

Invertible Neural Networks and their Applications

Jun-Jie Huang and Pier Luigi Dragotti

Outline

1. Overview of Invertible Neural Networks

- Origin of INN and Normalizing flows
- INN for Inverse Problems
- 2. Wavelet-Inspired Invertible Neural Network
- 3. INN and diffusion models: INDigo
- 4. Other applications of INN

Invertible Neural Networks (INNs) are bijective function

approximators which have a forward mapping

$$F_{\theta} \colon \mathbb{R}^d \to \mathbb{R}^l$$
$$x \mapsto z$$

and inverse mapping

$$F_{\theta}^{-1} \colon \mathbb{R}^{l} \to \mathbb{R}^{d}$$
$$z \mapsto x$$

A bijective function (or invertible function)

How to Achieve Invertibility?

Invertible via lifting scheme like architectures

- Signal splitting
- Alternative prediction and update

Split
$$\rightarrow \begin{cases} d = x_o - P(x_e) \\ s = x_e + U(d) \end{cases}$$

Forward pass

Backward pass

Factoring wavelet transforms into lifting steps	3900	1998
I Daubechies, W Sweldens		
Journal of Fourier analysis and applications 4 (3), 245-267		

Invertible Neural Networks are bijective function approximators which have a forward mapping

 $F_{\theta} \colon \mathbb{R}^d \to \mathbb{R}^l$ $\chi \mapsto Z$

and inverse mapping

 $F_{\theta}^{-1} \colon \mathbb{R}^l \to \mathbb{R}^d$ $z \mapsto \chi$

invertible function)

Also known as **Normalizing Flow** for generative modeling

• Tractable Jacobian, allows explicit computation of posterior probability

Figure 1: Synthetic celebrities sampled from our model; see Section 3 for architecture and method, and Section 5 for more results.

Kingma, Durk P., and Prafulla Dhariwal. "Glow: Generative flow with invertible 1x1 convolutions." in Proceedings of *Advances in Neural Information Processing Systems (NeurIPS)*, 2018.

Inverse problems involve reconstructing unknown physical

quantities from indirect measurements :

- denoising
- super-resolution
- deblurring
- inpainting

Invertible Neural Networks are ideal architectures to address inverse problems

Ardizzone, Lynton, Jakob Kruse, Sebastian Wirkert, Daniel Rahner, Eric W. Pellegrini, Ralf S. Klessen, Lena Maier-Hein, Carsten Rother, and Ullrich Köthe. "Analyzing inverse problems with invertible neural networks." in Proceedings of *International Conference on Learning Representations (ICLR)*, 2019.

Outline

1. Overview of Invertible Neural Networks

- Origin of INN and Normalizing flows
- INN for Inverse Problems

2. Wavelet-Inspired Invertible Neural Network

- 3. INN and diffusion models: INDigo
- 4. Other applications of INN

Image Denoising

- Recover a clean image from noisy observations
- Raw image data is usually noisy

Denoising is the "simplest" inverse problem yet plays an important role in many applications

Deep Learning methods are effective while less interpretable and controllable

Wavelet Thresholding is a widely used denoising approach

• Wavelets provide invertible sparse representations of piecewise smooth images

Motivation:

 Whether it is possible to combine the merits of Wavelet Thresholding and DNNs for image denoising and other image restoration tasks?

Idea:

 Learning a redundant transform with perfect reconstruction property using a Wavelet-inspired INvertible Network (WINNet)

Lifting inspired Invertible Neural Network (LINN)

• Forward pass

• Backward pass

When no operation is applied on the representation, perfect reconstruction can be achieved using the backward pass.

Lifting inspired Invertible Neural Network (LINN)

- Predictor/Updater networks
 - Separable convolutional networks with soft-thresholding non-linearity
 - Noise adaptive soft-threshold

Sparsity-driven Denoising Network

- Non-invertible component
- A well-understood denoising network can lead to enhanced interpretability

Sparsity-driven Denoising Network

• We model the denoising process as Convolutional Sparse Coding

$$\boldsymbol{g} = \operatorname{argmin}_{\boldsymbol{g}} \frac{1}{2} \left\| \boldsymbol{z}_{d}^{(I)} - \sum_{i=1}^{M} \boldsymbol{D}_{i} \otimes \boldsymbol{g}_{i} \right\|_{2}^{2} + \sum_{i=1}^{M} \lambda_{i} \| \boldsymbol{g}_{i} \|_{1}$$

• Unfold it in to CLISTA Network $G_t = \mathcal{T}_{\lambda_t} \left(G_{t-1} + W_a \otimes (D_M^k - W_s \otimes G_{t-1}) \right)$

Model-inspired Noise Estimation Network

X. Liu, M. Tanaka and M. Okutomi, "Single-Image Noise Level Estimation for Blind Denoising," in *IEEE Transactions on Image Processing (TIP)*, vol. 22, no. 12, pp. 5226-5237, Dec. 2013.

Model-inspired Noise Estimation Network

Visualization of the selected patches for noise level estimation 20

Experimental Settings:

- Training loss:
 - Mean squared error between restored image and clean image $\mathcal{L}_r = \frac{1}{2N} \sum_{r=1}^{N} \mathcal{L}_r$
 - Spectral norm loss for LINN

ed image and clean image
$$\mathcal{L}_r = \frac{1}{2N} \sum_{i=1}^{K} \|X_i - \hat{X}_i\|_2^2$$

 $\mathcal{L}_s = \frac{1}{K \cdot M \cdot J} \sum_{k=1}^{K} \sum_{m=1}^{M} \sum_{j=1}^{J} \|P_{m,j}^k\|_S + \|U_{m,j}^k\|_S$

- Orthogonal loss for CLISTA Network $\mathcal{L}_o = \| W_s \otimes W_a \delta \|_F^2$
- Optimizer:
 - Adam with learning rate 1×10^{-3} which decays to 1×10^{-4} at the 30-th epoch
- Training data:
 - 400 images of size 180×180

Experimental Results — Non-blind denoising

Comparison of average PSNR (dB) and number of parameters of different methods. The testing dataset is *Set12* with noise level $\sigma = [15, 25, 50]$.

Experimental Results — Blind denoising

Dataset	Methods	$\sigma = 5$	$\sigma = 25$	$\sigma = 45$	$\sigma = 65$	$\sigma = 85$	$\sigma = 105$	$\sigma = 125$	$\sigma = 145$
BSD68	DnCNN-B [21]	37.75	29.15	26.62	23.00	16.07	13.19	11.68	10.79
	BUIFD [29]	37.41	28.76	25.61	23.07	18.81	15.98	14.45	13.52
	BF-CNN [28]	37.73	29.11	26.58	25.12	24.10	23.33	22.70	22.18
	WINNet (1-scale)	37.82	<u>29.13</u>	26.66	25.23	24.23	23.46	22.81	22.23
Set12	DnCNN-B [21]	37.88	30.38	27.68	23.52	15.95	13.18	11.78	10.92
	BUIFD [29]	37.34	30.18	27.01	24.27	19.41	16.28	14.66	13.73
	BF-CNN [28]	37.81	30.33	27.58	25.83	24.54	23.55	22.74	22.07
	WINNet (1-scale)	38.22	30.33	27.72	26.03	24.77	23.76	22.94	22.24

Training noise levels

29.38dB

Unseen noise levels

38.10 dB

60 40

26.91dB

25.36dB

24.12dB

.12dB

23.11*dB*

22.23dB

21.49dB-3

Application on Image Deblurring

Image Deblurring with WINNet

Algorithm 1: Plug-and-Play image deblurring with blind WINNet. **1 Input:** Input image y, kernel k, parameter λ ; 2 Initialize: $z_0 = y$, $\beta_0 = \text{NENet}(z_0)$, $\beta_1 = 10 \times \beta_0$, k = 1: 3 while $\beta_k > \beta_0$ do 4 $x_k = \arg\min_{x} \|y - k \otimes x\|_2^2 + \frac{\lambda \beta_0^2}{\beta_k^2} \|x - z_{k-1}\|_2^2$; %Auxiliary Update 5 $\beta_{k+1} = \operatorname{NENet}(x_k);$ %Noise Estimation and Denoising 6 $z_k = WINNet(x_k, 2\beta_{k+1});$ 7 k = k + 1;8 end 9 Output: Deblurred image $x = z_{k-1}$.

Experimental Results on Image Deblurring

Take home message:

 With proper nonlinear over-parameterization, Wavelet-inspired network architecture can achieve good performance, strong controllability, generalization ability and high interpretability

J.-J. Huang, and P.L. Dragotti, "WINNet: Wavelet-inspired Invertible Network for Image Denoising," in *IEEE Transactions on Image Processing (TIP)*, 2022.

J.-J. Huang, and P.L. Dragotti, "LINN: Lifting Inspired Invertible Neural Network for Image Denoising,"

in Proceedings of 29th European Signal Processing Conference (EUSIPCO), Ireland, 2021.

Outline

1. Overview of Invertible Neural Networks

- Origin of INN and Normalizing flows
- INN for Inverse Problems
- 2. Wavelet-Inspired Invertible Neural Network
- 3. INN and diffusion models: INDigo
- 4. Other applications of INN

$$\hat{x} = \min_{x} ||H(x) - y||^2 + \lambda \rho(x)$$

consistency term prior

Impose consistency using the forward part of the INN

• Impose the prior using diffusion models

Iterate

Diffusion Models are good for "unconditional" generation of new samples (e.g., Denoising Probabilistic Diffusion Models)

Motivation: Can we use a pretrained "unconditional" diffusion model for inverse problems?

J. Ho, J. Ajay and P. Abbeel. "Denoising diffusion probabilistic models." in Proceedings of Advances in Neural Information Processing Systems (NeurIPS) 2020.

 Given a training set {x_i, y_i} which contains N high-quality images and their low-quality counterparts, we learn the forward part of the INN using the following loss:

$$L\left(\Theta\right) = rac{1}{N} \sum_{i=1}^{N} \left\|\mathbf{c}^{i} - \mathbf{y}^{i}\right\|_{2}^{2},$$

• Consequently, *d* models the lost details that need to be recovered with the diffusion model

Algorithm 1 INDigo
1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$
2: for $t = T,, 1$ do
3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$
4: $\mathbf{x}_{0,t} = \frac{1}{\sqrt{\bar{\alpha}_t}} (\mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t))$
5: $\tilde{\mathbf{x}}_{t-1} = \frac{\sqrt{\alpha_t}(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1-\bar{\alpha}_t} \mathbf{x}_{0,t} + \sigma_t \mathbf{z}$
6: $\mathbf{c}_t, \mathbf{d}_t = f_{\phi}(\mathbf{x}_{0,t})$
7: $\hat{\mathbf{x}}_{0,t} = f_{\phi}^{-1}(\mathbf{y}, \mathbf{d}_t)$
8: $\mathbf{x}_{t-1} = \tilde{\mathbf{x}}_{t-1} - \zeta \nabla_{\mathbf{x}_t} \ \hat{\mathbf{x}}_{0,t} - \mathbf{x}_{0,t} \ _2^2$
9: end for
10: return \mathbf{x}_0

Ground Truth

Degraded

Reconstructed

- This approach is simple, flexible and effective
 - No-need to know the degradation process
 - The degradation process can be highly non-linear
 - No need to retrain the diffusion model for every new degradation (just need to train the INN)

Results for non-linear degradation models

Bicubic

Ours

Ground Truth

Results on 4x super-resolution

Method	Noise σ	$PSNR\uparrow$	$FID\downarrow$	$LPIPS \downarrow$	NIQE↓
ILVR	0	27.43	44.04	0.2123	5.4689
DDRM	0	28.08	65.80	0.1722	4.4694
DPS	0	26.67	32.44	0.1370	4.4890
Ours	0	28.15	22.33	0.0889	4.1564
ILVR	0.05	26.42	60.27	0.3045	4.6527
DDRM	0.05	27.06	45.90	0.2028	4.8238
DPS	0.05	25.92	31.71	0.1475	4.3743
Ours	0.05	27.16	26.64	0.1215	4.1004
ILVR	0.10	24.60	88.88	0.4833	4.4888
DDRM	0.10	26.16	45.49	0.2273	4.9644
DPS	0.10	24.73	31.66	0.1698	4.2388
Ours	0.10	26.25	28.89	0.1399	3.9659

Results on blind unsupervised deconvolution

(a) Input

(c) DifFace [2]

(d) PGDiff [3]

(e) StableSR [4]

(f) **Ours**

D. You, F. Andreas, and P.L. Dragotti. "INDigo: An INN-Guided Probabilistic Diffusion Algorithm for Inverse Problems." in Proceedings of IEEE 25th International Workshop on Multimedia Signal Processing (MMSP), 2023. (Best Paper Award)

Outline

1. Overview of Invertible Neural Networks

- Origin of INN and Normalizing flows
- INN for Inverse Problems
- 2. Wavelet-Inspired Invertible Neural Network
- 3. INN and diffusion models: INDigo
- 4. Other applications of INN

4. Other Applications of INN: Blind Source Separation

Deep Unfolded Reflection Removal Network

• Overparameterize the wavelet transform as a learnable INN

$$\min_{\mathbf{z}_{T}, \mathbf{z}_{R}} \frac{1}{2} \left\| \mathbf{I} - \sum_{i=1}^{N} \mathbf{D}_{T}^{i} \otimes \mathbf{z}_{T}^{i} - \sum_{i=1}^{N} \mathbf{D}_{R}^{i} \otimes \mathbf{z}_{R}^{i} \right\|_{F}^{2} + \lambda_{T} p_{T}(\mathbf{z}_{T}) \\
+ \lambda_{R} p_{R}(\mathbf{z}_{R}) + \kappa \mathcal{E} \left(\sum_{i=1}^{N} \mathbf{D}_{T}^{i} \otimes \mathbf{z}_{T}^{i}, \sum_{i=1}^{N} \mathbf{D}_{R}^{i} \otimes \mathbf{z}_{R}^{i} \right) \\
\mathbf{Exclusion Prior:} \\
\mathcal{E}(\mathbf{T}, \mathbf{R}) = \sum_{m=1}^{M} \left\| (\mathbf{W}_{m} \otimes \mathbf{T}) \odot (\mathbf{W}_{m} \otimes \mathbf{R}) \right\|_{1} \\
\text{where W denotes wavelet transform.}$$

J.-J. Huang, et al. "DURRNET: Deep Unfolded Single Image Reflection Removal Network with Joint Prior", in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024.

39

4. Other Applications of INN: Blind Source Separation

Deep Unfolded Reflection Removal Network

PSNR v.s. FLOPS and **#Params**

(b) Zhang [10] (a) Input

(c) BDN [11]

(d) IBCLN [14] (e) ERRNet [13] (f) YTMT [17]

(g) DURRNet (h) Ground-truth

Objective comparisons:

Dataset	Matrice	CEILNet	Zhang et al.	BDN	IBCLN	CoRRN	ERRNet	YTMT	DURRNet
	wientes	[8]	[10]	[11]	[14]	[22]	[13]	[17]	(proposed)
Pag120 (20)	PSNR (†)	18.45	22.55	18.41	21.86	21.57	22.89	23.26	23.80
Real20 (20)	SSIM (†)	0.690	0.788	0.726	0.762	0.807	0.803	0.806	0.814
Nature (20)	PSNR (†)	19.33	19.56	18.92	23.57	21.84	20.60	23.85	24.24
	SSIM (†)	0.745	0.736	0.737	0.783	0.805	0.755	0.810	0.812

4. Other Applications of INN: Adversarial Attacks

Adversarial Attack via Invertible Neural Networks:

Z. Chen, et al. "Imperceptible Adversarial Attack Via Invertible Neural Networks." in Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

Conclusions

- The perfect reconstruction property of the Invertible Neural Networks is intriguing
- Designing INN using wavelets/lifting leads to more interpretable and simpler architectures
- Good generalization ability
- Invertible neural networks have the potential for many image/signal processing applications

Thanks for listening!

Related Publications

- J.-J. Huang and P.L. Dragotti, "LINN: Lifting Inspired Invertible Neural Network for Image Denoising", in Proceedings of 29th European Signal Processing Conference (EUSIPCO), 2021.
- J.-J. Huang and P.L. Dragotti, "WINNet: Wavelet-inspired Invertible Network for Image Denoising", in IEEE Transactions on Image Processing (TIP), 2022.
- Y. Di, A. Floros, and P.L. Dragotti. "INDigo: An INN-Guided Probabilistic Diffusion Algorithm for Inverse Problems", in Proceedings of IEEE 25th International Workshop on Multimedia Signal Processing (MMSP), 2023.
- Z. Chen et al. "Invertible Mosaic Image Hiding Network for Very Large Capacity Image Steganography", in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024.
- J.-J. Huang et al. "DURRNET: Deep Unfolded Single Image Reflection Removal Network with Joint Prior", in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024.
- Z. Chen et al. "Imperceptible Adversarial Attack Via Invertible Neural Networks", in Proceedings of AAAI Conference on Artificial Intelligence, 2023.