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Deep Neural Networks achieves state-of-the-art performance in many imaging tasks

Fundamental questions:
— is there a systematic way to interpret Deep Neural Networks?

— Is there a systematic way to design the architecture of a Deep Neural
Networks?

Personal view: sparse signal representation theory is much more developed and
can be used to help addressing both questions
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* Invertible Neural Networks and Wavelets
— What are invertible Neural Networks (INN)?
— Lifting Scheme and INN
— Wavelet-like INN for denoising and deblurring

+ Multimodal Image Processing and Unfolding
— Multimodal Image Super-Resolution

— Unfolding strategy for image separation in Art Investigation

« Conclusions
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Xin Deng (ICL, now Associate
Prof. at Beihang University) Consortium involving: UCL, ICL, Duke and National
Gallery led by M. Rodrigues
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- Bijective (invertible) function approximators that have a forward mapping
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< INNs are bijective function approximators
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* Generative modeling
— Tractable Jacobian, allows explicit computation of posterior probability
— Normalizing flows
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Kingma, Diederik P., and Prafulla Dhariwal. “Glow: Generative Flow with Invertible 1 X1 Convolutions.” arXiv preprint
arXiv:1807.03039 (2018).
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* Invertible via lifting scheme like architectures
— Signal splitting
— Alternate prediction and update

X —{Split _p U
_ d=X0—P(Xe) x0=d+P(Xe)
Spllt—b{szx(g_l_u(d) xe=s—U(d) =» Merge

Forward pass Backward pass
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« In the beginning there were Wavelets &
» Wavelets provide sparse representations of piecewise smooth images.

» This is why they have been successfully used in many application including
denoising

Figure: Cameraman is reconstructed using only 8% of the wavelet coefficients
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< Principles of wavelet denoising:

b
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z y DWT |— % — Denoising [— 7’ IDWT %—+£
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Wavelet transform

* Multi-resolution analysis

« Perfect reconstruction

* Noise is uniformly spread through the coefficients

« Image information is concentrated on small number of large coefficients

Denoising
« Element-wise thresholding, e.g. soft-thresholding
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1-D Example

WT wrngatpurnal, 1} prmla

................................

1] 1 Lo
I ! . L I
1 1 I t [ |
Smooth parts cleaned without smearing edges LT hreshold
IWT o
R Lo
[ T l
1 1 I t I !




Imperial College Wavelets for Deconvolution
London

«  Sparsity constraints in the wavelet domain (or in another domain) can also be used as a regularizers
for different applications, e.g., deconvolution

* lterative shrinkage:
— min(|ly — HW 1a||? + 1||a]|;) where vy is the blurred image and x = W™ 'a is the target image
(24

— o =Sy (e + WH'(y — HW 1))
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* Two-channel filter-bank
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* Iterated decomposition leads to multi-resolution
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Transform

London




Imperial College Implementation of the 2-D Wavelet
Transform

London
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The wavelet transform can be implemented using the lifting scheme

Xo
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X — Split P
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Xe

. d=X0—P(Xe) xO:d+P(xe)
Spm_’{s=xe+U(d) Xe=S—U(d) —> Merge

Forward pass Backward pass

The predictor (P) predicts the odd samples using the even, the update (U) uses the
prediction error to smooth the even samples
* Predictor/update are fixed

* The scheme is perfectly invertible

|. Daubechies and W. Sweldens, “Factoring Wavelet Transforms into lifting Steps” 1997
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« Can we learn a wavelet-like non-linear sparsifying transform?

Xo

-
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I
X —5plit _p U
L 5
, d= x,— P(x,) X, =d+ P(x,)
Split M
i _’{s=xe+U(d) Xe=s-U(d) — V¢
Forward pass Backward pass

* Approach:
» convert the P/U operators into two deep networks and learn them
* Use denoising as the bottleneck to impose sparsity
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« Can we learn a wavelet-like non-linear sparsifying transform?
Detail part
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Coarse part
* Approach:

» convert the P/U operators into two deep networks and learn them
* Use denoising as the bottleneck to impose sparsity
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» To make sure P acts as a sparsifying

predictor: il
* Train the network with ,4 \: .
noisy/noiseless image pairs Noisy image , -
« Add a denoising network on the Denoising
details Network
—_—
< -~
LINN
(backward)

Denoised image
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« Training with noiseless/noisy
pairs leads to a sparsifying
transform

» Each piece of the network is
interpretable

» As for wavelets, we can now
use the INN for e.g.,
denoising or deconvolution
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Denoising

Noisy image (forward)
l Network

(backward)
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Denoising
Network

Denoising

Noisy image (forward) (forward)
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(588) Input noisy image (o0 = (b) zé(l) before denoise. (d) zGIl (3) before denoise.
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(e) The denoised image (f) zé(l) after denoise. (2) z£(2) after denoise. (h) zé (3) after denoise.
(PSNR=26.75 dB).
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Denoising:

38.10dB 29.38dB 26.91dB o 2412dB 2311dB 2223dB 21.49dB
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lLrgﬁgrcl;' College Simulation Results — Image Deblurring

Algorithm 1: Plug-and-Play image deblurring with
blind WINNet.
Input: Input image y, kernel k, parameter A;
Initialize: 2o = y, 8o = NENet(2g), 51 = 10 x o,
k=1;
while 3 > 3y do

| 3 T

w~

s | @ =argminly — k@ x| + 32|z — 23
5 Bl = NENet(:ck)

6 zr = WINNet(zk, 26k+1);

7 k=k+1,

8 end

9 Output: Deblurred image © = 2zj_;.
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Deconvolution:

Iteration
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* Invertible Neural Networks is an interesting new concept

» Designing INN using wavelets/lifting leads to a more interpretable
network

« Good generalization ability
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ce threshold=0
e

Fe -- quantity map, confiden

Technical Study of Old
Master Paintings™:

Data acquired using
different imaging ,
techniques

100 200 300 400 500

Cu -- quantity map, confidence threshold=0

100 200 300 400 500

'joint project with UCL (M. Rodrigues), Duke and the National Gallery




Imperial College . )
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® Near-infrared (NIR)/RGB ® Multi-spectral/ RGB ® Depth/RGB

Low resolution !




iperial College Multimodal Image Super-Resolution (MISR)

Estimated HR Depth Image

HR Color Image (guidance image).
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London Single Image Super-Resolution

Patch-based Prediction:

1 —1= Image Super-Resolution
o+ /J; & _______.__{:,,
gow-Resolution Image
Vectorize Predict
........ 5
X y High-Resolution Image

Reshape
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Start with an external dataset of images (e.g., BSD 300 dataset)

Extract pairs of LR and HR patches

Down Bicubic i
. - Patch extraction
sampling - interpolation i

o
|E

LR patches

Patch extraction

A 4

HR patches
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* The key insight is that images or patches of images have a sparse
representation in a redundant dictionary
« The dictionary is usually learned

\
J

A (1) A (EEEEEEEEEEEEEEEEEEEEEEEEEEE
NN A A Y Y I

] o

[
[

N




Imperial Coll .
Phioriatanc Super-Resolution Model

* One assumes that HR patches and LR patches admit a common sparse
representation z; :

xt = DhEg,

x1i = Dilig,




Imperial College

London Super-Resolution: Training
* Training:
1. Given x}®, learn DR and z; using for example K-SVD or MOD
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2. Given x{® and z; compute D*R directly
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London -9 Multi-Modal Image Super-Resolution Model

» Approach:

« Use sparse representation and dictionary learning to model
dependency across modality and to drive the design of the neural
network architecture through unfolding.
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London -9 Multi-Modal Image Super-Resolution Model

* Approach:

« Use sparse representation and dictionary learning to model
dependency across modality and to drive the design of the neural
network architecture through unfolding.

« This is a trend now: e.g Deep K-SVD [Elad et al.19], Neumann
Networks [Willett-19], Deep Ultrasound [Eldar-19], Algorithm
Unrolling [SP Mag, Eldar-21]
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* Approach:
« Use sparse representation and dictionary learning to model

dependency across modality and to drive the design of the neural
network architecture through unfolding.

e  Model:

* |n the multimodal case the two modalities share some but not all
latent features
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Dictionary D, I I I :
- - Mapping W,
T =t 1l x
X

Sparse coefficients I,

b 111 e

| Dictionary D,, - 6
> t T Mapping W, ’ Sparse coefficients I,

Sparse coefficients I,

A

O Assume patches x, y, z are sparse in learned dictionaries D,, D, and D,, we can have the followings:

e & B.a;
g = b

z ‘= De
where a, b, c are the sparse representations for x, y, z, respectively.
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Q Since x,y, z are from the same image scene, we assume the sparse representation ¢ of z can

be inferred from the others:
c= S\ (Wya + W,b)

where W,, W, are the transform matrices to be learned.

U JMDL optimization problem: O Solving strategy:
1 1 i
min_ =X - D,T,5+ 5 Y — DT I5 Lo Fix Do, Dy, Dy We Wy to
{Dr%‘i/?f,’ Wf} update Iy, I, I
o 1 , II.  Fix Ty, T, I, W,, W, to update
+§”Z_Dzrz”F+Vx Ty +wy [Tyl Dy, Dy, D,.
Vs Ty + pta [Wollf + ay [1W 1 I Fix Iy, Ty, T, Dy, Dy, Dy to
+a|T. - W,T, - W,T,|2. update W, W,.

st || dalls < 1, lldyll3 < 1, lldeill; < 1, Vi,
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O In the reconstruction phase, given x and y, we first need to calculate their sparse
representations based on the learned dictionaries D, and D,;:

! o 1 2
«{rg,lt%i |z — Dxa“z“" B) ly — Dyb||2+)‘9? ||a||1 + Ay ||b||1 .

O Solved by ISTA algorithm:

ar = Sy, (ar_1 + DI (x — Dyap_1))

Q Inspired by LISTAS3, we “unfold” this iteration to obtain two deep networks (one per
modality)

3 Gregor Karol and LeCunYann, “Learning fast approximations of sparse coding ”, Proceedings of the 27th International
Conference on International Conference on Machine Learning, 2010
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L1 5 S —
A -1 N 2k U
=D I NnT
Dx N Dx ai = Sy (ar-1 + Dy (x — Dyag-1))

X

Inspired by LISTA3, we “unfold” this iteration to obtain two deep networks (one per modality)

3Gregor Karol and LeCunYann, “Learning fast approximations of sparse coding ”, Proceedings of the 27th International Conference
on International Conference on Machine Learning, 2010
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O Solving by ISTA algorithm through unfolding:

X — Sk.x
ar = Su(@1 + Dl (@ - Do) wmd  na -ﬁl T_T-*
Dl.x

Layer 1 Layer k

and

T Y ——{] l g g l =[S} »
b, = SM- (bk_1 —+ Dy (y — Dybk_l)) ﬁ

Layer1 Layer k
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I
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® Effectiveness of LOA

2 15 5 R 14 e
\ = = « Xavier initialization 14 4 = = « Xavier initialization 13 = = - Xavier initialization
B LOA initialization \ LOA initialization LOA initialization
. 7 2
5w 2 g
ch =11] 0
g g g
£ = Z
= < <
= 10 = =
8
6
mwan &8N 8 8 LHFES —men 5 83 AKFTe
Epochs Epochs Epochs
(a) CaseI: m = 256,K = 2 (b) Case II: m = 512,K =2 (c)CaselIl: m =512,K = 4

The training loss across 50 epochs with LOA and Xavier initialization methods for different settings of dictionary size m
and number of layers K.
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Visual comparisons of Cave in Sintel dataset with upscaling factor = 8 using different methods. (a) Ground truth, (b) Bicubic, (c) Park
etal. [61], (d) Luetal. [62], (e) Gu et al. [30], (f) Ferstl et al. [58], (g) SCN [12], (h) VDSR [13], (i) Ours. The numbers in red
indicate the RMSE values.
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(2) Under-exposed image (b) Over-exposed image (¢) SPD-MEF (d) MEF-OPT (e) Ours
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Unfolding Strategy

Explicit embedding of priors and constraints in deep networks

Xk
,

v

fC)

lterative algorithm with y
as input and x as output

=

y

v

e —

0

£,0)

Unfolded version of the iterative algorithm with
learnable parameters

Need to re-synthesize the input, if self-supervised

v
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*  Goal: Use multi-modal imaging techniques
«  for material characterization

«  to discover underdrawings and
concealed design

Visible X-ray
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Goal: we want to separate the two x-ray
images

Approach:

« Use the visible RGB image as side
information (x-ray visible similar to
RGB image)

. Exclusion loss: the “contours” of the
two x-ray images should be as
different as possible

Visible X-ray
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k=1 k=1
K K
Tis = g QrsHz16) |T= E B * (21,6 + 22,k),

* The visible image and the two separated X-
ray images have a sparse representation in
proper dictionaries

*+ RGB image and visible X-ray share the
same sparse representation

* The two X-rays x;, x, share the same
dictionary

« The measured X-ray is x = x; + x,

Visible X-ray
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*  Given the reconstructed X-ray images x4, x,, we
expect that their edges are as different as possible
we therefore add an “exclusion term” in the

optimization
min | — @+ y, — ¥y, |7
Y1:Y2,21,k,22,k

K

+7illys = Y O 21kl 7
k=1
K 4

+7allys — > O x 2okl T
k=1

3
+’YZ [71,s — P * yl”%«“

s=1

K K
+A\1 Z |21kl + A2 Z 22,%1
k=1 k=1

, |
+ ) Hill(Wixy,) © (Wixys)lh, Visible X-ray
=1
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through unfolding

One Layer of the Network

The sparsity model and the exclusion constraint leads to an iterative optimization method which leads to a network
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Separation Results
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» Cross fertilization between dictionary learning/sparse representation
and deep learning is fruitful

» Dictionary Learning/sparsity useful:
« to impose models and structure to the deep network (through
sparse modelling and optimization)
» To design wavelet-like INN
« For better interpretability and generalization ability
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