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Motivation: A Theory for DL

• Deep Neural Networks achieves state-of-the-art performance in many imaging tasks

• Fundamental questions: 
– is there a systematic way to interpret Deep Neural Networks? 
– Is there  a systematic way to design the architecture of a Deep Neural 

Networks?

• Personal view: sparse signal representation theory is much more developed and 
can be used to help addressing both questions



Outline

• Invertible Neural Networks and Wavelets
– What are invertible Neural Networks (INN)?
– Lifting Scheme and INN
– Wavelet-like INN for denoising and deblurring

• Multimodal Image Processing and Unfolding
– Multimodal Image Super-Resolution
– Unfolding strategy for image separation in Art Investigation

• Conclusions

Common Theme: Interplay 
between sparsity and learning.
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What are Invertible Neural Networks?

• Bijective (invertible) function approximators that have a forward mapping 

• and inverse mapping

𝐹!: ℝ" → ℝ#

𝑥 ↦ 𝑧

𝐹!
$%: ℝ# → ℝ"

𝑧 ↦ 𝑥
A bijective function (or 

invertible function)



What are Invertible Neural Networks?

• INNs are bijective function approximators



Kingma, Diederik P., and Prafulla Dhariwal. “Glow: Generative Flow with Invertible 1!1 Convolutions.” arXiv preprint 
arXiv:1807.03039 (2018).

Why Invertible Neural Networks?

• Generative modeling
– Tractable Jacobian, allows explicit computation of posterior probability 
– Normalizing flows



How to Achieve Invertibility?

• Invertible via lifting scheme like architectures
– Signal splitting 
– Alternate prediction and update

!𝑑 = 𝑥! − 𝑃 𝑥"
𝑠 = 𝑥" + 𝑈 𝑑

Forward pass

Split !𝑥! = 𝑑 + 𝑃 𝑥"
𝑥" = 𝑠 − 𝑈 𝑑

Backward pass

Merge



Wavelets and Invertible Neural Networks 

• In the beginning there were Wavelets 😄
• Wavelets  provide sparse  representations of piecewise smooth images.  
• This is why they have been successfully used  in many application including 

denoising 

Figure:  Cameraman  is reconstructed using only 8% of the wavelet coefficients



Wavelet-based Denoising

• Principles of wavelet denoising:

Wavelet transform
• Multi-resolution analysis
• Perfect reconstruction 
• Noise is uniformly spread through the coefficients
• Image information is concentrated on small number of large coefficients

Denoising
• Element-wise thresholding, e.g. soft-thresholding



Wavelet-based Denoising
1-D Example

Smooth parts cleaned without smearing edges



Wavelets for Deconvolution

• Sparsity constraints in the wavelet domain (or in another domain) can also be used as a regularizers
for different applications, e.g., deconvolution

• Iterative shrinkage:   
– min

!
( 𝒚 − 𝑯𝑾"#𝜶 $ + 𝜆 𝜶 #) where 𝒚 is the blurred image and 𝒙 = 𝑾"#𝜶 is the target image

– 𝜶% = 𝑆&(𝜶%"# +𝑾𝑯' 𝒚 − 𝑯𝑾"#𝜶%"# )



Implementation of the Wavelet Transform
• Two-channel filter-bank 

• Iterated decomposition leads to multi-resolution  
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Implementation of the 2-D Wavelet 
Transform



Implementation of the 2-D Wavelet 
Transform



Wavelets and INN

• The wavelet transform can be implemented using the lifting scheme

• The predictor (P) predicts the odd samples using the even, the update (U) uses the 
prediction error to smooth the even samples

• Predictor/update are fixed
• The scheme is perfectly invertible 

How to Achieve Invertibility? (1)

� Invertible via lifting scheme like architectures
� Signal splitting 
� Alternative prediction and update

6

ቊ݀ ൌ ௢ݔ െ ܲ ௘ݔ
ݏ ൌ ௘ݔ ൅ ܷ ݀

Forward pass

Split ቊݔ௢ ൌ ݀ ൅ ܲ ௘ݔ
௘ݔ ൌ ݏ െ ܷ ݀

Backward pass

Merge

I. Daubechies and W. Sweldens, “Factoring Wavelet Transforms into lifting Steps” 1997



• Can we learn a wavelet-like non-linear sparsifying transform?

• Approach: 
• convert the P/U operators into two deep networks and learn them
• Use denoising as the bottleneck to impose sparsity 

How to Achieve Invertibility? (1)

� Invertible via lifting scheme like architectures
� Signal splitting 
� Alternative prediction and update

6

ቊ݀ ൌ ௢ݔ െ ܲ ௘ݔ
ݏ ൌ ௘ݔ ൅ ܷ ݀

Forward pass

Split ቊݔ௢ ൌ ݀ ൅ ܲ ௘ݔ
௘ݔ ൌ ݏ െ ܷ ݀

Backward pass

Merge

Wavelets and INN



• Can we learn a wavelet-like non-linear sparsifying transform?

• Approach: 
• convert the P/U operators into two deep networks and learn them
• Use denoising as the bottleneck to impose sparsity 

Lifting Inspired Invertible Neural Network for 
Image Denoising

� Predictor/updater networks
� There are ܫ pairs of predictor/updater networks

31

Wavelets and INN



• To make sure P acts as a sparsifying
predictor: 

• Train the network with 
noisy/noiseless image pairs

• Add a denoising network on the 
details

Wavelets and INN



Signal Decomposition

𝑐#

𝑐$

𝑑#

𝑑$

• Training with noiseless/noisy 
pairs leads to a sparsifying
transform

• Each piece of the network is 
interpretable

• As for wavelets, we can now 
use the INN for e.g., 
denoising or deconvolution



Denoising - Overall Method



Denoising - Overall Method

Denoising 
Network

Noisy image

Denoised image

(forward)

(backward)

LINN1



Denoising - Overall Method

Denoising 
Network

Noisy image

Denoised image

Denoising 
Network

(forward) (forward)

(backward)

LINN1 LINNk

…

(backward)

…



Denoising

Denoising



Results

Denoising:



Image Deblurring

⊗= +



Simulation Results – Image Deblurring



Results

Deconvolution:



First Set of Conclusions

• Invertible Neural Networks is an interesting new concept

• Designing INN using wavelets/lifting leads to a more interpretable 
network

• Good generalization ability



Why Multi-modal Image Processing?

Technical Study of Old 
Master Paintings1: 
Data acquired using 
different imaging 
techniques

1joint project with UCL (M. Rodrigues), Duke and the National Gallery

Oil Painting

Visible Part

Invisible Part ?
New results Previous results



Why Multimodal Image Super-Resolution?
Multimodal image super-resolution

Near-infrared (NIR)/RGB Multi-spectral/RGB Depth/RGB

Low resolution !



Multimodal Image Super-Resolution (MISR)

LR Depth Image

HR Color Image (guidance image)

Estimated HR Depth Image



Single Image Super-Resolution

• Patch-based Prediction:

Low-Resolution Image

High-Resolution Image

Image Super-Resolution

Vectorize Predict

Reshape
𝒙 )𝒚



Start with  an external dataset of images (e.g., BSD 300 dataset)

Down
sampling

Bicubic 
interpolation

Patch extraction 

LR patches

Patch extraction 

HR patches

Extract pairs of LR and HR patches

Single Image Super-Resolution



Dictionary Learning for Super-Resolution
• The key insight is that images or patches of images have a sparse 

representation in a redundant dictionary
• The dictionary is usually learned 

Introduction

� Sparse representation problem
� Find a K-sparse signal ࢞ (ȁȁ࢞ȁȁ૙ ൌ ࢟ from noisy observation (ܭ
� Dictionary ࡰ is a fat matrix
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Super-Resolution Model

• One assumes that HR patches and LR patches admit a common sparse 
representation 𝑧! :

xLR

i
= DLRzi

xHR

i
= DHRzi



Super-Resolution: Training 
• Training:

1. Given 𝒙%&', learn 𝑫&' and 𝒛% using for example K-SVD or MOD

2. Given 𝒙%(' and 𝒛% compute 𝑫(' directly

=….

….

𝑋 𝐷

𝑍



Multi-Modal Image Super-Resolution Model

• Approach:

• Use sparse representation and dictionary learning to model 
dependency across modality and to drive the design of the neural 
network architecture through unfolding.



Multi-Modal Image Super-Resolution Model

• Approach:

• Use sparse representation and dictionary learning to model 
dependency across modality and to drive the design of the neural 
network architecture through unfolding.

• This is a trend now: e.g Deep K-SVD [Elad et al.19], Neumann 
Networks [Willett-19], Deep Ultrasound [Eldar-19], Algorithm 
Unrolling [SP Mag, Eldar-21]  



Multi-Modal Image Super-Resolution Model

• Approach:

• Use sparse representation and dictionary learning to model 
dependency across modality and to drive the design of the neural 
network architecture through unfolding.

• Model:

• In the multimodal case the two modalities share some but not all 
latent features



Joint multimodal dictionary learning (JMDL)

q Assume patches 𝑥, 𝑦, 𝑧 are sparse in learned dictionaries 𝐷!, 𝐷" and 𝐷#, we can have the followings: 

𝑥

Dictionary 𝐷!

Dictionary 𝐷"

Sparse coefficients Γ!

Sparse coefficients Γ"

Mapping𝑊!

Mapping𝑊" Sparse coefficients Γ#

Dictionary 𝐷#

𝑦

𝑧

where 𝑎, 𝑏, 𝑐 are the sparse representations for 𝑥, 𝑦, 𝑧, respectively.



Joint multimodal dictionary learning (JMDL)
q Since 𝑥, 𝑦, 𝑧 are from the same image scene, we assume the sparse representation c of 𝑧 can 

be inferred from the others: 

where 𝑊+ ,𝑊, are the transform matrices to be learned.

q JMDL optimization problem: q Solving strategy:

I. Fix 𝐷+, 𝐷,, 𝐷-, 𝑊+, 𝑊, to 
update Γ+, Γ,, Γ-.

II. Fix Γ+, Γ,, Γ-, 𝑊+, 𝑊, to update 
𝐷+, 𝐷,, 𝐷-.

III. Fix Γ+, Γ,, Γ-, 𝐷+, 𝐷,, 𝐷- to 
update 𝑊+, 𝑊,.



Deep coupled ISTA network
q In the reconstruction phase, given 𝑥 and 𝑦, we first need to calculate their sparse 

representations based on the learned dictionaries 𝐷) and 𝐷*: 

q Solved by ISTA algorithm:

q Inspired by LISTA3, we “unfold” this iteration to obtain two deep networks (one per 
modality) 

3 Gregor Karol and LeCunYann, “Learning fast approximations of sparse coding ”, Proceedings of the 27th International 
Conference on International Conference on Machine Learning, 2010



Deep coupled ISTA network

Inspired by LISTA3, we “unfold” this iteration to obtain two deep networks (one per modality) 

3Gregor Karol and LeCunYann, “Learning fast approximations of sparse coding ”, Proceedings of the 27th International Conference 
on International Conference on Machine Learning, 2010

𝐷! 𝐷!"−

𝑆#! 𝑎!𝑎!"#

𝑥



Deep coupled ISTA network

q Solving by ISTA algorithm through unfolding:

and



Deep coupled ISTA network



Numerical results

l Effectiveness of LOA 

The training loss across 50 epochs with LOA and Xavier initialization methods for different settings of dictionary size 𝑚
and number of layers 𝐾.



Visual comparisons

Visual comparisons of Cave in Sintel dataset with upscaling factor = 8 using different methods. (a) Ground truth, (b) Bicubic, (c) Park 
et al. [61], (d) Lu et al. [62], (e) Gu et al. [30], (f) Ferstl et al. [58], (g) SCN [12], (h) VDSR [13], (i) Ours. The numbers in red 
indicate the RMSE values.



Unfolding Convolutional Dictionaries
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࢞ Conv�ሼ݀௞௨}

࢟ Conv�ሼ݄௞௩}

෥࢞
෥࢟

Conv�ሼ݃௞௖}

Conv�ሼ݃௞௨}

ࢠ

Conv�ሼ݃௞௩}

UFEM

ሼݑ௞ሽ prediction�
network

ሼݒ௞ሽ prediction�
network

CFPM

IRM

Modality I

Modality II
(Guidance)

Target
ሼݒ௞ሽ prediction�

network

ሼܿ௞ሽ prediction�
network

For MIF related 
applications

For MIR related
applications

ሼܿ௞ሽ prediction�
network

ሼݑ௞ሽ prediction�
network

1

2

3

4

Fig. 2. Network Architecture of the proposed CU-Net. For the MIR related tasks, the final reconstruction (Point 4) is composed of the common
reconstruction (Point 1) and the unique reconstruction (Point 2). For the MIF related tasks, the final reconstruction is composed of the common
reconstruction (Point 1) and the two unique reconstructions (Point 2 and Point 3).

UFEM:  ሼݑ௞ሽ prediction network

UFEM:�ሼݒ௞ሽ prediction network

CFPM:�ሼܿ௞ሽ prediction network

Convolutional layer Soft-thresholding activated layer
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Fig. 3. The network architectures of UFEM and CFPM.

pendent convolutional neural networks (CNN) to extract
the structural information from the guidance and input
images, respectively, and then used a third CNN to predict
the target image. Later, this work is further improved by
adding a skip connection between the input and target
images, which leads to DJFR [10]. Kim et. al [11] proposed a
deformable kernel network (DKN) for joint image filtering,
which employs a similar network architecture as DJF [10],
but with a new added weight and offset learning module to
learn the neighbourhood system for each pixel. Wu et. al [26]
turned the traditional guided filtering (GF) algorithm into a
differentiable block, namely guided filtering layer, and then
plug it into a convolutional neural network, so that it can
be trained end-to-end. Recently, Pan et. al [27] proposed a
spatially variant linear representation model, in which the

target image is linearly represented by the guidance and
input images. They then use a deep CNN to estimate the
representation coefficients to restore the target image. For
the specific MIR task, methods [28], [29], [30], [31] aim to
upscale the depth image with guidance from the RGB image
using deep neural networks. Methods [32], [33], [34] aim
to improve the resolution of the multi-spectral image with
the assistance of either RGB or panchromatic images. Note
that the methods aiming for a specific MIR task may not
perform well on other tasks, because either the filters or
the network architectures have been tailored to the specific
characteristics of the image modalities under consideration.

2.2 Multi-modal image fusion
Multi-modal image fusion aims to integrate the comple-

mentary information contained in different source images
to generate a fused image. The fused image should provide
more comprehensive information about the scene, which
is more helpful for human or machine perception. The
source images are usually captured by different sensors, e.g.,
the MRI and CT medical images, but sometimes they are
obtained using the same sensor but with different imaging
parameters, e.g., multi-focus and multi-exposure images.

Most traditional image fusion methods follow a three-
step fusion procedure [35]. Firstly, the source images are
mapped into a specific transform domain, e.g., wavelet
transform. Then, the transform coefficients are fused based
on a fusion rule, and finally the fused coefficients are trans-
formed back into the image domain to obtain the final fused
image. There are two elements here which play a critical role
in the fusion performance: the selection of the transform do-
main and the fusion rule. Many works have studied the fu-
sion performance in different transform domains, including
for example discrete wavelet transform (DWT) [36], discrete
cosine transform (DCT) [37], non-subsampled contourlet
transform [38]. There are also some papers based on sparse
coding [3], [39], [40], which fuse the sparse representations
in the sparse domain. The most widely used fusion rules
are choose-max [41] and weighted average [42]. Usually, in
order to avoid coefficient inconsistency, a neighbourhood
morphological processing step is used after the choose-max
strategy [35]. However, the transform domain is manually



Visual comparisonsJOURNAL OF LATEX CLASS FILES 11

(a) Under-exposed image (b) Over-exposed image (c) SPD-MEF (d) MEF-OPT (e) Ours

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

Fig. 7. Visual comparisons of multi-exposure image fusion results: (a) input under-exposed image, (b) input over-exposed image, (c) SPD-MEF [69],
(d) MEF-OPT [70], (e) our CU-Net. The last row shows the enlarged regions in the corresponding images. Better view in electronic version.

(a) Source image 1 (b) Source image 2 (c) CSR (f) Ours(e) Densefuse(d) Deepfuse

Fig. 8. Visual comparisons of multi-focus image fusion results. (a) The near-focus image, (b) The far-focus image, (c) CSR [3], (d) Deepfuse network
[44], (e) Densefuse network [45], (f) our CU-Net. Better view in electronic version.



Unfolding Strategy

Explicit embedding of priors and constraints in deep networks

𝑓(⋅)

𝒙𝒌
𝒚

𝑓 (⋅) 𝑓 (⋅) 𝑓 (⋅)

𝒚

𝒙𝒌

Iterative algorithm with 𝒚
as input and 𝒙 as output

1 2 𝑘

Unfolded version of the iterative algorithm with 
learnable parameters

h (⋅)

6𝒚

Need to re-synthesize the input, if self-supervised

𝒙𝟏 𝒙𝟐



• Goal: Use multi-modal imaging techniques

• for material characterization

• to discover underdrawings and 
concealed design 

Oil Painting

Visible Part

Invisible Part ?

Art-Investigation

X-rayVisible



• Goal: we want to separate the two x-ray 
images

• Approach: 

• Use the visible RGB image as side 
information (x-ray visible similar to 
RGB image)

• Exclusion loss: the “contours” of the 
two x-ray images should be as 
different as possible

Oil Painting

Visible Part

Invisible Part ?

Art-Investigation

X-rayVisible



Oil Painting

Visible Part

Invisible Part ?

X-ray Separation – Proposed Sparsity Model

X-rayVisible

4

sparse coding paradigm is an extension of the sparse cod-
ing model in which a redundant dictionary is modeled as
a concatenation of circulant matrices. In the convolutional
sparse coding paradigm, the global sparsity constraint of the
target signal, which describes the target signal as a linear
combination of a few atoms in the redundant dictionary, is
exploited to promote accurate reconstruction. The rationale
behind using convolutional sparse coding is that on the one
hand it yields state-of-the-art performance [37], whereas on
the other hand it can be unrolled into a convolutional neural
network architecture [38]. Additionally, the algorithm based
on convolutional neural networks is capable of dealing with
the RGB version of the visual image patches instead of the
grayscale version of the same image patches, so it can also
capture colour information that might be relevant to improve
the mixed X-ray image separation performance.

The convolutional sparse coding model can be characterized
as follows:

x1 =
KX

k=1

⌅k ⇤ z1,k, x2 =
KX

k=1

⌅k ⇤ z2,k,

r1,s =
KX

k=1

⌦k,s ⇤ z1,k, x =
KX

k=1

⌅k ⇤ (z1,k + z2,k), (4)

where x1 and x2 denote the individual X-ray image patches
corresponding to the surface and concealed paintings, respec-
tively, r1,s for s = 1, 2, 3 denotes the red, green and blue chan-
nel patches of RGB image of the surface painting, z1,k and
z2,k denote the sparse representations underlying the X-ray
image patches of the surface painting and concealed design,
respectively, and k = 1, 2, · · · ,K indexes the channel number.
⌦k,s denotes the k-th convolutional dictionary filter for the
RGB image patches of the s-th channel, ⌅k denotes the k-
th convolutional dictionary filter for the X-ray image patches,
and ⇤ denotes the convolution processing. The convolution
operation w = a ⇤ b between two image patches a and b is
given by:

w(i, j) =
X

p

X

q

a(p, q)b(i� p+ 1, j � q + 1). (5)

Note that the model in (4) immediately links the various
images by imposing that the X-ray and RGB image patches
associated with the same layer of the painting share the same
sparse representation. Moreover, the X-ray image patches of
the surface painting and concealed design share the same
dictionaries. This model also imposes that the mixed X-ray is
equal to the sum of the individual X-rays (as in other works
as mentioned earlier [18], [19]).

B. Separation Network
We then propose to separate the mixed X-ray image patch

into its individual constituent image patches using a deep
neural network structure, which consists of two components:
the analysis and synthesis components shown in Fig. 3. The
analysis component produces the sparse representations of the
mixed X-ray image and RGB image of the surface painting
and the synthesis component produces the reconstruction of

Fig. 3. General structure of the proposed separation network.

the mixed X-ray image and RGB image of the surface paint-
ing. The analysis component is designed based on algorithm
unrolling techniques and the synthesis component is designed
based on a linear convolutional model. Specifically, we use
the following four steps to design the analysis and synthesis
components:

1) Firstly, we formulate the X-ray image separation prob-
lem into a coupled sparse coding problem under the
hypothesis that dictionaries are known.

2) Secondly, we develop a solver to this problem using cou-
pled iterative shrinkage-thresholding algorithm (CISTA).

3) Thirdly, we design the analysis component by turn-
ing the CISTA solver into a layered network architec-
ture – denoted by learned coupled iterative shrinkage-
thresholding algorithm (LCISTA) – based on algorithm
unrolling techniques [35].

4) Finally, we design the synthesis component based on the
linear model presented in (4).

In what follows, we describe these steps in more detail.
1) X-Ray Image Separation Problem Formulation: As dis-

cussed previously, the analysis component in the separation
network extracts sparse codes z1 and z2 from the inputs r1
and x. In order to design the analysis component using an
algorithm unrolling technique, we need to formulate a coupled
sparse coding problem to estimate the sparse codes z1 and z2

from r1 and x assuming to begin with that the dictionaries in
(4) are known. Then, we can design the analysis component
by unrolling the corresponding solver of the coupled sparse
coding problem.

Prior to problem formulation, we introduce two auxiliary
parameters y1 and y2, representing information image patches
of the surface painting and concealed design, respectively. The
main purpose for introducing y1 and y2 is to facilitate the
subsequent addition of exclusion loss in the information image
domain. Correspondingly, the convolutional sparse coding
model in (4) is changed into

x1 =  ⇤ y1, x2 =  ⇤ y2,

r1,s = �s ⇤ y1, x =  ⇤ (y1 + y2),

y1 =
KX

k=1

⇥k ⇤ z1,k y2 =
KX

k=1

⇥k ⇤ z2,k, (6)

• The visible image and the two separated X-
ray images have a sparse representation in 
proper dictionaries

• RGB image and visible X-ray share the 
same sparse representation

• The two X-rays 𝑥#, 𝑥$ share the same 
dictionary

• The measured X-ray is 𝑥 = 𝑥# + 𝑥$



Oil Painting

Visible Part

Invisible Part ?

X-ray Separation – Exclusion Loss

X-rayVisible

• Given the reconstructed X-ray images 𝑥$, 𝑥%, we 
expect that their edges are as different as possible 
we therefore add an “exclusion term” in the 
optimization

5

where  , ⇥k and �s denote the dictionaries with respect
to the X-ray image patches, information image patches and
RGB image patches, respectively. The X-ray image separation
problem associated with the model in (4) can be formulated
as follows:

min
y1,y2,z1,k,z2,k

kx� ⇤ y1 � ⇤ y2k2F

+⌧1ky1 �
KX

k=1

⇥k ⇤ z1,kk2F

+⌧2ky2 �
KX

k=1

⇥k ⇤ z2,kk2F

+�
3X

s=1

kr1,s ��s ⇤ y1k2F

+�1

KX

k=1

kz1,kk1 + �2

KX

k=1

kz2,kk1

+
IX

i=1

µik(W i ⇤ y1)� (W i ⇤ y2)k1, (7)

where �, ⌧1, ⌧2, �1, �2, and µk are the regularization param-
eters. In the last term, W = [W 1,W 2, · · · ,W I ] denotes a
redundant wavelet transform which is a union of I orthogonal
transforms and is used to sparsify y1 and y2 for exclusion
loss evaluation. At this stage, we assume that dictionaries  ,
⇥k and �s are known.

In (7), the first to fourth terms correspond to the data
consistency terms with respect to the mixed X-ray image
patch, information image patch of the surface painting and
concealed design, and the RGB image patch of the surface
painting, respectively. The fifth and sixth terms correspond
to a l1 regularization term to guarantee the sparsity of the
representations. The last term corresponds to a simplified
version of exclusion loss [34], in order to simplify the subse-
quent optimization algorithm and network design. By using the
simplified version of exclusion loss, we expect to obtain the
edge maps of the information image patches y1 and y2 using
wavelet transforms, in order to promote their disentanglement
((since the images from the visible and concealed design are
typically different)).

The problem in (7) without the exclusion loss term is ill-
posed. That is, there are some undesired minimizers of (7).
For example, the separated X-ray image of the concealed
design based on one possible solution of z2 may contain much
content from the surface painting. The reason to introduce
the simplified version of exclusion loss is to give constraints
on the information image patches y1 and y2 to make them
as different as possible from one another. This ensures that
information associated with the surface painting does not in-
correctly appear in the separated X-ray image of the concealed
design.

2) Solver: Next, we use an iterative CISTA algorithm in
order to solve the coupled sparse coding problem in (7). We
split the problem in (7) into several sub-problems and solve
each of them iteratively. In particular, (7) is changed into (8),
where l denotes the iteration number. By taking the gradients

on the data consistency terms in (8) and executing a proximal
step on the last term of each sub-problem, we obtain a series
of iterations [36] shown in (9), where 1

⇠ > 0 is the step size
and operator S�(·) is the soft thresholding operator applied
element-wise on its input as

S�(x) = sign(x) ·max(|x|� �, 0). (10)

Here, we define Fa(b, c) =
PI

i=1 W
T
i ⇤SakW i⇤bk1

(W i ⇤ c)
for simplicity. Fa(b, c) is a parallel proximal operator which
computes several independent proximals [36]. It has been
theoretically proven in [36] that the algorithm converges when
using a parallel proximal operator to solve the least-squares
cost function with the simplified exclusion loss as a regularizer.

3) Analysis component: Our third step is to design the
analysis component of the separation network using unfold-
ing techniques [35]. The iterative solver is converted into a
feedforward layered neural network architecture, i.e., LCISTA.
We can then map each solver iteration operation in (9) onto a
feedforward neural network operation, and likewise we can
also map L solver iterations onto a L layer feedforward
neural network. We change (9) into (11), where convolu-
tional filters [Al

k,B
l
k,C

l,Dl,El
s,F

l
s] and scalar parameters

[⌧ l1, ⌧
l
2,�

l
1,�

l
2, µ

l
i, �

l] are set to be learnable parameters. Each
network layer of LCISTA is represented in Fig. 4, and the
learnable parameters are emphasized in red.

The rationale for adopting new parameters to describe the
neural network layer instead of the original ones derives from
the fact that we can further learn this using entirely self-
supervised mechanisms. Note that the learnable parameters in
the analysis component are set to be the same in each layer to
give the separation network more restrictions and to promote
a better separation performance.

4) Synthesis component: Suppose we have L layers in total
in the analysis component of the separation network, and
assume the outputs of the analysis component are zL

1,k and
zL
2,k. Then, the synthesis component is designed to convert

the sparse feature zL
1,k into an estimate of the visual image

patches and of the mixed X-ray image patches. Specifically,
in line with our model in (4) and (6), we have that

r̂1,s =
KX

k=1

W⌦;k,s ⇤ zL
1,k, (12)

and

x̂ =
KX

k=1

W ⌅;k ⇤ (zL
1,k + zL

2,k). (13)

Here, W⌦;k,s and W ⌅;k are also set to be learnable parame-
ters too.

It is important to introduce the synthesis component because
it allows the proposed separation approach to work in a totally
self-supervised manner (note that we do not have access to
true sparse representation z1,k andz2,k to train the analysis
network but we do have access to mixed X-ray image and RGB
image patches to train the concatenation of the analysis and
synthesis networks). We design the synthesis component to
regenerate the RGB image patch r1,s and mixed X-ray image
patch x from z1,k and z2,k so that standard reconstruction
losses can be utilized to guide the training phase.
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Fig. 4. Structure of the l-th layer in LCISTA.

zl
2,k = argmin

z2,k

⌧2kyl�1
2 �

KX

k=1

⇥k ⇤ z2,kk2F + �2

KX

k=1

kz2,kk1, zl
1,k = argmin

z1,k

⌧1kyl�1
1 �

KX

k=1

⇥k ⇤ z1,kk2F + �1

KX

k=1

kz1,kk1,

yl
2 = argmin

y2

kx� ⇤ yl�1
1 � ⇤ y2k2F + ⌧2ky2 �

KX

k=1

⇥k ⇤ zl
2,kk2F +

IX

i=1

µikW iy
l�1
1 �W iy2k1,

yl
1 = argmin

y1

kx� ⇤ y1 � ⇤ yl
2k2F + ⌧1ky1 �

KX

k=1

⇥k ⇤ zl
1,kk2F + �

3X

s=1

kr1,s ��s ⇤ y1k2F +
IX

i=1

µikW iy1 �W iy
l
2k1,

(8)

zl
2,k =S�2

⇠

 
zl�1
2,k +

⇥T
k

⇠
⇤ (yl�1

2 �
KX

i=1

⇥i ⇤ zl�1
2,i )

!
, zl

1,k = S�1
⇠

 
zl�1
1,k +

⇥T
k

⇠
⇤ (yl�1

1 �
KX

i=1

⇥i ⇤ zl�1
1,i )

!
,

yl
2 =Fµi

⇠

 
yl�1
1 ,yl�1

2 +
 T

⇠
⇤ (x� ⇤ (yl�1

1 + yl�1
2 )) +

⌧2
⇠
(yl�1

2 �
KX

k=1

⇥i ⇤ zl
2,i)

!
,

yl
1 =Fµi

⇠

 
yl
2,y

l�1
1 +

 T

⇠
⇤ (x� (yl�1

1 + yl
2)) +

⌧1
⇠
(yl�1

1 �
KX

k=1

⇥i ⇤ zl
1,i) +

�

⇠

3X

s=1

�T
s ⇤ (r1,s ��s ⇤ yl�1

1 )

!
, (9)

C. Learning Strategy

During the training of the proposed separation
network, we randomly initialize the learnable parameters
of the network, i.e., initialized convolutional filters
[Al

k,B
l
k,C

l,Dl,El
s,F

l
s,W⌦;k,s,W⌦;k,s] satisfy

multivariate Gaussian distributions and initialized scalars
[⌧ l1, ⌧

l
2,�

l
1,�

l
2, µ

l
i, �

l] are uniformly distributed in the interval
(0, 1]. The inputs of the separation network are set as

z0
1,k = 0, z0

1,k = 0,

y0
1 = g1, y0

2 = x� g1. (14)

Then, the learnable parameter of the whole networks w =
[Al

k,B
l
k,C

l,Dl,El
s,F

l
s,W⌦;k,s,W⌦;k,s, ⌧ l1, ⌧

l
2,�

l
1,�

l
2, µ

l
i, �

l]

are learnt as follow:

min
w

kx� x̂k2F + ⌘1

3X

s=1

kr1,s � r̂1,sk2F + ⌘2E(yL
1 ,y

L
2 ),

(15)

where ⌘1 and ⌘2 are the hyper-parameters pertaining to the
reconstruction loss of the surface painting image patch and
exclusion loss, respectively. We then optimize the separation
network learnable parameters by using stochastic gradient
descent (SGD) with learning rate lr = 10�3�ep/40, where ep
denotes the epoch number. Additionally, we use 120 epochs
in total to train the separation network, and set the network
architecture parameters as K = 64 and I = 4. All the
convolutional filters are of size 5⇥ 5.



Separation Results 12

Fig. 17. Separation results of Doña Isabel de Porcel data. Columns 1 to 4
correspond to reconstructed X-ray image of the surface painting, reconstructed
X-ray image of the concealed design, synthetically mixed X-ray from the
separated results, and the error map of the mixed X-ray image, respectively.
Rows 1 and 2 correspond to the results by the proposed algorithm and the
algorithm in [19], respectively.

too much intensity given to the forehead and cheek highlights
of Dona Isabel in the separated X-ray image of the surface
painting are reduced using the proposed approach compared
to the method in [19] as well.

It is clear there are still some remaining issues with the
image separation, for example, the area of the gentleman’s
face is slightly blurred, but these final images have more of the
character that would be anticipated for X-ray images and are
likely to feel more familiar and therefore be more appealing to
end users. The fact that Goya may have incorporated aspects
of the concealed design into the final portrait adds a further
complication as it makes a completely ‘clean’ separation of
the two images even more challenging.

Note that in Fig. 17, we use the manually modified image
of the surface painting in Fig. 16 (c) as g1 during the initial-
ization. If we still use the grayscale image as g1 during the
initialization, the separation results by the proposed approach
are shown in the first row of Fig. 18. In [19], the manually
modified image of the surface painting in Fig. 16 (c) is also
utilized. If we use the grayscale image of the surface painting
instead of the manually modified image, the separation results
by the algorithm in [19] are shown in the second row of
Fig. 18. Comparing the results in Fig. 18, again the proposed
approach still outperforms the algorithm in [19] because the
separated X-ray image of the surface painting obtained by the
proposed method contains much more detailed information,
and the content of the surface painting is less obvious in the
separated X-ray image of the concealed design obtained by the
proposed method. Comparing the results in Fig. 17 and Fig.

Fig. 18. Separation results of Doña Isabel de Porcel data using the grayscale
image of the surface painting as g1. Columns 1 to 4 correspond to the
reconstructed X-ray image of the surface painting, reconstructed X-ray image
of the concealed painting, synthetically mixed X-ray from the separated
results, and the error map of the mixed X-ray image, respectively. Rows 1
and 2 correspond to the results by the proposed algorithm and the algorithm
in [19], respectively.

18, there is quite obvious improvement if we use the manually
modified image as g1 with the algorithm in [19], and the
synthetically mixed X-ray from the separated results clearly
differs from the original mixed X-ray image for example.
For the proposed approach the comparison is more subtle.
The separated X-ray for the surface painting appears to have
become more like a grayscale version of the surface painting
but some areas of the X-ray image for the concealed design
are arguably slightly clearer.

V. CONCLUSIONS

X-radiography is a useful tool in the technical study of
artworks as, amongst its other benefits, it is capable of
providing insights into concealed compositions and pentimenti

as well as information about the condition and construction.
However, when concealed designs exist under the visible
surface the resulting X-ray images contain mixed features
associated with both visible and concealed designs as well
as features associated with areas of damage and the structure
of the painting support for example. As a result, it becomes
more difficult for experts to interpret these images. To improve
the utility of these X-ray images, it is desirable to separate
the content into two (hypothetical) images, each pertaining to
a single composition. This paper proposes a new approach
to X-ray image separation as a valuable addition to methods
published previously and as a tool for further work on this
challenging problem. Although the precise measure of the
success of the separation of such X-ray images is dependent
on the exact needs of the different end users, this new



Conclusions

• Cross fertilization between dictionary learning/sparse representation 
and deep learning is fruitful

• Dictionary Learning/sparsity useful:
• to impose models and structure to the deep network (through 

sparse modelling and optimization)
• To design wavelet-like INN
• For better interpretability and generalization ability



Related Publications
Ø !"#$%&'(#&')#*"+"#,-&(.//01#2+3445#+06/0'(#3'780-9)#3':9-/0;<9#49%-&<#49/=.->#6.-#3?&(9#,9'.070'(@1#0'#8-.A"#.6#
BC/D#E%-.89&'#F0('&<#*-.A9770'(#G.'69-9'A91#EHF3*GI#BJBK

Ø !"#$%&'(#&')#*"+"#,-&(.//01#2L3449/5#L&:9<9/M0'780-9)#3':9-/0;<9#49/=.->#6.-#3?&(9#,9'.070'(@1#7%;?0//9)#/.#
3EEE#N-&'7&A/0.'7#.'#3?&(9#*-.A9770'(1#F98/9?;9-#BJBK1#D//875OO&-P0:".-(O&;7OBKJC"JQRSK

Ø T#,9'( &')#*"#+"#,-&(.//01#2,998#G.%8<9)#3FNU#49/=.->#6.-#V%</0M?.)&<#3?&(9#F%89-MW97.<%/0.'1#3EEE#
N-&'7&A/0.'7#.'#3?&(9#*-.A9770'(1#88#KQSRMKQCS1#:.<"BC1##BJBJ

Ø T#,9'( &')#*"#+"#,-&(.//01#2,998#G.':.<%/0.'&<#49%-&<#49/=.->#6.-#V%</0M?.)&<#3?&(9#W97/.-&/0.'#&')#X%70.'#
3EEE#N-&'7&A/0.'7#.'#*&//9-'#U'&<Y707#&')#V&AD0'9#3'/9<<0(9'A91#:.<"#ZR1#IA/.;9-#BJBK

Ø L"#*%1#!"#$%&'(#9/#&<"1#2V0P9)#TMW&Y#3?&(9#F98&-&/0.'#6.-#U-/=.->7#=0/D#G.'A9&<9)#,970('7@1#7%;?0//9)#/.#3EEE#
N-&'7&A/0.'7#.'#3?&(9#*-.A9770'(1#!&'%&-Y#BJBB1#D//875OO&-P0:".-(O&;7OBBJK"JCKQ[


