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Inverse problems involve reconstructing unknown physical quantities from indirect 
measurements. 

The growing complexity of modern imaging workflows calls for a more holistic approach to 
inverse problems where sensing, physics and computation are analized jointly 

Key in inverse problem is the development of the interplay between physical and learned 
models
• Model-based approaches more interpretable, generalize well and can reduce complexity
• Data-driven approaches can handle more complex settings  

Motivation: Inverse Problem in Imaging



Need to find the right 
balance between data and 
prior models to develop 
methods that 
• reduce complexity, 
• increase generalizability
• can handle lack of 

training data
• can handle complex 

settings

Plato: models, priors

Aristotle: data

Model-Based Deep Learning



Image restoration problems: 
Invertible neural networks and 
diffusion models

Light field microscopy for 
neuroscience 

Three Case Studies in Imaging Science

Energy
0-40 keV
4096 
channels

Technical study of Old Masters 
paintings 



• In inverse problems one looks for the right trade-off between a fidelity term and a prior

• !𝑥 = min
!

𝐻(𝑥) − 𝑦 " + 𝜆𝜌 𝑥
                 fidelity term      prior

• Models/physics can help with 𝐻 and sometimes with 𝜌 𝑥

• Two key approaches to embed systematically priors and models into deep neural network 
architectures:

• Plug-and-play approach à use neural networks as regularizers 
• Deep Unfolding à embed models and priors in the network architecture

Model-Based Deep Learning



• !𝑥 = min
!

𝐻(𝑥) − 𝑦 " + 𝜆𝜌 𝑥
          consistency term         prior

• !𝑥 = min
!,#

𝐻(𝑥) − 𝑦 $ + 𝜆𝜌 𝜈     s.t    𝑥 = 𝜈

• Turn the constraint into a penalty: !𝑥 = min
!,#

𝐻(𝑥) − 𝑦 $ + 𝜆𝜌 𝜈 + 𝛽 𝑥 − 𝜈 $

• Solve by alternating between 𝑥 and 𝜐

• Consistency step: !𝑥 = min
!

𝐻(𝑥) − 𝑦 $ + 𝛽 𝑥 − 𝜈 $

• A denoiser: �̂� = min
#
𝜌 𝑣 + 𝛽 𝑥 − 𝜈 $

• Venkatakrisnhan et al. Plug-and-play priors for model-based reconstruction, GlobalSip 2013
• Kamilov et al, Plug-and-Play Methods for Integrating Physical and Learned Models in Computational Imaging IEEE Signal Processing Magazine, 2023 

Use Deep Learning for 
denoising

Plug and Play



• !𝑥 = min
!

𝐻(𝑥) − 𝑦 " + 𝜆𝜌 𝑥
          consistency term         prior

• !𝑥 = min
!,#

𝐻(𝑥) − 𝑦 $ + 𝜆𝜌 𝜈     s.t    𝑥 = 𝜈

• Turn the constraint into a penalty: !𝑥 = min
!,#

𝐻(𝑥) − 𝑦 $ + 𝜆𝜌 𝜈 + 𝛽 𝑥 − 𝜈 $

• Solve by alternating between 𝑥 and 𝜐

• Consistency step: !𝑥 = min
!

𝐻(𝑥) − 𝑦 $ + 𝛽 𝑥 − 𝜈 $

• A denoiser: �̂� = min
#
𝜌 𝑣 + 𝛽 𝑥 − 𝜈 $

Use Diffusion Models 
to impose the prior

INN and Diffusion Models for Inverse Problems

Use INN to impose 
consistency



Invertible Neural Networks are bijective function approximators 
with a forward mapping 

and inverse mapping

Invertible Neural Networks

𝐹!: ℝ" → ℝ#

𝑥 ↦ 𝑧

𝐹!$%: ℝ# → ℝ"

𝑧 ↦ 𝑥
A bijective function (or 

invertible function)



How to Achieve Invertibility? 
Invertible via lifting scheme like architectures

– Signal splitting 
– Alternate prediction and update

Invertible Neural Networks

/𝑑 = 	𝑥# − 𝑃 𝑥$
𝑠 = 𝑥$ + 𝑈 𝑑

Forward pass

Split /𝑥# = 𝑑 + 𝑃 𝑥$ 	
𝑥$ = 𝑠 − 𝑈 𝑑

Backward pass

Merge

I. Daubechies and W. Sweldens, “Factoring Wavelet Transforms into lifting Steps” 1997



Invertible Neural Networks are ideal architectures to address inverse problems

INN and Diffusion Models for Inverse Problems

Figure from: Ardizzone, Lynton, Jakob Kruse, Sebastian Wirkert, Daniel Rahner, Eric W. Pellegrini, Ralf S. Klessen, Lena Maier-
Hein, Carsten Rother, and Ullrich Köthe. "Analyzing inverse problems with invertible neural networks."  in Proc. of ICLR, 2019.



Diffusion Models are good for “unconditional” generation of new samples (e.g., Denoising Probabilistic 
Diffusion Models)

Motivation: Can we use a pretrained “unconditional” diffusion model for inverse problems?

J. Ho, J. Ajay and P. Abbeel. "Denoising diffusion probabilistic models."  in Proceedings of (NeurIPS) 2020.

Review: A Classic Diffusion Model: 
Denoising Diffusion Probabilistic Model (DDPM)[1]

• DDPM defines a T–step forward process transforming complex data distribution into simple 
Gaussian noise distribution and a T-step reverse process recovering data from noise. 

… …

#&	 #'#(	 #()*	#(+*	

[1] Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." Advances in Neural Information Processing Systems 33 (2020): 
6840-6851.

INN and Diffusion Models for Inverse Problems



INN and Diffusion Models for Inverse Problems

• Diffusion Models are good for “unconditional” generation of new samples (e.g., Denoising Probabilistic 
Diffusion Models)

• From 𝑥% to 𝑥&	:

• From 𝑥&,%	to 𝑥&,'	:

J. Ho, J. Ajay and P. Abbeel. "Denoising diffusion probabilistic models."  in Proceedings of (NeurIPS) 2020.



• Given a training set {𝑥% , 𝑦%}	which 
contains N high-quality images and 
their low-quality counterparts, we 
learn the forward part of the INN 
using the following loss:

• Consequently, 𝑑 models the lost 
details that need to be recovered 
with the diffusion model
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Split P U

… !

… #…

…

MergePU $$

(a) 1-level lifting scheme

(b) 2-level lifting scheme

Fig. 2: The wavelet transform obtained using the lifting
scheme.

sample an arbitrary state xt directly from the input x0 as
follows:

xt =
→
ω̄tx0 +

→
1↑ ω̄tω (2)

where ωt = 1 ↑ εt, ω̄t =
∏t

i=0 ωi and ω ↓ N (0, I). For
the reverse process, we can calculate the posterior distribution
q(xt→1|xt,x0) using Bayes theorem and write the expression
of xt→1 using Eq. (2) as follows:

xt→1 =
1

→
ωt

(
xt ↑

1↑ ωt
→
1↑ ω̄t

ω

)
+ ϑtz, (3)

where ϑt=
√

1→ω̄t→1

1→ω̄t
εt and z ↓ N (0, I). To predict the

noise ω in the above equation, DDPM uses a neural network
ωω(xt, t) for each time-step t. To train ωω(xt, t), DDPM
uniformly samples a t from {1, ..., T} and updates the network
parameters ε with the following gradient descent step:

↔ω||ω↑ ωω(
→
ω̄tx0 +

→
1↑ ω̄tω, t)||

2
2, (4)

where x0 is a clean image from the dataset and ω ↓ N (0, I) is
random noise. By replacing ω with the approximator ωω(xt, t)
in Eq. (3) and iterating it T times, DDPM can yield clean
images x0 ↓ q(x) from initial random noises xT ↓ N (0, I),
where q(x) represents the image distribution in the training
dataset.

Solvers of inverse problems that use diffusion models have
shown remarkable performance and versatility, and can be
divided into two groups. The first group of methods [29]–[33]
has focused on designing and training conditional diffusion
models suitable for image reconstruction tasks. The second
group [13]–[24] has instead focused on keeping the training
of unconditional diffusion models unaltered, and only modify
the inference procedure to enable sampling from a conditional
distribution. The approach proposed in this paper falls in the
latter category and has the advantage of leveraging the pre-
trained diffusion models to make them serve as a strong gen-
erative prior without the need of retraining diffusion models.

B. Wavelet Transform and Invertible Neural Networks
The wavelet transform is widely used in many imaging

applications due to its ability to concentrate image features

in a few large-magnitude wavelet coefficients, while small-
value wavelet coefficients typically contain noise and can be
shrunk or removed without affecting the image quality. The
lifting scheme [34] is often used to construct a wavelet trans-
form. As shown in Fig. 2(a), the forward wavelet transform
converts the input signal into coarse and detail components
and then the original signal is reconstructed by the inverse
transform. Specifically, the lifting scheme first splits the signal
x = (xk)k↑Z into an even xe = (x2k)k↑Z and an odd part
xo = (x2k+1)k↑Z . A predictor is used to predict the odd part
from the even part, and thus the difference between the odd
part and its prediction reflects high-frequency details d of the
signal. Based on this difference, the update step is used to
adjust the even part to make it a smoother coarse version c of
the original signal. The above lifting procedure implementing
the forward wavelet transform can be described as:

d = xo ↑ P (xe), c = xe + U(d). (5)

The inverse transform can immediately be found by reversing
the operations and flipping the signs. Therefore, the original
signal can be recovered as follows:

xe = c↑ U(d), xo = d+ P (xe). (6)

The above equations illustrate that no matter how P and U
are chosen, the scheme is always invertible and thus leads
to critically sampled perfect reconstruction filter banks [34].
Furthermore, this scheme allows multiple levels and multiple
pairs of predictors and updates (see Fig. 2(b)).

Inspired by the above idea, Huang et al. [35] propose a
lifting-inspired invertible neural network (LINN) for image de-
noising. The forward transform of LINN non-linearly converts
the input noisy image into coarse channel and detail channels.
A denoising network performs the denoising operation on the
detail part, and then the backward transform of the LINN
reconstructs the denoised image using the original coarse
channel and the denoised detail channels. In this architecture,
INN consists of several invertible blocks where P and U in
Eq. (5) and Eq. (6) become functions parameterized by neural
networks. Specifically, the Predict and Update networks are
applied alternatively to update the coarse and detail parts. The
m-th pair of update and predict operations of the k-th level
INN can be expressed as:

dk
m = dk

m→1 ↑ P k
m

(
ckm→1

)
, (7)

ckm = ckm→1 + Uk
m

(
dk
m

)
, (8)

where dk
m and ckm denotes the updated detail part and coarse

part using the m-th Predict network P k
m(·) and Update network

Uk
m(·), respectively. Similarly, the inverse transform of the k-

th level INN can be expressed as:

ckm→1 = ckm ↑ Uk
m

(
dk
m

)
, (9)

dk
m→1 = dk

m + P k
m

(
ckm→1

)
. (10)

There are also other choices for INN architectures, including
coupling layer [36], affine coupling layer [37], reversible
residual network [38] and i-RevNet architecture [39]. The
invertible architecture that we design in this paper is based
on the lifting-inspired invertible blocks in [35]. However, we

INN and Diffusion Models for Inverse Problems
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use an alternative training strategy where we try to ensure
that the coarse version produced by the network is as close as
possible to the measured degraded image y.

III. INDIGO+ APPROACH

A. Overview
For a general image restoration problem y = H(x,n), we

aim to obtain an image x̃ that ensures data consistency while
maintaining realistic textures. To simultaneously achieve these
two goals, we leverage the merit of the perfect reconstruction
property of INN and the strong generative prior of pretrained
diffusion models. An overview of the proposed approach is
shown in Fig. 3 and Fig. 4. We first train our INN so that
its forward part [c,d] = fω(x) decomposes an image x
in a coarse and detail part so that c → H(x,n). In other
words, fω(·) is trained to mimic the degradation process H.
Then during the diffusion posterior sampling process, we
impose an additional data consistency step after each original
unconditional sampling update. Specifically, we first utilize
our pretrained INN to decompose the intermediate result x0,t

into the coarse part ct that should approximate the degraded
measurements and the detail part dt that models the details
lost during the degradation. We then replace ct with the
given observed measurements y. Next, the INN-optimized
image x̂0,t is constructed by inverse transform f→1

ω (·) of INN.
Therefore, this INN-optimized result x̂0,t guides the sampling
towards satisfying the consistency constraint. Simultaneously,
x̂0,t maintains rich details obtained by diffusion posterior sam-
pling without affecting data consistency. Then, the diffusion
posterior sampling at the following step is guided by our data-
consistent result, x̂0,t, through a gradient operation. Due to the
fact that we train an INN to model the degradation process,
our algorithm is more flexible than other methods and also
more effective given that the invertibility property of the INN
ensures that we compute implicitly the equivalent of an inverse
at each iteration.

In the following subsections, we will explain in details how
our approach can solve non-blind and blind inverse problems,
respectively.

B. INDIGO for Non-Blind Image Restoration
In this subsection, we start with non-blind inverse problems

and introduce the design of our INN and how it works in the
diffusion process.

Modelling the degradation process with INN: By exploit-
ing the invertibility of INN, we propose to treat its forward
transform fω as a simulator of the degradation process and
treat its inverse transform f→1

ω as the reconstruction process.
To realize this framework, we start with adopting the lifting-
inspired invertible blocks in [35] (as in Section II-B), which
can be expressed as follows:

[c,d] = fω(x), x = f→1
ω (c,d), (11)

where the forward transform of INN generates the coarse and
detail parts, c and d, while the inverse transform of INN can
perfectly recover the input original image from c and d. To
model the degradation process, we impose that c resembles

!!"#
…

Sampling Step

!!!$ !%

!%,!

"! #! $

%!%,!

INN INN-1

Data-Consistency Step

…

Gradient
Step

&!!"#

Fig. 3: Overview of our INDIGO for non-blind image restora-
tion. Given a degraded image y during inference, the diffusion
posterior sampling is guided by our data-consistency step
with INN at each step t. We show the detailed algorithm in
Algorithm 1.

y. Given a training set
{
xi,yi

}N

i=1
, which contains N high-

quality images and their low-quality counterparts, we optimize
our INN with the following loss function:

L (ω) =
1

N

N∑

i=1

∥∥f c
ω(x

i)↑ yi
∥∥2
2
, (12)

where ω denotes the set of learnable parameters of our INN
and f c

ω(x
i) and fd

ω(x
i) denote the first and second part of the

output of fω(xi), respectively. Once we constrain one part of
the output of fω(xi) to be close to y, due to invertibility, the
other part of the output will inevitably represent the detailed
information lost during the degradation process.

Sampling with the guidance of pretrained INN: In the
unconditionally trained DDPM [8], the reverse diffusion pro-
cess iteratively samples xt→1 from p(xt→1|xt) to yield clean
images x0 ↓ q(x) from initial random noise xT ↓ N (0, I).
Here, we rewrite Eq. 3 with the pre-trained approximator
ωω(xt, t) and split it into the following two equations:

x0,t =
1

↔
ε̄t

(xt ↑
↔
1↑ ε̄tωε(xt, t)) (13)

and

xt→1 =

↔
εt(1↑ ε̄t→1)

1↑ ε̄t
xt +

↔
ε̄t→1ϑt

1↑ ε̄t
x0,t + ϖtz. (14)

As illustrated in Eq. 13, x0,t is the predicted clean image
from the noisy image xt. To solve inverse problems, we need
to refine each unconditional transition using y to ensure data
consistency. In our proposed algorithm, we impose our data-
consistency step by modifying the clean image x0,t instead of
the noisy image xt.

As shown in Algorithm 1, we impose an additional data
consistency step (in blue) with our off-the-shelf INN after
each original unconditional sampling update. In this additional
step, we apply the forward transform fω(·) to the intermediate
result x0,t leading to the decomposition of x0,t into coarse
and detail part ct, dt respectively. We then replace the coarse

INN and Diffusion Models for Inverse Problems



• This approach is simple, flexible and effective
– No-need to know the degradation process
– The degradation process can be highly non-linear
– No need to retrain the diffusion model for every new degradation (just need to train 

the INN)

Ground Truth                      Degraded                                 Reconstructed

INN and Diffusion Models for Inverse Problems



Results for non-linear degradation models

INDigo: An INN-Guided Probabilistic Diffusion Algorithm for Inverse
Problems

Di You1,
Andreas Floros1,
Pier Luigi Dragotti1

Introduction

Background
The inverse problem is typically modelled as:

y = H(x) + n (1)

whereHmodels the degradation process and n ∼
N (0,σ02I) is additive noise. Many imaging tasks
fall under this model including deblurring, super-
resolution and removal of compression artefacts.

Contributions
• A novel INN-guided probabilistic diffusion algo-
rithm for inverse problems, namely INDIGO.

• First attempt to combine perfect reconstruction
property of INN with the strong generative prior
of diffusion models for inverse problems.

• Effectively estimates details lost in the degra-
dation process without requiring a closed-form
degradation model.

• SOTA performance on super-resolution, jpeg
compression and real degraded image recon-
struction.

Figure 1: Overview of our INDIGO for image restoration. Given a degraded
imagey during inference, the diffusion posterior sampling is guided by our
data-consistency step with INN at each step t.

Method

Modelling the degradation process with INN
Our proposed INN can be expressed as follows:

[c,d] = fφ(x), x = f↑1
φ (c,d), (2)

where the forward transform of INN generates the
coarse and detail parts, c and d, while the inverse
transform of INN can perfectly recover the input
original image from c and d.

Figure 2: The forward and inverse transform of our INN during inference.

To model the degradation process, we impose that
c resembles y. Given a training set

{
xi,yi

}N

i=1
,

which contains N high-quality images and their
low-quality counterparts, we optimize our WINN
with the following loss function:

L (Θ) =
1

N

N∑

i=1

∥∥ci ↑ yi
∥∥2
2
, (3)

whereΘ denotes the learnable parameter set in our
INN. Once we constrain one part of the output of
fφ(x) to be close to y, due to invertibility, the other
part of the output dwill inevitably represent the de-
tailed information lost during the degradation pro-
cess.

Samplingwith the guidance of pretrained INN
We impose an additional data consistency step af-
ter each original unconditional sampling update.
The INN-optimized x̂0,t is composed of the coarse
information y and the details generated by the dif-
fusion process.

Experiments

Results on 4x Super-Resolution:
Table 1: Quantitative results on the problems of bicubic downsampling
(4×) with different levels of Gaussian noise on the FFHQ 1k validation
dataset. The best results are highlighted.

Method Noise σ PSNR ↓ FID ↓ LPIPS ↓ NIQE↓
ILVR 0 27.43 44.04 0.2123 5.4689
DDRM 0 28.08 65.80 0.1722 4.4694
DPS 0 26.67 32.44 0.1370 4.4890
Ours 0 28.15 22.33 0.0889 4.1564
ILVR 0.05 26.42 60.27 0.3045 4.6527
DDRM 0.05 27.06 45.90 0.2028 4.8238
DPS 0.05 25.92 31.71 0.1475 4.3743
Ours 0.05 27.16 26.64 0.1215 4.1004
ILVR 0.10 24.60 88.88 0.4833 4.4888
DDRM 0.10 26.16 45.49 0.2273 4.9644
DPS 0.10 24.73 31.66 0.1698 4.2388
Ours 0.10 26.25 28.89 0.1399 3.9659

Figure3: Visual comparisons on solving the super-resolution problem (x4)
with σy= 0.05 on FFHQ validation dataset.

Results with Non-linear DegradationModel

Bicubic Ours Ground TruthInput

Figure 4: Results of our algorithm on solving non-linear inverse problem
on CelabA HQ validation dataset.

Results with Real DegradationModel

Figure 5: Result of our algorithm on reconstructing real images from
DRealSR with resolution enhancement by a factor 4 per direction.
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Results on 4x super-resolution
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Abstract—Recently it has been shown that using diffusion

models for inverse problems can lead to remarkable results.

However, these approaches require a closed-form expression of

the degradation model and can not support complex degradations.

To overcome this limitation, we propose a method (INDigo) that

combines invertible neural networks (INN) and diffusion models

for general inverse problems. Specifically, we train the forward

process of INN to simulate an arbitrary degradation process and

use the inverse as a reconstruction process. During the diffusion

sampling process, we impose an additional data-consistency step

that minimizes the distance between the intermediate result and

the INN-optimized result at every iteration, where the INN-

optimized image is composed of the coarse information given

by the observed degraded image and the details generated by

the diffusion process. With the help of INN, our algorithm

effectively complements the details lost in the degradation process

and is no longer limited by the requirement of knowing the

closed-form expression of the degradation model. Experiments

demonstrate that our algorithm obtains competitive results

compared with recently leading methods both quantitatively and

visually. Moreover, our algorithm performs well on more complex

degradation models and real-world low-quality images.

Index Terms—inverse problems, diffusion models, invertible

neural networks.

I. INTRODUCTION

In this paper, we focus on the problem of reconstructing a
high-quality image x from noisy and degraded measurements
y. This inverse problem is typically modelled as follows:

y = H(x) + n (1)

where H models the degradation process and n → N(0,ω0
2
I)

is additive noise. In this paper, we assume that H(·) can be
either linear or non-linear. Many imaging tasks fall under this
model including deblurring, super-resolution and removal of
compression artefacts.

With the emergence of deep learning techniques, many deep
learning-based algorithms for inverse problems have achieved
excellent success and we refer to [1] for a recent overview.

Recently, the generative prior of diffusion models [2–6] has
become one of the most popular priors due to their remarkable
ability to approximate the natural image manifold. A line
of work [7–16] has focused on leveraging the learned score
function as a generative prior of the data distribution to solve
general inverse problems. Earlier works [7–10] have also

Ground Truth DPS Ours

Fig. 1: Visual comparisons of DPS [15] and our method on
solving super-resolution problem (x4) on CelebA.

demonstrated the great ability of diffusion models for inverse
problems. A classic example is ILVR, which leverages a trained
diffusion model guided by the low-frequency information
from a conditional image through the diffusion process. While
promising, this method is limited by the assumption that H(·)
is a linear operator and that there is no noise.

Several approaches [11–13] have been proposed to solve
noisy inverse problems using diffusion models. These methods
run SVD/Range-Null space decomposition on intermediate
results during iterations. Although their results on noisy
cases show impressive reconstruction performance and good
interpretability, they cannot solve non-linear inverse problems,
e.g. Jpeg compression. Furthermore, they suffer from high
computational complexity when handling more complicated
degradation models.

More recently, several gradient-based methods [14–16] have
been proposed to further generalize to non-linear noisy inverse
problems. During the T -step diffusion process, these methods
impose an additional data-consistency step in the measurement
domain. Specifically, at each iteration t, they minimize the
distance between y and H(x0,t). This strategy avoids high-
complexity computation and allows their models to have the
potential to solve more complex inverse problems. However,
there are two main limitations of this type of approaches.

INN and Diffusion Models for Inverse Problems
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(a) Input (b) DR2 [1] (c) DifFace [2] (d) PGDiff [3] (e) StableSR [4] (f) Ours

Fig. 1: Comparisons with state-of-the-art blind image restoration approaches [1]–[4] on the real-world low-quality images. Our
algorithm produces high-quality reconstruction results and preserves more details than the recent leading methods. (Zoom in
for best view).

The above non-blind and blind IR approaches have demon-
strated the effectiveness of the generative diffusion models for
IR tasks. However, they are faced with the following limita-
tions: (1) In the task of non-blind IR, most existing approaches
require a closed-form expression of the degradation model to
guide the sampling process. However, the image processing
pipeline of many modern imaging systems is so complex that
it is often impossible to describe it explicitly. (2) In the task
of blind IR, most existing blind IR approaches rely on pre-
defined degradation models for training the IR network g(·),
which also limits their flexibility in real-world scenarios.

To address the above issues, we propose an INN-guided
probabilistic diffusion algorithm for both non-blind 1 and blind
image restoration. During the sampling process of diffusion
model, we impose an additional data-consistency step by intro-
ducing an off-the-shelf light-weight invertible neural network
(INN). Specifically, we pre-train the forward process of INN to
simulate an arbitrary degradation process. At testing stage we
alternate between an unconditional diffusion sampling step that
gives us an intermediate image consistent with the diffusion
model and a consistency step guided by the INN that forces
the reconstruction to be consistent with the measurements. In
particular, given at each step an estimated image, the forward
part of the INN produces a coarse image which we then
force to be consistent with the measurements and the details
estimated by the diffusion process. We then use the inverse
part of the INN as a reconstruction process to obtain an
intermediate result that guides the next step of the reverse
diffusion process. Therefore, our method guides the sampling
towards satisfying the consistency constraint while maintain-
ing rich details provided by the diffusion prior. In the task of
non-blind IR, INN is pretrained with datasets on any specific
degradation, so it is no longer limited by the requirement of
knowing the analytical expression of the degradation model. In
the task of blind IR, we first initialize the parameters of INN
by training it with synthetic dataset pairs that model different
degradation processes. Then, by alternating between refining
the INN parameters for the unknown degradation model and
updating intermediate image results with the guidance of INN
during sampling, our approach is more flexible and can handle
different degradation settings in real-world scenarios.

We summarize our contributions as follows:

1The work on non-blind inverse problem was presented in part at IEEE
MMSP conference 2023 [24].

• We propose a novel INN-guided probabilistic diffusion
algorithm for non-blind and blind image restoration,
namely INDIGO and BlindINDIGO. In contrast to most
existing approaches, our algorithm introduces prior degra-
dation information to the diffusion reverse process by
simulating it with INN, which help to boost IR perfor-
mance and improve flexibility.

• To the best of our knowledge, this is the first attempt to
combine the merits of the perfect reconstruction prop-
erty of INN with strong generative prior of diffusion
models for blind image restoration. With the help of
INN, our algorithm effectively estimates the details lost
in the degradation process and is able to handle arbitrary
degradation processes.

• We further propose a novel consensus strategy which
estimate several enhanced versions of the corrupted im-
age that can then be combined to further improve the
performance of our approach. In addition, we introduce
an initialization strategy to accelerate our algorithm by
reducing the number of timestep.

• Extensive experiments show that our approach for both
non-blind and blind image restoration achieves state-of-
the-art results compared with other methods on synthet-
ically degraded and real low-quality images (see Fig. 1
for an example).

II. BACKGROUND

A. Review of Denoising Diffusion Probabilistic Models

Diffusion models, e.g. [8], [9], sequentially corrupt training
data with slowly increasing noise, and then learn to reverse
this corruption in order to form a generative model of the
data. Here we describe a classic diffusion model: denoising
diffusion probabilistic model (DDPM) [8]. DDPM defines a
T -step forward process transforming complex data distribution
into simple Gaussian noise distribution and a T -step reverse
process recovering data from noise. The forward process
slowly adds random noise to data, where, in the typical setting,
the added noise has a Gaussian distribution. Consequently, the
forward process yields the present state xt from the previous
state xt→1:

q(xt|xt→1) = N (xt;
√
1→ ωtxt→1,ωtI) (1)

where xt is the noisy image at time-step t, ωt is a predefined
scale factor. As noted in [8], the above process allows us to

INN and Diffusion Models for Inverse Problems

D.You and P.L. Dragotti, “INDIGO+: A Unified INN-Guided Probabilistic Diffusion Algorithm for Blind and Non-Blind Image 
Restoration”, IEEE Journal of Selected Topics in Signal Processing, 2024



First Set of Conclusions

• Invertible Neural Networks are an interesting new concept

• Designing INN and combining them with diffusion models (plug-and-
play) leads to more interpretable and simpler architectures

• Good performance and good generalization ability

• Potential for further developments



Sparsity and Deep Unfolding Strategy

Explicit embedding of priors and constraints in deep networks
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Sparsity as the model for deep unfolding
• The dictionary is usually learned 

Introduction

• Sparse representation problem
• Find a K-sparse signal 𝒙 (||𝒙||𝟎 = 𝐾) from noisy observation 𝒚
• Dictionary 𝑫 is a fat matrix
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• The sparse vector 𝛼 can be found using ISTA: 𝛼) = 𝑆*!(𝛼)+, + 𝐷!
-(𝑥 − 𝐷!𝛼)+,)

Deep Unfolding Strategy



ISTA network

q Solving by ISTA algorithm through unfolding:

• Gregor Karol and LeCunYann, “Learning fast approximations of sparse coding ”, Proceedings of the 27th International 
Conference on International Conference on Machine Learning, 2010

• Y. Eldar et al, “Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing”, IEEE Signal 
Processing Magazine, 2021



• Goal: we want to separate the two x-ray 
images

• Approach: 

• Use the visible RGB image as side 
information (x-ray visible similar to 
RGB image)

• Exclusion loss: the “contours” of the 
two x-ray images should be as 
different as possible

Oil Painting

Visible Part

Invisible Part ?

Art-Investigation

X-rayVisible

Francisco de Goya, Dona Isabel de Porcel (NG1473), before 1805. Oil on canvas, Images © The National Gallery



Oil Painting

Visible Part

Invisible Part ?

X-ray Separation – Proposed Sparsity Model

X-rayVisible
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sparse coding paradigm is an extension of the sparse cod-
ing model in which a redundant dictionary is modeled as
a concatenation of circulant matrices. In the convolutional
sparse coding paradigm, the global sparsity constraint of the
target signal, which describes the target signal as a linear
combination of a few atoms in the redundant dictionary, is
exploited to promote accurate reconstruction. The rationale
behind using convolutional sparse coding is that on the one
hand it yields state-of-the-art performance [37], whereas on
the other hand it can be unrolled into a convolutional neural
network architecture [38]. Additionally, the algorithm based
on convolutional neural networks is capable of dealing with
the RGB version of the visual image patches instead of the
grayscale version of the same image patches, so it can also
capture colour information that might be relevant to improve
the mixed X-ray image separation performance.

The convolutional sparse coding model can be characterized
as follows:

x1 =
KX

k=1

⌅k ⇤ z1,k, x2 =
KX

k=1

⌅k ⇤ z2,k,

r1,s =
KX

k=1

⌦k,s ⇤ z1,k, x =
KX

k=1

⌅k ⇤ (z1,k + z2,k), (4)

where x1 and x2 denote the individual X-ray image patches
corresponding to the surface and concealed paintings, respec-
tively, r1,s for s = 1, 2, 3 denotes the red, green and blue chan-
nel patches of RGB image of the surface painting, z1,k and
z2,k denote the sparse representations underlying the X-ray
image patches of the surface painting and concealed design,
respectively, and k = 1, 2, · · · ,K indexes the channel number.
⌦k,s denotes the k-th convolutional dictionary filter for the
RGB image patches of the s-th channel, ⌅k denotes the k-
th convolutional dictionary filter for the X-ray image patches,
and ⇤ denotes the convolution processing. The convolution
operation w = a ⇤ b between two image patches a and b is
given by:

w(i, j) =
X

p

X

q

a(p, q)b(i� p+ 1, j � q + 1). (5)

Note that the model in (4) immediately links the various
images by imposing that the X-ray and RGB image patches
associated with the same layer of the painting share the same
sparse representation. Moreover, the X-ray image patches of
the surface painting and concealed design share the same
dictionaries. This model also imposes that the mixed X-ray is
equal to the sum of the individual X-rays (as in other works
as mentioned earlier [18], [19]).

B. Separation Network
We then propose to separate the mixed X-ray image patch

into its individual constituent image patches using a deep
neural network structure, which consists of two components:
the analysis and synthesis components shown in Fig. 3. The
analysis component produces the sparse representations of the
mixed X-ray image and RGB image of the surface painting
and the synthesis component produces the reconstruction of

Fig. 3. General structure of the proposed separation network.

the mixed X-ray image and RGB image of the surface paint-
ing. The analysis component is designed based on algorithm
unrolling techniques and the synthesis component is designed
based on a linear convolutional model. Specifically, we use
the following four steps to design the analysis and synthesis
components:

1) Firstly, we formulate the X-ray image separation prob-
lem into a coupled sparse coding problem under the
hypothesis that dictionaries are known.

2) Secondly, we develop a solver to this problem using cou-
pled iterative shrinkage-thresholding algorithm (CISTA).

3) Thirdly, we design the analysis component by turn-
ing the CISTA solver into a layered network architec-
ture – denoted by learned coupled iterative shrinkage-
thresholding algorithm (LCISTA) – based on algorithm
unrolling techniques [35].

4) Finally, we design the synthesis component based on the
linear model presented in (4).

In what follows, we describe these steps in more detail.
1) X-Ray Image Separation Problem Formulation: As dis-

cussed previously, the analysis component in the separation
network extracts sparse codes z1 and z2 from the inputs r1
and x. In order to design the analysis component using an
algorithm unrolling technique, we need to formulate a coupled
sparse coding problem to estimate the sparse codes z1 and z2

from r1 and x assuming to begin with that the dictionaries in
(4) are known. Then, we can design the analysis component
by unrolling the corresponding solver of the coupled sparse
coding problem.

Prior to problem formulation, we introduce two auxiliary
parameters y1 and y2, representing information image patches
of the surface painting and concealed design, respectively. The
main purpose for introducing y1 and y2 is to facilitate the
subsequent addition of exclusion loss in the information image
domain. Correspondingly, the convolutional sparse coding
model in (4) is changed into

x1 =  ⇤ y1, x2 =  ⇤ y2,

r1,s = �s ⇤ y1, x =  ⇤ (y1 + y2),

y1 =
KX

k=1

⇥k ⇤ z1,k y2 =
KX

k=1

⇥k ⇤ z2,k, (6)

• The visible image and the two separated X-
ray images have a sparse representation in 
proper dictionaries

• RGB image and visible X-ray share the 
same sparse representation

• The two X-rays 𝑥#, 𝑥" share the same 
dictionary

• The measured X-ray is 𝑥 = 𝑥# + 𝑥"

Francisco de Goya, Dona Isabel de Porcel (NG1473), before 1805. Oil on canvas, Images © The National Gallery
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Invisible Part ?

X-ray Separation – Exclusion Loss

X-rayVisible

• Given the reconstructed X-ray images 𝑥!, 𝑥", we 
expect that their edges are as different as possible 
we therefore add an “exclusion term” in the 
optimization

5

where  , ⇥k and �s denote the dictionaries with respect
to the X-ray image patches, information image patches and
RGB image patches, respectively. The X-ray image separation
problem associated with the model in (4) can be formulated
as follows:

min
y1,y2,z1,k,z2,k

kx� ⇤ y1 � ⇤ y2k2F

+⌧1ky1 �
KX

k=1

⇥k ⇤ z1,kk2F

+⌧2ky2 �
KX

k=1

⇥k ⇤ z2,kk2F

+�
3X

s=1

kr1,s ��s ⇤ y1k2F

+�1

KX

k=1

kz1,kk1 + �2

KX

k=1

kz2,kk1

+
IX

i=1

µik(W i ⇤ y1)� (W i ⇤ y2)k1, (7)

where �, ⌧1, ⌧2, �1, �2, and µk are the regularization param-
eters. In the last term, W = [W 1,W 2, · · · ,W I ] denotes a
redundant wavelet transform which is a union of I orthogonal
transforms and is used to sparsify y1 and y2 for exclusion
loss evaluation. At this stage, we assume that dictionaries  ,
⇥k and �s are known.

In (7), the first to fourth terms correspond to the data
consistency terms with respect to the mixed X-ray image
patch, information image patch of the surface painting and
concealed design, and the RGB image patch of the surface
painting, respectively. The fifth and sixth terms correspond
to a l1 regularization term to guarantee the sparsity of the
representations. The last term corresponds to a simplified
version of exclusion loss [34], in order to simplify the subse-
quent optimization algorithm and network design. By using the
simplified version of exclusion loss, we expect to obtain the
edge maps of the information image patches y1 and y2 using
wavelet transforms, in order to promote their disentanglement
((since the images from the visible and concealed design are
typically different)).

The problem in (7) without the exclusion loss term is ill-
posed. That is, there are some undesired minimizers of (7).
For example, the separated X-ray image of the concealed
design based on one possible solution of z2 may contain much
content from the surface painting. The reason to introduce
the simplified version of exclusion loss is to give constraints
on the information image patches y1 and y2 to make them
as different as possible from one another. This ensures that
information associated with the surface painting does not in-
correctly appear in the separated X-ray image of the concealed
design.

2) Solver: Next, we use an iterative CISTA algorithm in
order to solve the coupled sparse coding problem in (7). We
split the problem in (7) into several sub-problems and solve
each of them iteratively. In particular, (7) is changed into (8),
where l denotes the iteration number. By taking the gradients

on the data consistency terms in (8) and executing a proximal
step on the last term of each sub-problem, we obtain a series
of iterations [36] shown in (9), where 1

⇠ > 0 is the step size
and operator S�(·) is the soft thresholding operator applied
element-wise on its input as

S�(x) = sign(x) ·max(|x|� �, 0). (10)

Here, we define Fa(b, c) =
PI

i=1 W
T
i ⇤SakW i⇤bk1

(W i ⇤ c)
for simplicity. Fa(b, c) is a parallel proximal operator which
computes several independent proximals [36]. It has been
theoretically proven in [36] that the algorithm converges when
using a parallel proximal operator to solve the least-squares
cost function with the simplified exclusion loss as a regularizer.

3) Analysis component: Our third step is to design the
analysis component of the separation network using unfold-
ing techniques [35]. The iterative solver is converted into a
feedforward layered neural network architecture, i.e., LCISTA.
We can then map each solver iteration operation in (9) onto a
feedforward neural network operation, and likewise we can
also map L solver iterations onto a L layer feedforward
neural network. We change (9) into (11), where convolu-
tional filters [Al

k,B
l
k,C

l,Dl,El
s,F

l
s] and scalar parameters

[⌧ l1, ⌧
l
2,�

l
1,�

l
2, µ

l
i, �

l] are set to be learnable parameters. Each
network layer of LCISTA is represented in Fig. 4, and the
learnable parameters are emphasized in red.

The rationale for adopting new parameters to describe the
neural network layer instead of the original ones derives from
the fact that we can further learn this using entirely self-
supervised mechanisms. Note that the learnable parameters in
the analysis component are set to be the same in each layer to
give the separation network more restrictions and to promote
a better separation performance.

4) Synthesis component: Suppose we have L layers in total
in the analysis component of the separation network, and
assume the outputs of the analysis component are zL

1,k and
zL
2,k. Then, the synthesis component is designed to convert

the sparse feature zL
1,k into an estimate of the visual image

patches and of the mixed X-ray image patches. Specifically,
in line with our model in (4) and (6), we have that

r̂1,s =
KX

k=1

W⌦;k,s ⇤ zL
1,k, (12)

and

x̂ =
KX

k=1

W ⌅;k ⇤ (zL
1,k + zL

2,k). (13)

Here, W⌦;k,s and W ⌅;k are also set to be learnable parame-
ters too.

It is important to introduce the synthesis component because
it allows the proposed separation approach to work in a totally
self-supervised manner (note that we do not have access to
true sparse representation z1,k andz2,k to train the analysis
network but we do have access to mixed X-ray image and RGB
image patches to train the concatenation of the analysis and
synthesis networks). We design the synthesis component to
regenerate the RGB image patch r1,s and mixed X-ray image
patch x from z1,k and z2,k so that standard reconstruction
losses can be utilized to guide the training phase.



One Layer of the Network

• The sparsity model and the exclusion constraint leads to an iterative optimization method which leads to a network 
through unfolding

6

Fig. 4. Structure of the l-th layer in LCISTA.

zl
2,k = argmin

z2,k

⌧2kyl�1
2 �

KX

k=1

⇥k ⇤ z2,kk2F + �2

KX

k=1

kz2,kk1, zl
1,k = argmin

z1,k

⌧1kyl�1
1 �

KX

k=1

⇥k ⇤ z1,kk2F + �1

KX

k=1

kz1,kk1,

yl
2 = argmin

y2

kx� ⇤ yl�1
1 � ⇤ y2k2F + ⌧2ky2 �

KX

k=1

⇥k ⇤ zl
2,kk2F +

IX

i=1

µikW iy
l�1
1 �W iy2k1,

yl
1 = argmin

y1

kx� ⇤ y1 � ⇤ yl
2k2F + ⌧1ky1 �

KX

k=1

⇥k ⇤ zl
1,kk2F + �

3X

s=1

kr1,s ��s ⇤ y1k2F +
IX

i=1

µikW iy1 �W iy
l
2k1,

(8)

zl
2,k =S�2

⇠

 
zl�1
2,k +

⇥T
k

⇠
⇤ (yl�1

2 �
KX

i=1

⇥i ⇤ zl�1
2,i )

!
, zl

1,k = S�1
⇠

 
zl�1
1,k +

⇥T
k

⇠
⇤ (yl�1

1 �
KX

i=1

⇥i ⇤ zl�1
1,i )

!
,

yl
2 =Fµi

⇠

 
yl�1
1 ,yl�1

2 +
 T

⇠
⇤ (x� ⇤ (yl�1

1 + yl�1
2 )) +

⌧2
⇠
(yl�1

2 �
KX

k=1

⇥i ⇤ zl
2,i)

!
,

yl
1 =Fµi

⇠

 
yl
2,y

l�1
1 +

 T

⇠
⇤ (x� (yl�1

1 + yl
2)) +

⌧1
⇠
(yl�1

1 �
KX

k=1

⇥i ⇤ zl
1,i) +

�

⇠

3X

s=1

�T
s ⇤ (r1,s ��s ⇤ yl�1

1 )

!
, (9)

C. Learning Strategy

During the training of the proposed separation
network, we randomly initialize the learnable parameters
of the network, i.e., initialized convolutional filters
[Al

k,B
l
k,C

l,Dl,El
s,F

l
s,W⌦;k,s,W⌦;k,s] satisfy

multivariate Gaussian distributions and initialized scalars
[⌧ l1, ⌧

l
2,�

l
1,�

l
2, µ

l
i, �

l] are uniformly distributed in the interval
(0, 1]. The inputs of the separation network are set as

z0
1,k = 0, z0

1,k = 0,

y0
1 = g1, y0

2 = x� g1. (14)

Then, the learnable parameter of the whole networks w =
[Al

k,B
l
k,C

l,Dl,El
s,F

l
s,W⌦;k,s,W⌦;k,s, ⌧ l1, ⌧

l
2,�

l
1,�

l
2, µ

l
i, �

l]

are learnt as follow:

min
w

kx� x̂k2F + ⌘1

3X

s=1

kr1,s � r̂1,sk2F + ⌘2E(yL
1 ,y

L
2 ),

(15)

where ⌘1 and ⌘2 are the hyper-parameters pertaining to the
reconstruction loss of the surface painting image patch and
exclusion loss, respectively. We then optimize the separation
network learnable parameters by using stochastic gradient
descent (SGD) with learning rate lr = 10�3�ep/40, where ep
denotes the epoch number. Additionally, we use 120 epochs
in total to train the separation network, and set the network
architecture parameters as K = 64 and I = 4. All the
convolutional filters are of size 5⇥ 5.
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Fig. 17. Separation results of Doña Isabel de Porcel data. Columns 1 to 4
correspond to reconstructed X-ray image of the surface painting, reconstructed
X-ray image of the concealed design, synthetically mixed X-ray from the
separated results, and the error map of the mixed X-ray image, respectively.
Rows 1 and 2 correspond to the results by the proposed algorithm and the
algorithm in [19], respectively.

too much intensity given to the forehead and cheek highlights
of Dona Isabel in the separated X-ray image of the surface
painting are reduced using the proposed approach compared
to the method in [19] as well.

It is clear there are still some remaining issues with the
image separation, for example, the area of the gentleman’s
face is slightly blurred, but these final images have more of the
character that would be anticipated for X-ray images and are
likely to feel more familiar and therefore be more appealing to
end users. The fact that Goya may have incorporated aspects
of the concealed design into the final portrait adds a further
complication as it makes a completely ‘clean’ separation of
the two images even more challenging.

Note that in Fig. 17, we use the manually modified image
of the surface painting in Fig. 16 (c) as g1 during the initial-
ization. If we still use the grayscale image as g1 during the
initialization, the separation results by the proposed approach
are shown in the first row of Fig. 18. In [19], the manually
modified image of the surface painting in Fig. 16 (c) is also
utilized. If we use the grayscale image of the surface painting
instead of the manually modified image, the separation results
by the algorithm in [19] are shown in the second row of
Fig. 18. Comparing the results in Fig. 18, again the proposed
approach still outperforms the algorithm in [19] because the
separated X-ray image of the surface painting obtained by the
proposed method contains much more detailed information,
and the content of the surface painting is less obvious in the
separated X-ray image of the concealed design obtained by the
proposed method. Comparing the results in Fig. 17 and Fig.

Fig. 18. Separation results of Doña Isabel de Porcel data using the grayscale
image of the surface painting as g1. Columns 1 to 4 correspond to the
reconstructed X-ray image of the surface painting, reconstructed X-ray image
of the concealed painting, synthetically mixed X-ray from the separated
results, and the error map of the mixed X-ray image, respectively. Rows 1
and 2 correspond to the results by the proposed algorithm and the algorithm
in [19], respectively.

18, there is quite obvious improvement if we use the manually
modified image as g1 with the algorithm in [19], and the
synthetically mixed X-ray from the separated results clearly
differs from the original mixed X-ray image for example.
For the proposed approach the comparison is more subtle.
The separated X-ray for the surface painting appears to have
become more like a grayscale version of the surface painting
but some areas of the X-ray image for the concealed design
are arguably slightly clearer.

V. CONCLUSIONS

X-radiography is a useful tool in the technical study of
artworks as, amongst its other benefits, it is capable of
providing insights into concealed compositions and pentimenti

as well as information about the condition and construction.
However, when concealed designs exist under the visible
surface the resulting X-ray images contain mixed features
associated with both visible and concealed designs as well
as features associated with areas of damage and the structure
of the painting support for example. As a result, it becomes
more difficult for experts to interpret these images. To improve
the utility of these X-ray images, it is desirable to separate
the content into two (hypothetical) images, each pertaining to
a single composition. This paper proposes a new approach
to X-ray image separation as a valuable addition to methods
published previously and as a tool for further work on this
challenging problem. Although the precise measure of the
success of the separation of such X-ray images is dependent
on the exact needs of the different end users, this new

W. Pu et al “Mixed x-ray image separation for artworks with concealed designs”, IEEE Trans. on Image Processing, 2022



MA-XRF Datacube and Spectrum

• Macro X-ray provides volumetric data and the locations of the 
pulses in the energy direction are related to the chemical 
elements present in the painting.

• This potentially allows us to create maps that show the 
distribution of different chemical elements

Energy
0-40 keV
4096 
channels

Images © The National Gallery, London
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Leonardo da Vinci’s “The Virgin of the 
Rocks”

Highlighted is the region of an XRF dataset collected on the painting with an M6 
Bruker JETSTREAM instrument (30 W Rh anode at 50 kV and 600 µA, 60 mm2 Si drift 
detector, and data collected with 350 µm beam and pixel size and 10 ms dwell time).

Leonardo da Vinci, “The Virgin of the Rocks (NG1093),” about 1491/2-9 and 1506-8, oil on poplar, 189.5 x 120 cm, The National 
Gallery, London.
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Zinc (Zn) distribution maps

Zn confidence map Zn quantity map
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S. Yan, J.-J. Huang, N. Daly, C. Higgitt, and P. L. Dragotti, “When de Prony Met Leonardo: An Automatic Algorithm for Chemical 
Element Extraction in Macro X-ray Fluorescence Data”, IEEE Transactions on Computational Imaging, vol.7, 2021.



Two-Photon Microscopy for Neuroscience

• Goal of Neuroscience: to study how 
information is processed in the brain

• Neurons  communicate through pulses  called 
Action Potentials (AP)

• Need to measure in-vivo the activity of large 
populations of neurons at cellular level 
resolution

• Two-photon microscopy combined with right 
indicators is the most promising technology 
to achieve that 



Two-Photon Microscopy

• Fluorescent sensors within tissues 
• Highly localized laser excites fluorescence 

from sensors
• Photons emitted from tissue are collected
• Focal spot sequentially scanned across 

samples to form image
• Two-photon microscopes in raster scan 

modality can go deep in the tissue but are 
slow

A. J. FOUST, Fast Light Field Neural Circuit Readout, Page 5
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Figure 2: A: optical system schematic; B, scanning modes; C, experiment work flow

fluorescencephotonsfromanextendeddepthoffield,andtodeducethepositionfromwhichtheyoriginatebasedon
fluorescence amplitude and incidence angle [9], [10]. In contrast with previous light field implementations,
we will excite fluorescence in two-photon mode with an infrared wavelength that penetrates deeper
into scattering mammalian brain than the visible wavelengths used to excite fluorescence in one-
photon mode. Unlike traditional 2PLSM, here instead of focusing the laser beam to a diffraction-limited
spot, our goal is to implement wide-field excitation for light field volume acquisition. Due to two-photon’s
squared dependence of fluorescence on excitation intensity, wide-field two-photon excitation requires high pulse
energy and decreased repetition rates to excite fluorescence efficiently throughout the volume while keeping the
average power low enough to avoid tissue heating. Exciting two-photon fluorescence throughout our 200-micron-
diameter cross-sectional area requires approximately 10 microjoules of pulse energy for a 660 kHz repetition rate.
We have selected the Coherent Opera-F Optical Parametric Amplifier pumped by the Monaco Amplifier as this
combination provides pulse energies in the 10 microjoule range of near infrared wavelengths (650 - 900 nm, 1035
nm, and 1200 to 2500 nm). The flexibility to tune the laser’s wavelength will enable us evaluate different calcium
indicators in terms of their signal-to-noise, temporal fidelity, and depth penetration during WP2.

Path (C) will serve as a control by exciting calcium-indicator fluorescence in axially-confined “pancakes” by
replacing the mirror with a reflective ruled diffraction grating [3]. In this configuration, two-photon excitation
will be temporally focused to a plane 5 microns thick (inset Figure 2A). The “pancake” plane will by scanned
remotelybyanelectrically tunable lens (ETL)conjugate to theobjectivebackaperture. Wewill use the“pancake”
excitationmode to evaluatehowwhole-volume2PELF illumination compares to the spatial specificity of selected-
plane excitation.

We will assess 2PELF’s axial and lateral spatial resolution as a function of depth by imaging 10-micron
red fluorescent beads seeded in agarose either weakly or strongly scattering (mean free path 200 microns, like
mammaliancortex [14]). Wewillfirst imagethebeadswithpath(A)toacquireahighresolution3Dreconstruction
ofbead location. Thenwewill acquire lightfieldswith thebeadsusingpath (C)andassess thefidelityandcontrast
with which 2PELF can resolve single beads and infer their position as a function of depth, scattering strength,
and bead concentration. We will compare the depth at which single beads can be resolved between 2PELF and
“pancake mode” as a function of agarose scattering coefficient and bead density.

Milestones/deliverables: (a) Four optical paths aligned and parfocal (Month 6); (b) Fluorescent bead dis-
criminability quantified as a function of depth and scattering (Month 10). (c) Develop software for integrated
2PELF data acquisition and analysis (Month 12).



• In order to speed up acquisition one can change the illumination strategy
• This mitigates the issue but does not fix it 
• Issue with scattering

Two-Photon Microscopy



Light-field Microscopy

Light-Field Microscopy (LFM) is a high-
speed imaging technique that uses a 
simple modification of a standard 
microscope to capture a 3D image of an 
entire volume in a single camera snapshot

 



Light-field Microscopy and EPI



Light-field Microscopy and Illumination Strategies

Key insight: use the 2P microscope for high-resolution structural information and the LFM for monitoring the 
activity of neurons.  



Our Solution: Scattering-robust structural volumes
+ high-bandwidth, scanless functional volumes

Microlens array



2D Measured LF image

3D Input

2

Computational
 Algorithm 

Light-field Microscopy

Challenge: given a sequence of lightfields (2-D signals), need to reconstruct a sequence of  
volumes (3-D+t)



Volume Reconstruction from Light-field Data

• Challenges 
• Scattering induces blur, making inversion 

more challenging
• Lack of ground-truth data for learning

• Opportunities
• Forward model structured and linear
• Data is sparse (neurons fire rarely and are 

localized in space)
• Occlusion can be ignored

2-D LF 

Volume 



Microlens Array
Objective Tube Lens

𝑥
𝑧

LF Microscope

Image Sensor

NOP NIP

• Forward model is linear which means	𝒚 = 𝑯𝒙 
• 𝑯 is estimated using wave-optics 
• For each depth, 𝑯 is block-circulant 

(periodically shift invariant) and can be 
modelled with a filter-bank 

• The entire forward model can be 
modelled using a linear convolutional 
network with known parameters (given 
by the wave-optics model)

Forward Model



• Data is sparse (neurons fire rarely and are localized in space)

• Solve min
!
( 𝑦 − 𝐻𝑥 " + 𝑥 #) s.t 𝑥 ≥ 0

• This leads to the following iteration: 

𝑥$%# = 𝑅𝑒𝐿𝑈(𝑥$ − 𝐻&𝐻𝑥$ + 𝐻&𝑦 + 𝜆)

• Approach: Convert the iteration in a deep neural network using the unfolding technique

Neural Network for Volume Reconstruction



• Convert the iteration in a deep neural network using the unfolding technique 

𝑥$%# = 𝑅𝑒𝐿𝑈(𝑥$ − 𝐻&𝐻𝑥$ + 𝐻&𝑦 + 𝜆)
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Fig. 6. CNN architecture. Our reconstruction network g(·) is composed of (1)
a compression layer c(·), which is a linear convolutional layer with N →N
input channels and V output channels and (2) a LISTA network. At each layer
of LISTA we use the architecture of the compress forward CNN h(·) shown
in Figure5 and the adjoint operator hT (·). The LISTA network is composed
of K layers.

each layer corresponds to one iteration of ISTA. Effectively,
each layer of LISTA implements the following step:

x
k+1 = Tω(xk →H

T
1H2x

k +H3
T
y), (4)

where H1,H2 and H3 are matrices of same size and
structure as H. These matrices are the parameters of the
network that can be learned using a proper loss function.
Note that, contrary to [21], we do not fuse the product HT

1H2

into a single matrix since we want to keep the structure of
each factor. This version of LISTA uses the soft-thresholding
as the element-wise non-linearity due to the l1 constraint in
Equation (2). However, ISTA can be used with different types
of non-linearities related to the prior imposed, as explained in
[24]. For instance, replacing Tω by a rectified linear unit (Relu)
imposes non-negativity, and replacing it with a ReLU with a
bias term imposes sparsity and non-negativity. In our case, x
is sparse and non-negative. Therefore, we propose a LISTA
network that uses a ReLU with a bias term as non-linearity:

x
k+1 = ReLU(xk →H

T
1
kHk

2x
k +H

T
3
k
y + ωk), (5)

where ωk is a learnable bias. Furthermore, the custom
{Hk

i }3i=1 for each unfolded iteration k gives the network more
capabilities without compromising its simplicity.

In many practical cases, the described LISTA network
cannot be used directly to solve the volume reconstruction
problem. The size and structure of the matrix H make it
computationally prohibitive to perform matrix multiplications
repeatedly. Therefore, we propose using the compressed for-
ward CNN h(·) proposed in Section IV-B to reduce the com-
putational complexity. The final architecture of our network
is, therefore, described as follows:

x
k+1 = ReLU(xk → hT

1
k
(hk

2(x
k)) + hT

3
k
(c(y)) + ωk), (6)

where we have replaced matrices H
k
i in Equation (5) with the

linear mappings {hi}3i=1. The computation of all the {hi}3i=1

is determined by the architecture of the compressed forward
CNN derived from physics and explained in SectionIV-B. Note
that the structure of the adjoint operators (transpose) {hT

i }3i=1

in Equation (6) can be easily computed from the permutation
of the weights of h(·). Furthermore, the input of the network
is c(y) rather than y. The mapping c(·) is defined as a single
linear convolutional layer with N ↑N input channels and V

(a)

(b)

Fig. 7. Training of our GAN architecture. In (a), we show how the LISTA
network g(·) is trained using a content loss and an adversarial loss computed
from a critic D(·). The content loss is computed using a few labelled data
pairs, unlabelled LF data, and the known forward model f(·). In (b), we show
the structure of the critic D(·) designed following typical techniques for 3D
GANs[25].

output channels and filters of unit size. By having V output
channels, c(·) is compatible with the input size of the operators
{hT

i }3i=1. For this compression step, we found unit-size filters
to be effective; however, filters of any size could be used. We
highlight that the coefficients of the compression layer c(·) are
learned together with LISTA. The end-to-end network g(·; ε),
where ε represents the learnable parameters of the network, is
shown in Figure 6. If additional simplification is needed, some
convolutional layers in g(·) can be replaced by a cascade of
layers with a smaller filter size.

B. CNN Training

We learn the parameters ε of our LISTA network g(·; ε) with
a proper loss function and a mixture of labelled and unlabelled
datasets. In our scenario, a labelled dataset comprises LF im-
ages and the corresponding 2P volumes. For many applications
in LFM, capturing a huge labelled dataset is too expensive or
even unfeasible. For instance, when studying the behavior of
neurons in mammalian tissue, capturing a clean 3D label is
challenging due to the scattering media. Furthermore, using
only synthetic data for training is problematic if noise is not
appropriately modelled.

In our setting, we propose acquiring a very small labelled
training dataset. We label neurons in a single brain sample
using TdTomato fluorophore. The TdTomato allows capturing
the static distribution of the neurons in space using both 2P
and LF modalities. The 2P raster scanning modality provides
the ground truth volume that can be paired with the LF images
acquired with the same fluorophore. Therefore, to train LISTA
we exploit the small labelled dataset, the large amount of
unpaired LF images, and the knowledge of the forward model.
The training loss is stated as follows:

Neural Network for Volume Reconstruction
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Fig. 6. CNN architecture. Our reconstruction network g(·) is composed of (1)
a compression layer c(·), which is a linear convolutional layer with N →N
input channels and V output channels and (2) a LISTA network. At each layer
of LISTA we use the architecture of the compress forward CNN h(·) shown
in Figure5 and the adjoint operator hT (·). The LISTA network is composed
of K layers.

each layer corresponds to one iteration of ISTA. Effectively,
each layer of LISTA implements the following step:

x
k+1 = Tω(xk →H

T
1H2x

k +H3
T
y), (4)

where H1,H2 and H3 are matrices of same size and
structure as H. These matrices are the parameters of the
network that can be learned using a proper loss function.
Note that, contrary to [21], we do not fuse the product HT

1H2

into a single matrix since we want to keep the structure of
each factor. This version of LISTA uses the soft-thresholding
as the element-wise non-linearity due to the l1 constraint in
Equation (2). However, ISTA can be used with different types
of non-linearities related to the prior imposed, as explained in
[24]. For instance, replacing Tω by a rectified linear unit (Relu)
imposes non-negativity, and replacing it with a ReLU with a
bias term imposes sparsity and non-negativity. In our case, x
is sparse and non-negative. Therefore, we propose a LISTA
network that uses a ReLU with a bias term as non-linearity:

x
k+1 = ReLU(xk →H
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kHk

2x
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3
k
y + ωk), (5)

where ωk is a learnable bias. Furthermore, the custom
{Hk

i }3i=1 for each unfolded iteration k gives the network more
capabilities without compromising its simplicity.

In many practical cases, the described LISTA network
cannot be used directly to solve the volume reconstruction
problem. The size and structure of the matrix H make it
computationally prohibitive to perform matrix multiplications
repeatedly. Therefore, we propose using the compressed for-
ward CNN h(·) proposed in Section IV-B to reduce the com-
putational complexity. The final architecture of our network
is, therefore, described as follows:

x
k+1 = ReLU(xk → hT

1
k
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(c(y)) + ωk), (6)

where we have replaced matrices H
k
i in Equation (5) with the

linear mappings {hi}3i=1. The computation of all the {hi}3i=1

is determined by the architecture of the compressed forward
CNN derived from physics and explained in SectionIV-B. Note
that the structure of the adjoint operators (transpose) {hT

i }3i=1

in Equation (6) can be easily computed from the permutation
of the weights of h(·). Furthermore, the input of the network
is c(y) rather than y. The mapping c(·) is defined as a single
linear convolutional layer with N ↑N input channels and V
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Fig. 7. Training of our GAN architecture. In (a), we show how the LISTA
network g(·) is trained using a content loss and an adversarial loss computed
from a critic D(·). The content loss is computed using a few labelled data
pairs, unlabelled LF data, and the known forward model f(·). In (b), we show
the structure of the critic D(·) designed following typical techniques for 3D
GANs[25].

output channels and filters of unit size. By having V output
channels, c(·) is compatible with the input size of the operators
{hT

i }3i=1. For this compression step, we found unit-size filters
to be effective; however, filters of any size could be used. We
highlight that the coefficients of the compression layer c(·) are
learned together with LISTA. The end-to-end network g(·; ε),
where ε represents the learnable parameters of the network, is
shown in Figure 6. If additional simplification is needed, some
convolutional layers in g(·) can be replaced by a cascade of
layers with a smaller filter size.

B. CNN Training

We learn the parameters ε of our LISTA network g(·; ε) with
a proper loss function and a mixture of labelled and unlabelled
datasets. In our scenario, a labelled dataset comprises LF im-
ages and the corresponding 2P volumes. For many applications
in LFM, capturing a huge labelled dataset is too expensive or
even unfeasible. For instance, when studying the behavior of
neurons in mammalian tissue, capturing a clean 3D label is
challenging due to the scattering media. Furthermore, using
only synthetic data for training is problematic if noise is not
appropriately modelled.

In our setting, we propose acquiring a very small labelled
training dataset. We label neurons in a single brain sample
using TdTomato fluorophore. The TdTomato allows capturing
the static distribution of the neurons in space using both 2P
and LF modalities. The 2P raster scanning modality provides
the ground truth volume that can be paired with the LF images
acquired with the same fluorophore. Therefore, to train LISTA
we exploit the small labelled dataset, the large amount of
unpaired LF images, and the knowledge of the forward model.
The training loss is stated as follows:

Training of the Neural Network

• Training, in this context, is difficult due to lack of ground-truth data
• Our approach: semi supervised learning

• Small ground truth dataset
• Light-field loss based on re-synthesizing 
     light-field from reconstructed volume
• Adversarial network for adversarial loss



Results – Structural Data
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Fig. 8. Reconstruction using real light field data from acute mouse brain slices expressing TdTomato fluorophore. In part (a), the first three rows show the
two-photon 3D image used as ground truth, and the reconstruction using two model-based approaches: ISRA and ADMM, respectively. Furthermore, in the
next two rows we evaluate the state-of-the-art LFMNet proposed in [9] and we show our LISTA approach. We show several slices for different depths. This
reconstruction corresponds to the performance shown in the first row in Table I. In part (b), we show performance for a light field image with a deeper focal
depth, corresponding to the row 28 in Table I. The performance of all methods degrades when imaging deeper in the tissue. Note that our LISTA method
achieves the best performance in terms of both PSNR and SSIM. The shown PSNR and SSIM are measured at each depth. Measures on the whole volume
are shown in Table I. All the distances are measured in µm. The settings used to capture both the light field image and two-photon image are specified in
Section VI.
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Fig. 8. Reconstruction using real light field data from acute mouse brain slices expressing TdTomato fluorophore. In part (a), the first three rows show the
two-photon 3D image used as ground truth, and the reconstruction using two model-based approaches: ISRA and ADMM, respectively. Furthermore, in the
next two rows we evaluate the state-of-the-art LFMNet proposed in [9] and we show our LISTA approach. We show several slices for different depths. This
reconstruction corresponds to the performance shown in the first row in Table I. In part (b), we show performance for a light field image with a deeper focal
depth, corresponding to the row 28 in Table I. The performance of all methods degrades when imaging deeper in the tissue. Note that our LISTA method
achieves the best performance in terms of both PSNR and SSIM. The shown PSNR and SSIM are measured at each depth. Measures on the whole volume
are shown in Table I. All the distances are measured in µm. The settings used to capture both the light field image and two-photon image are specified in
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Fig. 8. Reconstruction using real light field data from acute mouse brain slices expressing TdTomato fluorophore. In part (a), the first three rows show the
two-photon 3D image used as ground truth, and the reconstruction using two model-based approaches: ISRA and ADMM, respectively. Furthermore, in the
next two rows we evaluate the state-of-the-art LFMNet proposed in [9] and we show our LISTA approach. We show several slices for different depths. This
reconstruction corresponds to the performance shown in the first row in Table I. In part (b), we show performance for a light field image with a deeper focal
depth, corresponding to the row 28 in Table I. The performance of all methods degrades when imaging deeper in the tissue. Note that our LISTA method
achieves the best performance in terms of both PSNR and SSIM. The shown PSNR and SSIM are measured at each depth. Measures on the whole volume
are shown in Table I. All the distances are measured in µm. The settings used to capture both the light field image and two-photon image are specified in
Section VI.

8

(a)

50 m

2
P

 M
ic

ro
sc

o
p
y

PSNR:25.92

SSIM:0.594

IS
R

A

PSNR:26.61

SSIM:0.632

PSNR:27.50

SSIM:0.675

PSNR:26.10

SSIM:0.539

PSNR:23.18

SSIM:0.420

PSNR:24.39

SSIM:0.451

PSNR:18.13

SSIM:0.331

PSNR:18.07

SSIM:0.346

PSNR:16.37

SSIM:0.301

PSNR:25.00

SSIM:0.402

A
D

M
M

PSNR:25.28

SSIM:0.405

PSNR:26.29

SSIM:0.463

PSNR:27.38

SSIM:0.595

PSNR:25.10

SSIM:0.525

PSNR:23.32

SSIM:0.477

PSNR:22.71

SSIM:0.469

PSNR:23.23

SSIM:0.461

PSNR:20.64

SSIM:0.440

PSNR:23.63

SSIM:0.431

L
F

M
N

e
t

PSNR:22.99

SSIM:0.435

PSNR:27.60

SSIM:0.628

PSNR:27.75

SSIM:0.633

PSNR:30.87

SSIM:0.679

PSNR:30.61

SSIM:0.699

PSNR:27.76

SSIM:0.633

PSNR:25.98

SSIM:0.541

PSNR:26.57

SSIM:0.574

PSNR:27.25

SSIM:0.548

z=-16

O
u
rs

PSNR:24.66

SSIM:0.484

z=-12

PSNR:27.11

SSIM:0.596

z=-8

PSNR:29.79

SSIM:0.731

z=-4

PSNR:33.80

SSIM:0.809

z=0

PSNR:31.86

SSIM:0.762

z=4

PSNR:27.96

SSIM:0.651

z=8

PSNR:24.86

SSIM:0.523

z=12

PSNR:25.96

SSIM:0.552

z=16

(b)

Fig. 8. Reconstruction using real light field data from acute mouse brain slices expressing TdTomato fluorophore. In part (a), the first three rows show the
two-photon 3D image used as ground truth, and the reconstruction using two model-based approaches: ISRA and ADMM, respectively. Furthermore, in the
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H. Verinaz et al. "Physics-based Deep Learning for Imaging Neuronal Activity via Two-photon and Light-field 
Microscopy”,  IEEE Trans. on Computational Imaging, 2023.
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CHAPTER 4. A MULTIMODAL APPROACH FOR THE DETECTION OF NEURONAL

ACTIVITY

Figure 4.1: The overview of the end-to-end process, which involves reconstruction (in the blue box,
using the method presented in [7]), volume segmentation, synthetic footprint generation, and time
sequence identification.

4.2 Volume Reconstruction

The volume reconstruction is completed via the multimodal physics-inspired deep learning ap-

proach detailed in Chapter 3. As a quick summary, the forward imaging process is described by

a convolutional neural network and has reduced dimensionality. Reconstruction consists of a com-

pression (linear convolutional) layer and a K -layer LISTA network, where each layer of the network

corresponds to an iteration of ISTA. Training is completed with a generative adversarial network

on small datasets obtained from 2PM and LFM imaging. The trained network is used to recon-

struct a 4D LF volume (3D spatial and 1D temporal) that is used as input for the segmentation

process [7].

4.3 Volume Segmentation

As previously mentioned, localizing neurons in space is of key interest to researchers. Pnev-

matikakis et al. and Nöbauer et al. applied matrix factorization to iteratively and simultaneously

𝑌 = 𝑆 ⋅ 𝑇
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Conclusions

• In imaging problems:
• operating at the interface between physics and computation is 

essential
• Cross fertilization between model-based approaches and deep 

learning is fruitful
• Some computational approaches are transferable

• Inverse imaging problems: 
• are fun 🙂
• and inter-disciplinary 
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