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Three Case Studies in Imaging Science
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Image restoration problems

Energy
0-40 keV
4096 .
channels

Light field microscopy for

Technical study of Old Masters paintings | neuroscience
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Lordon Motivation: Computational Imaging

Digital World

The complexity of modern imaging
workflows calls for a rethink of imaging as
an integrated sensing and inference model.

Seeing imaging as a whole is the domain of
Computational Imaging

Key in computational imagingisthe 7777777777 Computational |~~~

development of the interplay between

physical and learned models

* Model-based approaches more
interpretable and predictable, can
reduce complexity

« Data-driven approaches can handle
more complex settings Analogue world

Imaging
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Plato: models, priors

Need to find the right Aristotle: data

balance between
data and prior models
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Model-based Deep Learning

* Ininverse problems one looks for the right trade-off between a fidelity term and a prior

* % =min|lH() = ylI* + 2p(x)
prior

* Models/physics can help with H and sometimes with p(x)

« Two key approaches to embed systematically priors and models into deep neural network
architectures:
* Plug-and-play approach - use neural networks as regularizers
« Deep Unfolding > embed models and priors in the network architecture
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* % =min||Hx = y|I* + p(x)
X
prior

¢« X= rgclivnIIHx —ylZ+plv) st x=v
« Turn the constraint into a penalty: ¥ = n}rgivnIIHx —ylIZ + p(v) + Bllx — v||?

» Solve by alternating between x and v

 Least-square: £ = min||Hx — y||? + B]lx — v||?
q X I vl Al | Use Deep Learning for

« Adenoiser: ¥ = minp(v) + B]|x — v||?
v

* Venkatakrisnhan et al. Plug-and-play priors for model-based reconstruction, GlobalSip 2013
« Kamilov et al, Plug-and-Play Methods for Integrating Physical and Learned Models in Computational Imaging IEEE Signal Processing Magazine, 2023
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» Wavelets provide sparse representations of piecewise smooth signals.
» This is why they have been successfully used in many imaging applications

Figure: Cameraman is reconstructed using only 8% of the wavelet coefficients
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Imperial College Implementation of the 2-D Wavelet
Transform
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Coarse Version

T~

Detail Coefficients
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< Principles of wavelet denoising:

b
yﬂ y0
z y DWT |— % — Denoising [— 7’ IDWT %—+£
B o ] 37

Wavelet transform

* Multi-resolution analysis

« Perfect reconstruction

* Noise is uniformly spread through the coefficients

« Image information is concentrated on small number of large coefficients

Denoising
« Element-wise thresholding, e.g. soft-thresholding
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1-D Example
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- Bijective (invertible) function approximators that have a forward mapping

X Y

Fyp:R* > R .- D

X = Z 2. » B

N N 3. #.C

« and inverse mapping ) R
Fg':Rl > R?

A bijective function (or
Z P X invertible function)
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< INNs are bijective function approximators

Data space X Latent space Z

Inference

L~ px g @ t f =

2= /()
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* Invertible via lifting scheme like architectures
— Signal splitting
— Alternate prediction and update

X —{Split _p U
_ d=X0—P(Xe) x0=d+P(Xe)
Spllt—b{szx(g_l_u(d) xe=s—U(d) =» Merge

Forward pass Backward pass
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The wavelet transform can be implemented using the lifting scheme

Xo

-
| e

X — Split P

I
U
| r @

Xe

. d=X0—P(Xe) xO:d+P(xe)
Spm_’{s=xe+U(d) Xe=S—U(d) —> Merge

Forward pass Backward pass

The predictor (P) predicts the odd samples using the even, the update (U) uses the
prediction error to smooth the even samples
* Predictor/update are fixed

* The scheme is perfectly invertible

|. Daubechies and W. Sweldens, “Factoring Wavelet Transforms into lifting Steps” 1997
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« Can we learn a wavelet-like non-linear sparsifying transform?

Xo

-
| N

I
X —5plit _p U
L 5
, d= x,— P(x,) X, =d+ P(x,)
Split M
i _’{s=xe+U(d) Xe=s-U(d) — V¢
Forward pass Backward pass

* Approach:
» convert the P/U operators into two deep networks and learn them
* Use denoising as the bottleneck to impose sparsity
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« Can we learn a wavelet-like non-linear sparsifying transform?
Detail part
) /) R
Y % '
5| 5| 8| s
E % § 4:5 EEn
2 2| B =
a =) a =)
Wavelet AN pan -
(N N A
Coarse part
* Approach:

» convert the P/U operators into two deep networks and learn them
* Use denoising as the bottleneck to impose sparsity
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» To make sure P acts as a sparsifying

predictor: il
* Train the network with ,4 \: .
noisy/noiseless image pairs Noisy image , -
« Add a denoising network on the Denoising
details Network
—_—
< -~
LINN
(backward)

Denoised image
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Denoising
Network

Denoising

Noisy image (forward) (forward)
l l Network

(backward) (backward)
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Denoising:

38.10dB ' 29.38dB 26.91dB | 24.12dB | 23.11dB | 22.23dB - 21.49dB

EEEEEEEEEEEEEEEEEEEEEEE—————
J. Huang and P.L. Dragotti, “WINNet: Wavelet-inspired Invertible Network for Image Denoising”, IEEE Trans. on Image Proc., 2022
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Deconvolution:

<& —o—xk —e-zk

1 2 3 4 5 6 7 8
Iteration

J. Huang and P.L. Dragotti, “WINNet: Wavelet-inspired Invertible Network for Image Denoising”, IEEE Trans. on Image Proc., 2022
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* X =min|lH(x) - ylI* + 2p(x)

prior

» Impose consistency using the forward part of the INN
* Impose the prior using diffusion models

* lterate
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2nd-level WINNg 2nd-level WINN,

1st-level WINNg
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Ground Truth Degraded Reconstructed
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Ground Truth Degraded Reconstructed
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* Invertible Neural Networks are an interesting new concept

» Designing INN using wavelets/lifting leads to more interpretable and
simpler architectures

« Good generalization ability

» Potential for further developments by combining INNs with diffusion
models
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y
Explicit embedding of priors and constraints in deep networks T
h(-)
‘xk T,
y
— » X1 Xy
O O P 50 -1 £O

7'

y

Iterative algorithm with x

: Unfolded version of the iterative algorithm with
as input and I as output

learnable parameters

Need to re-synthesize the input, if self-supervised




imperial College  gpharsity as the model for deep unfolding

« The dictionary is usually learned

\
J

A (1) A ’IIIIIIIIIIIIIIIIIIIIIIII===\
T e e
IIIIIIIIIIIIIIIIIIIIIIIIIII

o

[
[

K




Imperial Coll '
imperial College Deep Unfolding Strategy

* The sparse vector a can be found using ISTA: a;, = §;, (ax—1 + DI(x — D, ay_q1)

\ 4

D BN
ak_l N SAk ak
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O Solving by ISTA algorithm through unfolding:

X ——| Mo P P a
ap = Sy, (ax—1 + DI (x — D,ay_,)) w==) ™

:’q Py Dy || P

Layer 1 Layer k

* Gregor Karol and LeCunYann, “Learning fast approximations of sparse coding ”, Proceedings of the 27th International
Conference on International Conference on Machine Learning, 2010

* Y. Eldar et al, “Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing”, IEEE Signal
Processing Magazine, 2021
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Goal: we want to separate the two x-ray
images

Approach:

« Use the visible RGB image as side
information (x-ray visible similar to
RGB image)

. Exclusion loss: the “contours” of the
two x-ray images should be as
different as possible

Visible X-ray

Francisco de Goya, Dona Isabel de Porcel (NG1473), before 1805. Oil on canvas, Images © The National Gallery



imperial College X-ray Separation — Proposed Sparsity Model

k=1 k=1
K K
Tis = g QrsHz16) |T= E B * (21,6 + 22,k),

* The visible image and the two separated X-
ray images have a sparse representation in
proper dictionaries

*+ RGB image and visible X-ray share the
same sparse representation

* The two X-rays x;, x, share the same
dictionary

« The measured X-ray is x = x; + x,

Visible X-ray

Francisco de Goya, Dona Isabel de Porcel (NG1473), before 1805. Oil on canvas, Images © The National Gallery
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*  Given the reconstructed X-ray images x4, x,, we
expect that their edges are as different as possible
we therefore add an “exclusion term” in the

optimization
min | — @+ y, — ¥y, |7
Y1:Y2,21,k,22,k

K

+7illys = Y O 21kl 7
k=1
K 4

+7allys — > O x 2okl T
k=1

3
+’YZ [71,s — P * yl”%«“

s=1

K K
+A\1 Z |21kl + A2 Z 22,%1
k=1 k=1

, |
+ ) Hill(Wixy,) © (Wixys)lh, Visible X-ray
=1
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through unfolding

One Layer of the Network

The sparsity model and the exclusion constraint leads to an iterative optimization method which leads to a network
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W. Pu et al “Mixed x-ray image separation for artworks with concealed designs”, IEEE Trans. on Image Processing, 2022
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» Macro X-ray provides volumetric data and the locations of the
pulses in the energy direction are related to the chemical
elements present in the painting.

* This potentially allows us to create maps that show the
distribution of different chemical elements

(&)

o 60 — XRF spectrum

a

S 40

Q

(&)

320

0

e

o Q e Al Energy
0 0.5 1 1.5 2 2.5 3 3.5 0-40 keV

Energy (eV) %<10% 4096
channels

Images © The National Gallery, London
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Cu K-alpha -- quantity map
p—

Iron

' Lead

100

Our XRF

Deconvolution

60

Algorithm

40

20

Vincent van Gogh, “Sunflowers (NG3863)”, © The National Gallery, London.
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Leonardo da Vinci’'s “The Virgin of the ,’/
Rocks” e

Highlighted is the region of an XRF dataset collected on the painting with an M6
Bruker JETSTREAM instrument (30 W Rh anode at 50 kV and 600 pA, 60 mm?2 Si drift
detector, and data collected with 350 um beam and pixel size and 10 ms dwell time).

EEEEEEEEEEEEEEEEEEEEEEEEEE———
Leonardo da Vinci, “The Virgin of the Rocks (NG1093),” about 1491/2-9 and 1506-8, oil on poplar, 189.5 x 120 cm, The National 39
Gallery, London.
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Zn confidence map Zn quantity map
-




S. Yan, J.-J. Huang, N. Daly, C. Higgitt, and P. L. Dragotti, “When de Prony Met Leonardo: An Automatic Algorithm for Chemical
Element Extraction in Macro X-ray Fluorescence Data”, IEEE Transactions on Computational Imaging, vol.7, 2021.
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* Goal of Neuroscience: to study how
information is processed in the brain

* Neurons communicate through pulses called
Action Potentials (AP)

* Need to measure in-vivo the activity of large
populations of neurons at cellular level
resolution

« Two-photon microscopy combined with right
indicators is the most promising technology
to achieve that
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London Two-Photon Microscopy

Fluorescent sensors within tissues

Highly localized laser excites fluorescence Point scanning (2PLSM)
from sensors
Photons emitted from tissue are collected /:, Axial
Focal spot sequentially scanned across Scan
samples to form image y

Two-photon microscopes in raster scan
modality can go deep in the tissue but are
slow
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* In order to speed up acquisition one can change the illumination strategy
«  This mitigates the issue but does not fix it
* Issue with scattering

Point detector Camera sensor Camera sensor

= A A

T
Pl
% yd ‘
Z y zZ y V Z y ,,,,, v
X X X
Point illumination Line illumination Plane (light-sheet)
illumination
Excitation —> Scan direction
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Native Image Plane
Uxp)

Native Object Plane Fourier Plane
U,Gp) Us(x.p)
Light-Field Microscopy (LFM) is a high- : |
speed imaging technique that uses a 0’“«“"\/
simple modification of a standard '
microscope to capture a 3D image of an
entire volume in a single camera snapshot gealpoint |

source at p

—
fob] f;?bj fa fu __)]sdens ‘E

Back Mictol/e-ns Image

Objective Aperture Tube Lens Array Sensor

(Telecentric Stop)
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Light-field Microscopy and EPI

London
Native Object Plane Fourier Plane Native Image Sensor Light-field PSF Eni-polar Plane I
(a) Camera (b) U,(x,p) U/x,p) Plane Uy(x,p) Plane  (image space) pl-l(al;)he;rs P :;aecer)’ﬂage
Sensor ! Objective Tube Lens
+x

6,(6,)

1:1 Relay lens

i
ideal point :
i

‘ (Dt
Microlens source at p - - . . . <
Array [ S ——— j’obj fohj B ack .ft[ .f![ J fMLA X(y)
Emission | Aperture  Microlens Array ]
i - Em 5
1

LED Dichroic
! mirror

Excitation beam

x(y)

Objective

______ 4 : 3 x3)
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/ Point detector \ Camera sensor Camera sensor / Camera sensor \
Microlens
array =
A
“+ oy R Z 2Ly Y P P ——
X X X X
Point illumination Line illumination Plane (light-sheet) Volume (wide-field)

illumination \ illumination /
\o Excitation 7)—> Scan direction

Key insight: use the 2P microscope for high-resolution structural information and the LFM for monitoring the
activity of neurons.
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Light-field Microscopy

Challenge: given a sequence of lightfields (2-D signals), need to reconstruct a sequence of
volumes (3-D+t)

Native Object Plane Fourier Plane Native Image
U x.p) UAx.p) Plane U(x,p)
! Objective Tube Lens :
+x i
i
......... S | e —, o
i
i |
. , - « :
" Joy Jobj Back [t S f./fw.a

2D Measured LF image

3D Input ¢—— Computational PR

Algorithm
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* Challenges
» Scattering induces blur, making
inversion more challenging
» Lack of ground-truth data for learning

* Opportunities
* Forward model structured and linear
» Data is sparse (neurons fire rarely
and are localized in space) 2.DLF
* Occlusion can be ignored

Volume
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London Forward Model

* Forward model is linear which means y = Hx

* H is estimated using wave-optics

- For each depth, H is block-circulant : e
(periodically shift invariant) and can be - z=0| |[|Objective !
modelled with a filter-bank o I

* The entire forward model can be
modelled using a linear convolutional
network with known parameters (given
by the wave-optics model)

Tube Lens
Microlens!Arra

=2

o

o
—

—
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Data is sparse (neurons fire rarely and are localized in space)

Solve min(|ly — Hx||? + ||x]|;) s.tx =0
X

This leads to the following iteration:

Xr+1 = ReLU(x, — HTHx), + HTy + 1)

Approach: Convert the iteration in a deep neural network using the unfolding technique




imperial College  Neural network for volume reconstruction

Convert the iteration in a deep neural network using the unfolding technique

x**t1 = ReLU(x* — HTHx* + HTy + 1)

9(;0)
LISTA
~ Ao
?C y o ~
oc T T — 5
W o ey |k
y — hOT
Layer1 13

l l
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« Training, in this context, is difficult due to lack of ground-truth data
» Our approach: semi supervised learning
« Small ground truth dataset
» Adversarial network for adversarial loss
» Light-field loss based on re-synthesizing
light-field from reconstructed volume

y Thy
- 0 Jur 10

v
S
-
N
v

Critic
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Structural

LF z-stack
b"’Q
(TdTomato) /‘\o'
Functlonal
LF Sequence
&
(JGCAMPSH) &
&
Y

Structural or |
Functional LF

Training of the neural network

(a) Training

Semi-supervised %,
Learning “

53-depths
3D reconstruction

(b) Testing

LISTA based

Two-photon
z-stack

(&

(TdTomato)

Reconstructlon

s Temporal

699 \ L Evolution




Imperial College Results — Structural Data
London

PSNR:23.18 PSNR:25.10 PSNR:33.80
SSIM:0.420 SSIM:0.525 SSIM:0.809

Ground-truth ISRA ADMM New method (0.3s to
reconstruct one volume)

H. Verinaz et al. "Physics-based Deep Learning for Imaging Neuronal Activity via Two-photon and Light-field
Microscopy”, |IEEE Trans. on Computational Imaging, 2023.
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London

f:L;:»fw‘ g T L |

L, — I""\ N

Three brain samples are shown in parts (a) b) and

-

(b)
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» Cross fertilization between model-based approaches and deep
learning is fruitful
* Models and priors can reduce complexity of a deep network and
can lead to better results
« Some computational approaches are transferable

« Computational Imaging:
e jsfun &,
 is inter-disciplinary,
 is the right way to handle ‘big data’: joint sensing, representation,
analysis and inference
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Thank you!
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