, FRESH -FRI-based single image super-resolution algorithm, IEEE Trans on Image 
Processing, Vol.25(8), pp. 3723-3735, August 2016. 



MURRAY-BRUCE AND DRAGOTTI: SAMPLING AND RECONSTRUCTION OF DIFFUSION FIELDS 11

Fig. 8. Experimental Setup.
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Fig. 9. Measurements of two monitoring sensors obtained by two different
sensors. The dotted vertical line in each plot indicates the instant of source
activation.

2) Results: The results of our experimentation with real
thermal data are summarized in what follows. Figure 10(a)
shows the complete temperature distribution of the moni-
tored region immediately after source activation with the hot
(light) region of the map indicating the true source location.
Moreover, the estimated source location is shown as the ‘⇥’;
this estimate has been obtained by applying our proposed
algorithm on spatiotemporal measurements obtained at the 13
locations marked by black circles ‘�’. The temporal evolution
of two such sensors are shown in Figure 9. Note that the
sampling frequency f = 1

0.52Hz, of the sensors is much
lower than the frame rate of the camera. This is achieved by
downsampling the actual time measurements.

To demonstrate the robustness of the algorithm to the choice
of sensor locations, we draw randomly a new set of 13
locations and apply Algorithm 2 on the new spatiotemporal
samples. This experiment is repeated 20 times and a scatterplot
of the estimated source location and the activation time esti-
mates is shown in Figure 10(b). The obtained estimates vary
marginally about the true values. For statistical significance,
we repeat this experiment 1000 times and present the MAE
of the location and activation time estimates in Table III. For
the location estimates the MAEs are small compared to the
dimensions of the monitored region, and also smaller than
the average inter-sensor separation. Similarly, the normalized
MAE of the activation time is around 0.0867, which is almost
an order of magnitude smaller than the temporal sampling
interval (0.52s). Hence on average we observe an absolute
error of around 8.67% on the activation time estimates.

We now consider recordings for different source setups.

(a) The Initial Thermal Map.

(b) 20 Independent trials.

Fig. 10. Estimation of a single instantaneous heat source using real thermal
spatiotemporal measurements. The thermal camera is used to capture a
sequence of thermal images at 25Hz for a duration of 16s. The spatiotemporal
samples are obtained by choosing 13 spatial locations (the circles ‘�’ in plots
(a) and (b)) at random, and then downsampling in time by a factor of 13; hence
f = 1

0.52 ⇡ 1.9231Hz and the localization time window Tend = 12s.
The true source location is ⇠ = (0.0594, 0.0298)m and activation time
⌧ = 1.7800s. In addition, K = 11 for the test function family. (a): Shows
the thermal image immediately after source activation, the locations of the
13 sensors are indicated by the black circles ‘�’ and the estimated source
location by the red ‘⇥’. (b): Summarizes the results of 20 repetitions of the
source estimation algorithm on measurements obtained by a different set of
13 randomly chosen sensor locations; on the left is shown a scatter plot of
the estimated source locations (red ‘⇥’) and the right is plot of the estimated
activation times.

TABLE III
MAE OF SINGLE SOURCE PARAMETER ESTIMATES ON REAL THERMAL

DATA. THE STATISTICS SHOWN HERE ARE COMPUTED FROM ESTIMATES
OF 1000 INDEPENDENT TRIALS, WHERE EACH TRIAL CORRESPONDS TO

THE USE OF A DIFFERENT SET OF 13 RANDOMLY DISTRIBUTED SENSORS.
THE FIELD IS INDUCED BY THE SINGLE INSTANTANEOUS SOURCE WITH
⌧ = 1.7800s AND ⇠ = (0.0594, 0.0298)m AND THE SPATIOTEMPORAL

SAMPLES HAVE A SAMPLING FREQUENCY f = 1
0.52 ⇡ 1.9231Hz,

DURATION OF WINDOW USED IN ESTIMATION Tend = 12s AND K = 11
FOR THE TEST FUNCTION FAMILY.

Source Parameter
⇠1 ⇠2 ⌧

MAE 0.0036 0.0050 0.1544

Spatiotemporal measurements are taken for different source
activation times and locations; then we attempt to recover
the source parameters for each data set using our method.
The estimates are presented, alongside the true values, in
Table IV, we observe that for each new experiment the
parameter estimates remain close to the true values.

VI. CONCLUSION

In this paper we have presented novel expressions for
simultaneously recovering the source parameters of a multi-
source diffusion field. Specifically we have considered two
types of spatially localized sources: temporally instantaneous

Estimating Temperature Fields with Sensors 

J. Murray-Bruce and P.L. Dragotti, A Sampling Framework for Solving Physics-driven Inverse Source 
Problems, IEEE Trans. on Signal Processing, Vol. 65(24), pp. 6365-6380, December 2017 



Estimating Temperature Fields with Sensors 

J. Murray-Bruce and P.L. Dragotti, A Sampling Framework for Solving Physics-driven Inverse Source 
Problems, IEEE Trans. on Signal Processing, Vol. 65(24), pp. 6365-6380, December 2017 



Sparse Sampling – New Challenges

• Current sensing methods are energy 
inefficient especially when low-latency is 
needed (e.g., commercial ultra-fast 
cameras)

• Often sampling happens at unknown 
locations (e.g, unknown trajectories, 
unknown projections)

D-SLAM: Diffusion Source Localization And 
trajectory Mapping

Problem statement

The problem we consider is localising diffusion sources and 
estimating the trajectory of the mobile sensor, from samples 
taken along unknown curves.

Diffusion field

Mobile sensor trajectory

5



Bio-Inspired Energy Efficient Sensing

• Current sensing methods are energy inefficient especially when low-latency is needed.
• Example: Rainfall estimation

July 10 July 20 July 30 August 9 August 19 August 29



Bio-Inspired Energy Efficient Sensing

July 18 July 28 September 2

• Only record the day when the bucket is full and then empty it

Approach 2



Bio-Inspired Energy Efficient Sensing
Approach 2 maps analogue information into a time sequence and is used by nature (e.g., integrate-
and-fire neurons)

Time encoding appears in nature, as a mechanism used by neurons to represent sensory 
information as a sequence of action potentials, allowing them to process information very 
efficiently.



Sensing based on Timing Information
• Energy-efficient sensing inspired by nature raises a fundamental representation 

question: 
– How can we embed information related to complex signals into the timing information of 

spikes?
– Besides its theoretical implications, addressing this question will lead to new 

neuromorphic sensing devices 

Video taken from Inivation.com



Integrate-and-fire System

Time-Encoding Machines

y(𝑡)𝑥(𝑡) Threshold 
Detector

Integrator

−𝐶!

𝐶!

𝑡" 𝑡# 𝑡$ 𝑡%
𝑡

spike triggered reset



Comparator System

𝑡! 𝑡" 𝑡# 𝑡$𝑡% 𝑡& 𝑡'

𝑦(𝑡)

• At the crossing times, 𝑥(𝑡!) − 𝑔 𝑡! = 0 hence 𝑥(𝑡!) = 𝑔 𝑡! .

Time-Encoding Machines

+𝑥(𝑡)
𝑡!, 𝑡",…, 𝑡#

+
−

Zero-crossing 
detector

𝑔(𝑡)

𝑇" =
1
𝑓"



• Given the retrieved non-uniform samples 𝑥 𝑡" , 𝑥 𝑡# , … , 𝑥(𝑡&) can we 
reconstruct 𝑥(𝑡)?

Reconstruction from time-encoded information



• Key result:2 if the density of samples D ≥ 1 then perfect reconstruction can 
be using an iterative approach proposed by Aldroubi and Grochenig1

July 18 July 28 September 2

2A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces” SIAM Review 2001

Reconstruction from time-encoded information



July 18 July 28 September 2

• Key result:1 if the density of samples D ≥ 1 then perfect reconstruction can 
be using an iterative approach proposed by Aldroubi and Grochenig1

2A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces” SIAM Review 2001

Reconstruction from time-encoded information



• The iterative approach proposed by Aldroubi and Grochenig

Reconstruction from time-encoded information



• The iterative approach proposed by Aldroubi and Grochenig

Reconstruction from time-encoded information



• The iterative approach proposed by Aldroubi and Grochenig
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• The iterative approach proposed by Aldroubi and Grochenig
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• The iterative approach proposed by Aldroubi and Grochenig
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• The iterative approach proposed by Aldroubi and Grochenig
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• The iterative approach proposed by Aldroubi and Grochenig
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• The iterative approach proposed by Aldroubi and Grochenig

Reconstruction from time-encoded information



• Key result:    if the density of samples D ≥ 1 then 𝐾(! 𝑡 form a basis

• Key Issue 1: In the case of uniform sampling the density is 𝐷 = 1. This means that 
current TEMs are less energy efficient than uniform sampling!

• Key Issue 2: Cannot sample sparse (non-bandlimited) signals with the current 
methods.

Reconstruction from time-encoded information



• We leverage two main ideas from sparse sampling:
– The sampling kernels can reproduce exponentials 
– Reconstruction is achieved using Prony’s methodProblem Statement

You are given a class of functions. You have a sampling device. Given the
measurements yn = hx(t), '(t/T � n)i, you want to reconstruct x(t).

T

x(t)
!

Acquisition Device

h(t)=   (!t/T) y =<x(t),   (t/T!n)>n !y(t)

Natural questions:

I When is there a one-to-one mapping between x(t) and yn?

I What signals can be sampled and what kernels '(t) can be used?

I What reconstruction algorithm?

Pier Luigi Dragotti
Approximate Strang-Fix: Sparse Sampling with any Acquisition Device

Time-based Sampling of Sparse Signals  



Time-based Sampling of Sparse Signals 
Signals:
• We consider sparse continuous-time signals like stream of pulses, piecewise constant or 

regular signals
Sensing Systems:
• We filter before using a TEM

y(")f(")$(−")&(") Threshold 
Detector

Integrator

−'(

'(

") "* "+ ",
"

spike triggered reset

𝑦 𝑡! = 𝑥 𝑡 , 𝜑!(𝑡 − 𝑡!)



Our approach for time decoding of signals
• Reconstruction of 𝑥(𝑡) depends on the

– sampling kernel 𝜑(𝑡)
– the density of time instants {𝑡&}

• We achieve a sufficient density of output samples by imposing conditions on:
– The trigger mark of the integrator (integrate-and-fire TEM ).



• Key Insight: Reproduction of exponentials can be achieved locally in 
𝐼, using at least two non-uniform shifts of the kernel:

$
!#$

.

𝑐&,!𝜑 𝑡 − 𝑡! = 𝑒/0#) , 𝑁 ≥ 2

• The kernels should be continuous within that local interval 𝐼.

Reproduction of Exponentials

𝑡" 𝑡#𝑡$" 𝑡$#

𝐼

𝑡$" - discontinuity of 𝜑 𝑡 − 𝑡"

𝑡$# - discontinuity of 𝜑 𝑡 − 𝑡#



Integrate and Fire TEM  

y(")f(")$(−")&(") Threshold 
Detector

Integrator

−'(

'(

") "* "+ ",
"

spike triggered reset

!

"# "$"%&%

(φ ∗ *+,)(" − "#)
(φ ∗ *+/)(" − "%)

0%φ(&% − ")

0%1(" − &%)

• The sampling kernel 𝜑 𝑡 and its non-uniform shifts reproduce 𝑒$%#&and 
𝑒'$%#& and 0 < 𝜔( ≤

)
*

where 𝐿 is the support of 𝜑 𝑡 . 

• What is the minimum value of the trigger mark 𝐶+ that would allow the perfect 
reconstruction of stream of pulses or piecewise constant signals?



Integrate and Fire TEM  

y(")f(")$(−")&(") Threshold 
Detector

Integrator

−'(

'(

") "* "+ ",
"

spike triggered reset

!

"# "$"%&%

(φ ∗ *+,)(" − "#)
(φ ∗ *+/)(" − "%)

0%φ(&% − ")

0%1(" − &%)

• Trigger mark must guarantee enough samples (three samples) in a short interval

• Proposition:  when 𝐶+ <
,$%&
-%#'

1 − cos %#*
"

then 𝑡!, 𝑡", 𝑡. ∈ 𝜏!, 𝜏! +
*
"

and 
perfect reconstruction is possible



Integrate and Fire – Reconstruction of Pulses  



Energy Efficient Sampling -Results

9

signal with the E-spline '(t). The discontinuities dx(t)
dt can

be estimated from the output spikes, by extending the results
of Proposition 5 to the case of a P -order E-spline 'P (t),
with P � 2. In this case, the E-spline 'P (t) of support L

can reproduce P � 2 different complex exponentials e
j!mt,

with !m = !0 + �m. and m = 0, 1, ..., P � 1. Moreover,
choosing � = �2!0

P�1 and P even ensures the kernel 'P (t)
is a real-valued function. As before, the separation between
consecutive Diracs must be larger than L and the trigger mark
of the comparator must satisfy:

0 < CT <
Amin

P + 2

Z L
P

0

'P (�⌧)d⌧. (36)

Suppose we wanted to estimate the k
th discontinuity in the

signal dx(t)
dt , of amplitude zk and located at ⌧k, and let us

denote the locations of the first output spikes after ⌧k with
tn, tn+1, ...tM . Then, using a similar proof as in Section IV-B,
we can show that the constraint in Eq. (36) guarantees that
⌧k 2 I = [tn+P � L

P , tn]. Then, we can compute the following
signal moments:

sm =
PX

i=1

c
I
m,ny(tn+i)

(a)
= zk

PX

i=1

c
I
m,n('P ⇤ q✓n+i)(⌧k � tn+i�1)

(b)
= zke

j!m⌧k , for m = 0, 1, ..., P � 1.

In these derivations, (a) follows from Eq. (7), and (b) holds
given ⌧k 2 [tn+P � L

P , tn], and the fact that none of the
kernels ('P ⇤ q✓n+i)(⌧k � tn+i�1) have any discontinuities
in [tn+P � L

P , tn], for i = 1, 2, ..., P . As before, we can use
Prony’s method to estimate zk and ⌧k from the signal moments
sm. Finally, we can retrieve the piecewise constant signal x(t)
once we have estimated its discontinuities dx(t)

dt .
The sampling and reconstruction of a piecewise constant

signal are depicted in Fig. 11. The filter is the derivative of
the fourth-order E-spline, of support L = 4, as seen in Fig.
11(b), the separation between input discontinuities is larger
than the kernel’s support L, as depicted in Fig. 11(a), and the
comparator’s trigger mark is CT = 0.001. The estimation of
the input is exact to numerical precision.

Fig. 11: Sampling of a piecewise constant signal using the integrate-
and-fire TEM. The input is shown in (a), the sampling kernel in (b),
the non-uniform samples used for estimation of the first two input
discontinuities in (c), and the reconstructed signal in (d).

V. GENERALIZED TIME-BASED SAMPLING

To highlight the potential practical implications of the
methods developed in the previous sections, we present here
extensions of our framework to deal with arbitrary kernels and
the noisy scenario, and show that reliable input reconstruction
can be achieved also in these scenarios.

A. Sampling with Arbitrary Kernels

In the previous sections we have presented methods for
perfect retrieval of certain classes of non-bandlimited signals
from timing information. We have seen that these methods
require the sampling kernel '(t) to locally reproduce expo-
nentials, in order to be able to map this problem to Prony’s
method. In reality, however, the sampling kernel may not
have the exponential reproducing property as in Eq. (13). Let
us now consider an arbitrary kernel '̃(t), and find a linear
combination of its non-uniform shifted versions that gives the
best approximation of P exponentials f(t) = e

j!mt within
an interval I , for !m = !0 + �m, m = 0, 1, ..., P � 1,
and � = �2!0

P�1 . In other words, we want to find the optimal
coefficients c

I
m,n such that:

NX

n=1

c
I
m,n'̃(t� tn) ⇡ e

j!mt
, (37)

for t 2 I and n = 1, 2, ..., N , with N being the number of
kernels '̃(t� tn) overlapping I .

We find the coefficients cm,n using the least-squares ap-

proximation method described in [38]. The coefficients are
computed using the orthogonal projection of f(t) onto the
space spanned by the non-uniform shifts '̃(t� tn), such that:

hf(t)�
NX

k=1

c
I
m,k'̃(t� tk), '̃(t� tn)i = 0, (38)

for t 2 I and n = 1, 2, ..N .
Furthermore, Eq. (38) is equivalent to:

hf(t), '̃(t� tn)i =
NX

k=1

c
I
m,kh'̃(t� tk), '̃(t� tn)i,

which represents a system of N equations from which we can
determine the N coefficients cIm,k, for each m = 0, 1, ..., P�1.

We then use the calculated coefficients cIm,k to compute the
signal moments as in Section IV. Finally, the estimation of
the input can be further refined using the Cadzow iterative
algorithm in order to increase the accuracy of the signal
moments, before applying Prony’s method [39], [40].

The sampling and reconstruction of bursts of 2 Diracs are
depicted in Fig. 13. We use the multi-channel estimation
method presented in Section IV-D, where the filter of each
channel is a third order B-spline �3(t), such that the modified
kernel (�3 ⇤ q✓n)(t) in Eq. (5) cannot reproduce exponentials.
Moreover, we aim to approximately reproduce 4 different
exponentials for each channel, and hence we require a number
of 4 non-uniform samples, as discussed in Section II-B. In
Fig. 12, we depict the approximate exponential reproduction
in Eq. (37), within the interval I = [0.82, 1.4] overlapping
the first burst of Diracs. Finally, the estimation of the input is
close to exact, as depicted in Fig. 13(c).

Fig. 12: Approximate exponential reproduction using non-uniform
shifts of the kernel (�3 ⇤ q✓n)(t). The kernels are shown in (a), and
the exponential reproduction using these shifted kernels in (b).

If the distance 𝑆 between discontinuities 
is on average 𝑆 > (𝐿 − 1)𝑇with 𝑇 being 
the sampling period in uniform sparse 
sampling then the new time encoding 
framework3 is more efficient than 
sparse sampling (lower sampling 
density

3R. Alexandru and P.L. Dragotti, Reconstructing Classes of Non-bandlimited Signals from Time 
Encoded Information, IEEE Trans. on Signal Processing, vol.68, 2020. 



Integrate and Fire and Neuromorphic Cameras

Spatial filter

𝜑%,' 𝑥, 𝑦
𝑔(𝑥, 𝑦, 𝑡)

Diversity of pixels
Time encoding at each pixel

Each pixel has a 
different temporal filter

𝑡#



Integrate and Fire and Neuromorphic Cameras



57

Sampling Diffusion Fields along Trajectories 

The problem we consider is localising diffusion sources and
estimating the trajectory of the mobile sensor, from samples
taken along unknown trajectories.

This is similar to the classic SLAM problem in computer vision, 
but is now driven by the physics of the field (Diffusion-SLAM) 
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Sampling Diffusion Fields along Trajectories 

• The problem of sampling at unknown location is not new, e.g, [Browning TSP 
2007]  

• The problem can be combinatorial
• The solution is normally not unique
• Many applications: cryo-EM, SLAM
• In our case (Diffusion-SLAM)

• The problem is sufficiently constrained  to admits an algebraic solution
• Solution is unique up to a rigid rotation



D-SLAM: Diffusion Source Localization And 
trajectory Mapping

Spatial measurements
The diffusion field generate by a source 𝑘 will propagate according to the Green’s function, 
as follows:

𝑓 𝒙, 𝑡 =
1

4𝜋𝜇 𝑡 − 𝜏
𝑎𝑒

ି 𝒙ି𝑺𝒌 𝟐

ସఓ ௧ିఛೖ 𝐻(𝑡 − 𝜏)

where:
𝒙Æ location of measurement 𝑓 𝒙, 𝑡
𝑎 Æ amplitude of the diffusion source
𝜏 Æ activation time of the diffusion source
𝑺𝒌 Æ coordinates of source 𝑘 in ℝଶ space
𝐻 𝑡 Æ unit step function
𝜇 Æ diffusivity of the medium 

11

Diffusion Fields  

Time



Problem Set-up 

Given spatial measurements 
of the diffusion field the aim 
is to:
1. Estimate the locations 

and amplitudes of the 
sources

2. Reconstruct the 
trajectory of the mobile 
sensor



Problem Set-up 

The problem is sparse
1. 𝐾 sources to estimate
2. Trajectory is piecewise 

linear so only the vertices 
of each line needs to be 
estimated

3. The projection of the field
on each line is an FRI 
signal (stream of pulses)

4. The location of each 
pulse can be estimated 
using sparse sampling 
theory

𝑌","

𝑌#,"



Estimation using Matrix Factorization 

• The slope of the line is 𝒄$ =
𝒃()*'𝒃(

0(

• So 𝑌1,$ = 𝒃$ − 𝑺1
+𝒄$

• We define Ω1,$ = 𝑌13!,$ − 𝑌1,$ = 𝑺13! − 𝑺1 +𝒄$

4

Fig. 3: The problem we consider in this paper is localising the diffusion sources and the trajectory of the mobile sensor from samples along
unknown piecewise linear trajectories, as illustrated in (a). Under the hypotheses of Theorem 1, we show that the estimation we obtain is up
to a 2D orthogonal transformation (angles and lengths of lines preserved), from the true trajectory and source locations, as seen in the two
possible solutions in (b) and (c), provided K � 2 sources and L � 3 lines. If the locations of any three points in the trajectory are known,
we can exactly retrieve the source locations and the trajectory of the mobile sensor, as seen in (d).

standard estimation problem in the context of finite rate of
innovation (FRI) theory [36]. Therefore, these parameters can
be retrieved uniquely and exactly using the method in [36] or
approximately but more robustly using the approach detailed
in Appendix A.

B. Pairing Yk,j and Ak,j with Sk

In order to be able to use the estimated parameters Yk,j and
Ak,j for source localisation, we need to first ensure these are
paired across different adjacent lines. In other words, we need
to identify whether two parameters Yk,j and Yk0,j+1 (and the
corresponding Ak,j and Ak0,j+1 respectively) estimated using
measurements on line j and j + 1 respectively, correspond to
the same source Sk, i.e. whether k = k

0.
First, the parameter Ak,j depends on the amplitude ak of

source k, as well as on the shortest distance dk,j from source
k to line j, and can also be expressed as:

Ak,j = ake
�||bj�Sk||2+Y 2

k,j
(b)
= ake

�d2
k,j , (10)

where (b) follows from Pythagoras’ theorem.
Using the derivations in Eq. (10), we get:

log

✓
Ak,j

ak

◆
= �d

2
k,j =

�
lj � Yk,j

�2 � ||bj+1 � Sk||2, (11)

where we have used d
2
k,j +

�
lj � Yk,j

�2
= ||bj �Sk||2 which

follows from Pythagoras’ theorem (see Fig. 4).
Similarly, for line j + 1 and source k

0, we get:

log

✓
Ak0,j+1

ak0

◆
= �d

2
k0,j+1 = Y

2
k0,j+1�||bj+1�Sk

0||2. (12)

Eq. (11) and Eq. (12) yield:

log

 
Ak,j

Ak0,j+1

ak0

ak

!
= d

2
k0,j+1 � d

2
k,j

(c)
= ||Sk0 � bj+1||2 � Y

2
k0,j+1 +

�
lj � Yk,j

�2 � ||bj+1 � Sk||2,
where (c) follows from Pythagoras’ theorem.

This means that log
⇣

Ak,j

Ak0,j+1

⌘
= (Yk,j � lj)2 � Y

2
k0,j+1

whenever k = k
0. Hence, the two parameters Yk,j and

Yh,j+1 with corresponding amplitudes Ak,j and Ah,j+1

respectively, are related to the same source k, when

log
⇣

Ak,j

Ah,j+1

⌘
= (Yk,j � lj)2 � Y

2
h,j+1

1.

C. Estimation of the trajectory and source parameters
We are now in a position to find the source amplitudes and

locations, as well as the trajectory, that are consistent with the
field measurements.

Using the parameters Yk,j = (bj � Sk)T cj
from Eq. (9), we can also obtain the difference
⌦j,q = Yk,j � Yq,j =

�
Sq � Sk

�T
cj for each line j and

any two different sources k and q. This leads to the following
matrix:

⌦ =

2

66664

(S2 � S1)T c1 . . . (S2 � S1)T cL
(S3 � S2)T c1 . . . (S3 � S2)T cL

...
. . .

...
(Sk � SK�1)T c1 . . . (Sk � SK�1)T cL

3

77775

=

2

66664

(S2 � S1)T

(S3 � S2)T

...
(Sk � SK�1)T

3

77775

| {z }
(K�1)⇥2

⇥
c1 c2 . . . cL

⇤
| {z }

2⇥L

:= SC.

(13)

Hence, ⌦ is a matrix of rank  2.
We can factorise the matrix ⌦ using singular value decom-

position as:
⌦ = U�VT

, (14)

where:
U = (K � 1)⇥ 2 orthogonal matrix,
� = 2⇥ 2 diagonal matrix,
V = L⇥ 2 orthogonal matrix.

Hence, �VT = UT⌦ = C̃, which we denote as:

UT⌦ = C̃ =
⇥
c̃1 c̃2 . . . c̃L

⇤
.

Moreover, denoting the transformation matrix between the
estimated line slopes c̃j and the true lines cj with A, we get:

UT⌦ =
⇥
c̃1 c̃2 . . . c̃L

⇤
= A

⇥
c1 c2 . . . cL

⇤
,

(15)

1The equality log

✓
Ak,j

Ak0,j+1

◆
= (Yk,j � lj)2 � Y 2

k0,j+1 may also

hold for cases when k 6= k0. However, this only happens for degenerate
arrangements of the sources with respect to the trajectory, for example when
the distances from the source Sk and Sk0 to point bj+1 are equal.
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Fig. 3: The problem we consider in this paper is localising the diffusion sources and the trajectory of the mobile sensor from samples along
unknown piecewise linear trajectories, as illustrated in (a). Under the hypotheses of Theorem 1, we show that the estimation we obtain is up
to a 2D orthogonal transformation (angles and lengths of lines preserved), from the true trajectory and source locations, as seen in the two
possible solutions in (b) and (c), provided K � 2 sources and L � 3 lines. If the locations of any three points in the trajectory are known,
we can exactly retrieve the source locations and the trajectory of the mobile sensor, as seen in (d).

standard estimation problem in the context of finite rate of
innovation (FRI) theory [36]. Therefore, these parameters can
be retrieved uniquely and exactly using the method in [36] or
approximately but more robustly using the approach detailed
in Appendix A.

B. Pairing Yk,j and Ak,j with Sk

In order to be able to use the estimated parameters Yk,j and
Ak,j for source localisation, we need to first ensure these are
paired across different adjacent lines. In other words, we need
to identify whether two parameters Yk,j and Yk0,j+1 (and the
corresponding Ak,j and Ak0,j+1 respectively) estimated using
measurements on line j and j + 1 respectively, correspond to
the same source Sk, i.e. whether k = k

0.
First, the parameter Ak,j depends on the amplitude ak of

source k, as well as on the shortest distance dk,j from source
k to line j, and can also be expressed as:

Ak,j = ake
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C. Estimation of the trajectory and source parameters
We are now in a position to find the source amplitudes and

locations, as well as the trajectory, that are consistent with the
field measurements.

Using the parameters Yk,j = (bj � Sk)T cj
from Eq. (9), we can also obtain the difference
⌦j,q = Yk,j � Yq,j =
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cj for each line j and

any two different sources k and q. This leads to the following
matrix:
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Hence, ⌦ is a matrix of rank  2.
We can factorise the matrix ⌦ using singular value decom-

position as:
⌦ = U�VT

, (14)

where:
U = (K � 1)⇥ 2 orthogonal matrix,
� = 2⇥ 2 diagonal matrix,
V = L⇥ 2 orthogonal matrix.

Hence, �VT = UT⌦ = C̃, which we denote as:

UT⌦ = C̃ =
⇥
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⇤
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Moreover, denoting the transformation matrix between the
estimated line slopes c̃j and the true lines cj with A, we get:
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hold for cases when k 6= k0. However, this only happens for degenerate
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the distances from the source Sk and Sk0 to point bj+1 are equal.
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Results

R. Alexandru, T. Blu and P.L. Dragotti, "D-SLAM: Diffusion Source Localization and Trajectory Mapping," 
IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2019.

D-SLAM: Diffusion Source Localization And 
trajectory Mapping

Experimental results – relaxing the assumptions

30

• Time varying field
• Unknown activation time
• Noise
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Results 9

Fig. 10: In (a) we plot the measurements observed along each line in the trajectory (blue for the first line, red for the second, and yellow
for the third line respectively). In (b) we display the estimation of a single diffusion source from samples of a real thermal diffusion field,
taken along a trajectory of three lines, where the first line is known and when the activation time of the source is assumed to be known.
The mobile sensor’s speed is v = 0.3292 m/s, and the temporal sampling period is T = 2.7 ⇥ 10�3s. In (c) we show the reconstruction
results for the case in which the activation time of the source is unknown, and the temporal sampling period is T = 1.1⇥ 10�4s.

VI. CONCLUSIONS

In this paper, we have presented a method to estimate mul-
tiple instantaneous diffusion sources, from uniform samples
taken along unknown piecewise linear trajectories. The source
locations, as well as the trajectory can be estimated exactly up
to an orthogonal transformation, when we assume we know the
activation times of the sources, and that the diffusion field does
not evolve over time. The algorithm also achieves accurate
estimation when we relax these assumptions. Experimental
results on both synthetic and real data show the potential of
the proposed algorithm.

APPENDIX A
ESTIMATING THE CENTERS OF GAUSSIAN FUNCTIONS

FROM THEIR SUM

Leveraging the results in [36], we can multiply the
measurements fj,n by the coefficients cn = e

�(ljnT)2 ,
to obtain the signal moments of the form sn =PK

k=1

⇣
Ak,je

�(Yk,j)
2
⌘
e
2ljnTYk,j :=

PK
k=1 bku

n
k . We then

use the annihilating filter method, also known as Prony’s
method [42] on sn, to obtain the frequency components uk, as
well as the amplitudes bk, for k = 1, ...,K, provided N � 2K.
This is detailed in Appendix B.

An alternative method is to approximately retrieves the
unknown frequencies and amplitudes, which in many cases
proves to be more stable and robust to noise.

Using the results in [43], [44], we can find coefficients
cm,n that allow us to approximately reproduce exponentials,
as follows: X

n2N
cm,ne

�(t�nT )2 ⇡ e
j!mt

, (18)

for !m = !0(1� 2
2K�1m), m = 0, 1, ..., 2K � 1, where K is

the number of sources we aim to estimate and !0 is arbitrary.
Then, we can multiply the measurements fj,n by the coef-

ficients cm,n, to obtain the signal moments:

sm =
X

n

cm,nfj,n =
X

n

cm,n

KX

k=1

Ak,je
�(ljnT�Yk,j)

2

=
KX

k=1

Ak,j

X

n

cm,ne
�(ljnT�Yk,j)

2 (a)
⇡

KX

k=1

Ak,je
j!mYk,j ,

where (a) follows from Eq. (18).
We then use Prony’s method [42] on sm, to obtain the

frequency components Yk,j , as well as the terms Ak,j , for
each line j and source Sk.

APPENDIX B
PRONY’S METHOD

One can retrieve the unknown parameters {bk, uk}Kk=1 from
the sequence sn =

PK
k=1 bku

n
k using the annihilating filter

method, also known as Prony’s method [42]. Let hn be a filter
with zeros at {uk}Kk=1, such that when we filter the sequence
sn with this filter, the result will be zero.

The z-transform of this annihilating filter is given by:

H(z) =
KX

n=0

hnz
�n =

KY

k=1

(1� ukz
�1), (19)

which evaluates to zero when z = uk, and whose coefficients
hn can be convolved with the sequence sn, to obtain:

hn ⇤ sn =
KX

l=0

hlsn�l =
KX

k=1

bku
n
k

KX

l=0

hlu
�l
k

(a)
= 0, (20)

where (a) holds since z = uk is a zero of H(z) in Eq. (19).
The filter coefficients hn can be uniquely retrieved by

involving at least 2K consecutive values of the signal moments
sn, in order to form K distinct equations as in (20). These can
be written in a Toeplitz matrix form, as follows:

2

66664

sK sK�1 · · · s0

sK+1 sK · · · s1
...

...
. . .

...
s2K�1 s2K�2 · · · sK�1

3

77775

2

66664

1
h1
...

hK

3

77775
= Sh = 0. (21)

If {bk}Kk=1 are non-zero and {uk}Kk=1 are distinct, matrix
S 2 CK⇥(K+1) has full row rank K, which means the solution
h given by the system in (21) is unique. This solution can be
found using the singular value decomposition of S, where h is
the singular vector corresponding to the zero singular value.

Once the filter coefficients hn of the polynomial H(z)
have been found, the parameters {uk}Kk=1 are obtained from
the roots of this filter, and the parameters {bk}Kk=1 can be

R. Alexandru, T. Blu and P.L. Dragotti, "D-SLAM: Diffusion Source Localization and Trajectory Mapping," 
IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2019.



Conclusions

Sampling is alive and well 😄

• In sampling, sparsity is king 
• In many real-life problems:

• We always need better resolution (e.g. neuroscience)
• We often sample at unknown locations (SLAM, Cryo-EM)
• Sampling might be irregular (e.g., along trajectories)
• Time-based sampling is still un-explored but essential for fast 

energy efficient devices



Thank you!
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