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Deep Neural Networks achieves state-of-the-art performance in many imaging tasks

Fundamental questions:
— Is there a systematic way to design the architecture of a deep neural networks?
— Is there a systematic way to design interpretable neural networks

Personal view: in inverse imaging problems interpretable deep neural networks with
more predictable performances can only be achieved by combining model-based
solvers with learned models.
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* Invertible Neural Networks and Wavelets
— What are invertible Neural Networks (INN)?
— Lifting Scheme and INN
— Wavelet-like INN for denoising and deblurring

« Computational Imaging
— Light-field Microscopy for neuroscience
— Modelling of the image formation process
— Model-based deep networks for volume reconstruction

* Conclusions
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- Bijective (invertible) function approximators that have a forward mapping
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< INNs are bijective function approximators

Data space X Latent space Z

Inference
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* Generative modeling
— Tractable Jacobian, allows explicit computation of posterior probability
— Normalizing flows
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Kingma, Diederik P., and Prafulla Dhariwal. “Glow: Generative Flow with Invertible 1 X1 Convolutions.” arXiv preprint
arXiv:1807.03039 (2018).
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* Invertible via lifting scheme like architectures
— Signal splitting
— Alternate prediction and update

X —{Split _p U
_ d=X0—P(Xe) x0=d+P(Xe)
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Forward pass Backward pass
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« In the beginning there were Wavelets &
» Wavelets provide sparse representations of piecewise smooth images.

» This is why they have been successfully used in many application including
denoising

Figure: Cameraman is reconstructed using only 8% of the wavelet coefficients
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< Principles of wavelet denoising:

b
yﬂ y0
z y DWT |— % — Denoising [— 7’ IDWT %—+£
B o ] 37

Wavelet transform

* Multi-resolution analysis

« Perfect reconstruction

* Noise is uniformly spread through the coefficients

« Image information is concentrated on small number of large coefficients

Denoising
« Element-wise thresholding, e.g. soft-thresholding
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1-D Example
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«  Sparsity constraints in the wavelet domain (or in another domain) can also be used as a regularizers
for different applications, e.g., deconvolution

* lterative shrinkage:
— min(|ly — HW 1a||? + 1||a]|;) where vy is the blurred image and x = W™ 'a is the target image
(24

— o =Sy (e + WH'(y — HW 1))
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The wavelet transform can be implemented using the lifting scheme
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Spm_’{s=xe+U(d) Xe=S—U(d) —> Merge

Forward pass Backward pass

The predictor (P) predicts the odd samples using the even, the update (U) uses the
prediction error to smooth the even samples
* Predictor/update are fixed

* The scheme is perfectly invertible

|. Daubechies and W. Sweldens, “Factoring Wavelet Transforms into lifting Steps” 1997
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« Can we learn a wavelet-like non-linear sparsifying transform?
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* Approach:
» convert the P/U operators into two deep networks and learn them
* Use denoising as the bottleneck to impose sparsity
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« Can we learn a wavelet-like non-linear sparsifying transform?
Detail part
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* Approach:

» convert the P/U operators into two deep networks and learn them
* Use denoising as the bottleneck to impose sparsity
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» To make sure P acts as a sparsifying

predictor: il
* Train the network with ,4 \: .
noisy/noiseless image pairs Noisy image , -
« Add a denoising network on the Denoising
details Network
—_—
< -~
LINN
(backward)

Denoised image
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« Training with noiseless/noisy
pairs leads to a sparsifying
transform

» Each piece of the network is
interpretable

» As for wavelets, we can now
use the INN for e.g.,
denoising or deconvolution



Imperial College Denoising - Overall Method
London

Denoising
Network

Denoising

Noisy image (forward) (forward)
l l Network

(backward) (backward)

v P
4 S
1] &2
2 e
W 2 H

- -

> >

I




Imperial College Denoising

London

,,,,,,,, 1 1
03 05

0 0
05 -0.5

: 4 L 1

(588) Input noisy image (o0 = (b) zé(l) before denoise. (d) zGIl (3) before denoise.
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(e) The denoised image (f) zé(l) after denoise. (2) z£(2) after denoise. (h) zé (3) after denoise.
(PSNR=26.75 dB).
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Denoising:

38.10dB 29.38dB 26.91dB o 2412dB 2311dB 2223dB 21.49dB
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Deconvolution:

Iteration
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* Invertible Neural Networks is an interesting new concept

» Designing INN using wavelets/lifting leads to a more interpretable
network

« Good generalization ability
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Computational Imaging

Digital World

« The revolution in sensing, with the emergence of
many new sensing and imaging techniques,
offers the possibility of gaining unprecedented
access to the physical world

* In order to fully exploit these advances, it is
necessary to rethink imaging as an integrated --------+7- Computational |~~~ 77777
sensing and inference model frasing

 Integration of physical and learned models is key

Analogue world
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* Goal of Neuroscience: to study how
information is processed in the brain

* Neurons communicate through pulses called
Action Potentials (AP)

* Need to measure in-vivo the activity of large
populations of neurons at cellular level
resolution

« Two-photon microscopy combined with right
indicators is the most promising technology
to achieve that
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Fluorescent sensors within tissues

Highly localized laser excites fluorescence Point scanning (2PLSM)

from sensors

Photons emitted from tissue are collected /; Axial
Focal spot sequentially scanned across Scan

samples to form image 4




Imperial College

London Two-Photon Microscopy

Fluorescent sensors within tissues

Highly localized laser excites fluorescence No scattr Soatter Nosesten seater
¢
from sensors B

Focal spot sequentially scanned across
samples to form image

Two-photon microscopes in raster scan
modality can go deep in the tissue but are
slow

Photons emitted from tissue are collected Y

T

Excitation
Fluorescence
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* In order to speed up acquisition one can change the illumination strategy
«  This mitigates the issue but does not fix it
* Issue with scattering

Point detector Camera sensor Camera sensor
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% yd ‘
Z y zZ y V Z y ,,,,, v
X X X
Point illumination Line illumination Plane (light-sheet)
illumination
Excitation —> Scan direction
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Native Image Plane
Uxp)

Native Object Plane Fourier Plane
U,Gp) Us(x.p)
Light-Field Microscopy (LFM) is a high- : |
speed imaging technique that uses a 0’“«“"\/
simple modification of a standard '
microscope to capture a 3D image of an
entire volume in a single camera snapshot gealpoint |

source at p
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Light-field Microscopy and EPI

London
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Point detector Camera sensor Camera sensor Camera sensor

Microlens

array <=
A
“ oy 2oy Zy y Y z| [
X X X X
Point illumination Line illumination Plane (light-sheet) Volume (wide-field)

illumination illumination
« Excitation —>» Scan direction
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Light-field Microscopy

Challenge: given a sequence of lightfields (2-D signals), need to reconstruct a sequence of
volumes (3-D+t)
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* Challenges
» Scattering induces blur, making
inversion more challenging
» Lack of ground-truth data for learning

* Opportunities
* Forward model structured and linear
» Data is sparse (neurons fire rarely
and are localized in space) 2.DLF
* Occlusion can be ignored

Volume
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London Forward Model

* Forward model is linear which means y = Hx

* H is estimated using wave-optics

- For each depth, H is block-circulant : e
(periodically shift invariant) and can be - z=0| |[|Objective !
modelled with a filter-bank o I

* The entire forward model can be
modelled using a linear convolutional
network with known parameters (given
by the wave-optics model)
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» Data is sparse (neurons fire rarely and are localized in space)

« Solve min(||y — Hx||? + ||x||;) stx =0
X

» This leads to the following iteration:
Xps1 = ReLU(x, — HTHx,, + HTy + 1)

» Approach: Convert the iteration in a deep neural network using the unfolding technique

Gregor Karol and LeCunYann, “Learning fast approximations of sparse coding ”, Proceedings of the 27th International Conference
on International Conference on Machine Learning, 2010
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Unfolding Strategy

Explicit embedding of priors and constraints in deep networks

Xk
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v

fC)

lterative algorithm with y
as input and x as output
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Unfolded version of the iterative algorithm with
learnable parameters

Need to re-synthesize the input, if self-supervised

v
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Convert the iteration in a deep neural network using the unfolding technique

x**t1 = ReLU(x* — HTHx* + HTy + 1)
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« Training, in this context, is difficult due to lack of ground-truth data
» Our approach: semi supervised learning
« Small ground truth dataset
» Adversarial network for adversarial loss
» Light-field loss based on re-synthesizing
light-field from reconstructed volume
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Ground-truth

ISRA

PSNR:23.18
SSIM:0.420

PSNR:25.10
SSIM:0.525

ADMM

PSNR:33.80
SSIM:0.809

New method (0.3s to
reconstruct one volume)
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» Cross fertilization between sparse representation and deep learning
is fruitful

« Computational Imaging:
 Light field microscopy can have an impact in neuroscience
because of the crucial trade-off between resolution in time and
space

» Understanding the physics of the problem is crucial

* Learning will labelled data is challenging
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Thank you!




Imperial College

London Related Publications

> J. Huang and P.L. Dragotti, “LINN: Lifting Inspired Invertible Neural Network for Image Denoising”, in proc. of
29th European Signal Processing Conference, EUSIPCO 2021

» J. Huang and P.L. Dragotti, “WINNet: Wavelet-inspired Invertible Network for Image Denoising”, IEEE
Transactions on Image Processing, 2022

> P. Song, H. Verinaz Jadan, C. Howe, P. Quicke, A. Foust and P.L. Dragotti, Light-field microscopy for optical
imaging of neuronal activity, IEEE Signal Processing Magazine, 2022.

> H. Verinaz et al. "Physics-based Deep Learning for Imaging Neuronal Activity via Two-photon and Light-field
Microscopy, submitted to IEEE Trans. on Computational Imaging, 2022,




