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Motivation: A Theory for DL

• Deep Neural Networks achieves state-of-the-art performance in many imaging tasks

• Fundamental questions: 
– Is there  a systematic way to design the architecture of a deep neural networks?
– Is there a systematic way to design interpretable neural networks

• Personal view: in inverse imaging problems interpretable deep neural networks with 
more predictable performances can only be achieved by combining model-based 
solvers with learned models. 
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• Invertible Neural Networks and Wavelets
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– Lifting Scheme and INN
– Wavelet-like INN for denoising and deblurring
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– Light-field Microscopy for neuroscience
– Modelling of the image formation process
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What are Invertible Neural Networks?

• Bijective (invertible) function approximators that have a forward mapping 

• and inverse mapping

𝐹!: ℝ" → ℝ#

𝑥 ↦ 𝑧

𝐹!
$%: ℝ# → ℝ"

𝑧 ↦ 𝑥
A bijective function (or 

invertible function)



What are Invertible Neural Networks?

• INNs are bijective function approximators



Kingma, Diederik P., and Prafulla Dhariwal. “Glow: Generative Flow with Invertible 1×1 Convolutions.” arXiv preprint 
arXiv:1807.03039 (2018).

Why Invertible Neural Networks?

• Generative modeling
– Tractable Jacobian, allows explicit computation of posterior probability 
– Normalizing flows



How to Achieve Invertibility?

• Invertible via lifting scheme like architectures
– Signal splitting 
– Alternate prediction and update

!𝑑 = 𝑥! − 𝑃 𝑥"
𝑠 = 𝑥" + 𝑈 𝑑

Forward pass

Split !𝑥! = 𝑑 + 𝑃 𝑥"
𝑥" = 𝑠 − 𝑈 𝑑

Backward pass

Merge



Wavelets and Invertible Neural Networks 

• In the beginning there were Wavelets 😄
• Wavelets  provide sparse  representations of piecewise smooth images.  
• This is why they have been successfully used  in many application including 

denoising 

Figure:  Cameraman  is reconstructed using only 8% of the wavelet coefficients



Wavelet-based Denoising

• Principles of wavelet denoising:

Wavelet transform
• Multi-resolution analysis
• Perfect reconstruction 
• Noise is uniformly spread through the coefficients
• Image information is concentrated on small number of large coefficients

Denoising
• Element-wise thresholding, e.g. soft-thresholding



Wavelet-based Denoising
1-D Example

Smooth parts cleaned without smearing edges



Wavelets for Deconvolution

• Sparsity constraints in the wavelet domain (or in another domain) can also be used as a regularizers
for different applications, e.g., deconvolution

• Iterative shrinkage:   
– min

!
( 𝒚 − 𝑯𝑾"#𝜶 $ + 𝜆 𝜶 #) where 𝒚 is the blurred image and 𝒙 = 𝑾"#𝜶 is the target image

– 𝜶% = 𝑆&(𝜶%"# +𝑾𝑯' 𝒚 − 𝑯𝑾"#𝜶%"# )



Wavelets and INN

• The wavelet transform can be implemented using the lifting scheme

• The predictor (P) predicts the odd samples using the even, the update (U) uses the 
prediction error to smooth the even samples

• Predictor/update are fixed
• The scheme is perfectly invertible 

How to Achieve Invertibility? (1)

• Invertible via lifting scheme like architectures
• Signal splitting 
• Alternative prediction and update

6

ቊ𝑑 = 𝑥𝑜 − 𝑃 𝑥𝑒
𝑠 = 𝑥𝑒 + 𝑈 𝑑

Forward pass

Split ቊ𝑥𝑜 = 𝑑 + 𝑃 𝑥𝑒
𝑥𝑒 = 𝑠 − 𝑈 𝑑

Backward pass

Merge

I. Daubechies and W. Sweldens, “Factoring Wavelet Transforms into lifting Steps” 1997



• Can we learn a wavelet-like non-linear sparsifying transform?

• Approach: 
• convert the P/U operators into two deep networks and learn them
• Use denoising as the bottleneck to impose sparsity 

How to Achieve Invertibility? (1)

• Invertible via lifting scheme like architectures
• Signal splitting 
• Alternative prediction and update

6

ቊ𝑑 = 𝑥𝑜 − 𝑃 𝑥𝑒
𝑠 = 𝑥𝑒 + 𝑈 𝑑

Forward pass

Split ቊ𝑥𝑜 = 𝑑 + 𝑃 𝑥𝑒
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Wavelets and INN



• Can we learn a wavelet-like non-linear sparsifying transform?

• Approach: 
• convert the P/U operators into two deep networks and learn them
• Use denoising as the bottleneck to impose sparsity 

Lifting Inspired Invertible Neural Network for 
Image Denoising

• Predictor/updater networks
• There are 𝐼 pairs of predictor/updater networks

31

Wavelets and INN



• To make sure P acts as a sparsifying
predictor: 

• Train the network with 
noisy/noiseless image pairs

• Add a denoising network on the 
details

Wavelets and INN



Signal Decomposition

𝑐#

𝑐$

𝑑#

𝑑$

• Training with noiseless/noisy 
pairs leads to a sparsifying
transform

• Each piece of the network is 
interpretable

• As for wavelets, we can now 
use the INN for e.g., 
denoising or deconvolution



Denoising - Overall Method

Denoising 
Network

Noisy image

Denoised image

Denoising 
Network

(forward) (forward)

(backward)

LINN1 LINNk

…

(backward)

…



Denoising

Denoising



Results

Denoising:



Image Deblurring

⊗= +



Results

Deconvolution:



First Set of Conclusions

• Invertible Neural Networks is an interesting new concept

• Designing INN using wavelets/lifting leads to a more interpretable 
network

• Good generalization ability



Physics

Computation

Mathematics

Computational 
Imaging

Digital World

Analogue world

Computational Imaging

• The revolution in sensing, with the emergence of 
many new sensing and imaging techniques, 
offers the possibility of gaining unprecedented 
access to the physical world

• In order to fully exploit these advances, it is 
necessary to rethink imaging as an integrated 
sensing and inference model

• Integration of physical and learned models is key



Two-Photon Microscopy for Neuroscience

• Goal of Neuroscience: to study how 
information is processed in the brain

• Neurons  communicate through pulses  called 
Action Potentials (AP)

• Need to measure in-vivo the activity of large 
populations of neurons at cellular level 
resolution

• Two-photon microscopy combined with right 
indicators is the most promising technology 
to achieve that 



Two-Photon Microscopy

• Fluorescent sensors within tissues 
• Highly localized laser excites fluorescence 

from sensors
• Photons emitted from tissue are collected
• Focal spot sequentially scanned across 

samples to form image

A. J. FOUST, Fast Light Field Neural Circuit Readout, Page 5
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Figure 2: A: optical system schematic; B, scanning modes; C, experiment work flow

fluorescencephotonsfromanextendeddepthoffield,andtodeducethepositionfromwhichtheyoriginatebasedon
fluorescence amplitude and incidence angle [9], [10]. In contrast with previous light field implementations,
we will excite fluorescence in two-photon mode with an infrared wavelength that penetrates deeper
into scattering mammalian brain than the visible wavelengths used to excite fluorescence in one-
photon mode. Unlike traditional 2PLSM, here instead of focusing the laser beam to a diffraction-limited
spot, our goal is to implement wide-field excitation for light field volume acquisition. Due to two-photon’s
squared dependence of fluorescence on excitation intensity, wide-field two-photon excitation requires high pulse
energy and decreased repetition rates to excite fluorescence efficiently throughout the volume while keeping the
average power low enough to avoid tissue heating. Exciting two-photon fluorescence throughout our 200-micron-
diameter cross-sectional area requires approximately 10 microjoules of pulse energy for a 660 kHz repetition rate.
We have selected the Coherent Opera-F Optical Parametric Amplifier pumped by the Monaco Amplifier as this
combination provides pulse energies in the 10 microjoule range of near infrared wavelengths (650 - 900 nm, 1035
nm, and 1200 to 2500 nm). The flexibility to tune the laser’s wavelength will enable us evaluate different calcium
indicators in terms of their signal-to-noise, temporal fidelity, and depth penetration during WP2.

Path (C) will serve as a control by exciting calcium-indicator fluorescence in axially-confined “pancakes” by
replacing the mirror with a reflective ruled diffraction grating [3]. In this configuration, two-photon excitation
will be temporally focused to a plane 5 microns thick (inset Figure 2A). The “pancake” plane will by scanned
remotelybyanelectrically tunable lens (ETL)conjugate to theobjectivebackaperture. Wewill use the“pancake”
excitationmode to evaluatehowwhole-volume2PELF illumination compares to the spatial specificity of selected-
plane excitation.

We will assess 2PELF’s axial and lateral spatial resolution as a function of depth by imaging 10-micron
red fluorescent beads seeded in agarose either weakly or strongly scattering (mean free path 200 microns, like
mammaliancortex [14]). Wewillfirst imagethebeadswithpath(A)toacquireahighresolution3Dreconstruction
ofbead location. Thenwewill acquire lightfieldswith thebeadsusingpath (C)andassess thefidelityandcontrast
with which 2PELF can resolve single beads and infer their position as a function of depth, scattering strength,
and bead concentration. We will compare the depth at which single beads can be resolved between 2PELF and
“pancake mode” as a function of agarose scattering coefficient and bead density.

Milestones/deliverables: (a) Four optical paths aligned and parfocal (Month 6); (b) Fluorescent bead dis-
criminability quantified as a function of depth and scattering (Month 10). (c) Develop software for integrated
2PELF data acquisition and analysis (Month 12).



Two-Photon Microscopy

• Fluorescent sensors within tissues 
• Highly localized laser excites fluorescence 

from sensors
• Photons emitted from tissue are collected
• Focal spot sequentially scanned across 

samples to form image
• Two-photon microscopes in raster scan 

modality can go deep in the tissue but are 
slow



Two-Photon Microscopy

• In order to speed up acquisition one can change the illumination strategy
• This mitigates the issue but does not fix it 
• Issue with scattering



Light-field Microscopy

Light-Field Microscopy (LFM) is a high-
speed imaging technique that uses a 
simple modification of a standard 
microscope to capture a 3D image of an 
entire volume in a single camera snapshot



Light-field Microscopy and EPI



Light-field Microscopy and Illumination 
Strategies



2D Measured LF image

3D Input

2

Computational
Algorithm 

Light-field Microscopy
Challenge: given a sequence of lightfields (2-D signals), need to reconstruct a sequence of  
volumes (3-D+t)



Volume reconstruction from LF Data 

• Challenges
• Scattering induces blur, making 

inversion more challenging
• Lack of ground-truth data for learning

• Opportunities
• Forward model structured and linear
• Data is sparse (neurons fire rarely 

and are localized in space)
• Occlusion can be ignored

2-D LF 

Volume 



Forward Model

Microlens Array
Objective Tube Lens

𝑥
𝑧

LF Microscope

Image Sensor

NOP NIP

• Forward model is linear which means 𝒚 = 𝑯𝒙
• 𝑯 is estimated using wave-optics 
• For each depth, 𝑯 is block-circulant 

(periodically shift invariant) and can be 
modelled with a filter-bank 

• The entire forward model can be 
modelled using a linear convolutional 
network with known parameters (given 
by the wave-optics model)



Neural network for volume reconstruction 

• Data is sparse (neurons fire rarely and are localized in space)

• Solve min
(
( 𝑦 − 𝐻𝑥 $ + 𝑥 #) s.t 𝑥 ≥ 0

• This leads to the following iteration: 

𝑥%)# = 𝑅𝑒𝐿𝑈(𝑥% − 𝐻*𝐻𝑥% + 𝐻*𝑦 + 𝜆)

• Approach: Convert the iteration in a deep neural network using the unfolding technique

Gregor Karol and LeCunYann, “Learning fast approximations of sparse coding ”, Proceedings of the 27th International Conference 
on International Conference on Machine Learning, 2010



Unfolding Strategy

Explicit embedding of priors and constraints in deep networks

𝑓(⋅)

𝒙𝒌
𝒚

𝑓 (⋅) 𝑓 (⋅) 𝑓 (⋅)

𝒚

𝒙𝒌

Iterative algorithm with 𝒚
as input and 𝒙 as output

1 2 𝑘

Unfolded version of the iterative algorithm with 
learnable parameters

h (⋅)

1𝒚

Need to re-synthesize the input, if self-supervised

𝒙𝟏 𝒙𝟐



Neural network for volume reconstruction 
• Convert the iteration in a deep neural network using the unfolding technique 

𝑥%)# = 𝑅𝑒𝐿𝑈(𝑥% − 𝐻*𝐻𝑥% + 𝐻*𝑦 + 𝜆)
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Fig. 6. CNN architecture. Our reconstruction network g(·) is composed of (1)
a compression layer c(·), which is a linear convolutional layer with N ⇥N
input channels and V output channels and (2) a LISTA network. At each layer
of LISTA we use the architecture of the compress forward CNN h(·) shown
in Figure5 and the adjoint operator hT (·). The LISTA network is composed
of K layers.

each layer corresponds to one iteration of ISTA. Effectively,
each layer of LISTA implements the following step:

x
k+1 = T�(xk �H

T
1H2x

k +H3
T
y), (4)

where H1,H2 and H3 are matrices of same size and
structure as H. These matrices are the parameters of the
network that can be learned using a proper loss function.
Note that, contrary to [21], we do not fuse the product HT

1H2

into a single matrix since we want to keep the structure of
each factor. This version of LISTA uses the soft-thresholding
as the element-wise non-linearity due to the l1 constraint in
Equation (2). However, ISTA can be used with different types
of non-linearities related to the prior imposed, as explained in
[24]. For instance, replacing T� by a rectified linear unit (Relu)
imposes non-negativity, and replacing it with a ReLU with a
bias term imposes sparsity and non-negativity. In our case, x
is sparse and non-negative. Therefore, we propose a LISTA
network that uses a ReLU with a bias term as non-linearity:

x
k+1 = ReLU(xk �H

T
1
kHk

2x
k +H

T
3
k
y + �k), (5)

where �k is a learnable bias. Furthermore, the custom
{Hk

i }3i=1 for each unfolded iteration k gives the network more
capabilities without compromising its simplicity.

In many practical cases, the described LISTA network
cannot be used directly to solve the volume reconstruction
problem. The size and structure of the matrix H make it
computationally prohibitive to perform matrix multiplications
repeatedly. Therefore, we propose using the compressed for-
ward CNN h(·) proposed in Section IV-B to reduce the com-
putational complexity. The final architecture of our network
is, therefore, described as follows:

x
k+1 = ReLU(xk � hT

1
k
(hk

2(x
k)) + hT

3
k
(c(y)) + �k), (6)

where we have replaced matrices H
k
i in Equation (5) with the

linear mappings {hi}3i=1. The computation of all the {hi}3i=1

is determined by the architecture of the compressed forward
CNN derived from physics and explained in SectionIV-B. Note
that the structure of the adjoint operators (transpose) {hT

i }3i=1

in Equation (6) can be easily computed from the permutation
of the weights of h(·). Furthermore, the input of the network
is c(y) rather than y. The mapping c(·) is defined as a single
linear convolutional layer with N ⇥N input channels and V

(a)

(b)

Fig. 7. Training of our GAN architecture. In (a), we show how the LISTA
network g(·) is trained using a content loss and an adversarial loss computed
from a critic D(·). The content loss is computed using a few labelled data
pairs, unlabelled LF data, and the known forward model f(·). In (b), we show
the structure of the critic D(·) designed following typical techniques for 3D
GANs[25].

output channels and filters of unit size. By having V output
channels, c(·) is compatible with the input size of the operators
{hT

i }3i=1. For this compression step, we found unit-size filters
to be effective; however, filters of any size could be used. We
highlight that the coefficients of the compression layer c(·) are
learned together with LISTA. The end-to-end network g(·; ✓),
where ✓ represents the learnable parameters of the network, is
shown in Figure 6. If additional simplification is needed, some
convolutional layers in g(·) can be replaced by a cascade of
layers with a smaller filter size.

B. CNN Training

We learn the parameters ✓ of our LISTA network g(·; ✓) with
a proper loss function and a mixture of labelled and unlabelled
datasets. In our scenario, a labelled dataset comprises LF im-
ages and the corresponding 2P volumes. For many applications
in LFM, capturing a huge labelled dataset is too expensive or
even unfeasible. For instance, when studying the behavior of
neurons in mammalian tissue, capturing a clean 3D label is
challenging due to the scattering media. Furthermore, using
only synthetic data for training is problematic if noise is not
appropriately modelled.

In our setting, we propose acquiring a very small labelled
training dataset. We label neurons in a single brain sample
using TdTomato fluorophore. The TdTomato allows capturing
the static distribution of the neurons in space using both 2P
and LF modalities. The 2P raster scanning modality provides
the ground truth volume that can be paired with the LF images
acquired with the same fluorophore. Therefore, to train LISTA
we exploit the small labelled dataset, the large amount of
unpaired LF images, and the knowledge of the forward model.
The training loss is stated as follows:



Training of the neural network 
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bias term imposes sparsity and non-negativity. In our case, x
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network that uses a ReLU with a bias term as non-linearity:
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where �k is a learnable bias. Furthermore, the custom
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i }3i=1 for each unfolded iteration k gives the network more
capabilities without compromising its simplicity.

In many practical cases, the described LISTA network
cannot be used directly to solve the volume reconstruction
problem. The size and structure of the matrix H make it
computationally prohibitive to perform matrix multiplications
repeatedly. Therefore, we propose using the compressed for-
ward CNN h(·) proposed in Section IV-B to reduce the com-
putational complexity. The final architecture of our network
is, therefore, described as follows:
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in Equation (6) can be easily computed from the permutation
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Fig. 7. Training of our GAN architecture. In (a), we show how the LISTA
network g(·) is trained using a content loss and an adversarial loss computed
from a critic D(·). The content loss is computed using a few labelled data
pairs, unlabelled LF data, and the known forward model f(·). In (b), we show
the structure of the critic D(·) designed following typical techniques for 3D
GANs[25].

output channels and filters of unit size. By having V output
channels, c(·) is compatible with the input size of the operators
{hT

i }3i=1. For this compression step, we found unit-size filters
to be effective; however, filters of any size could be used. We
highlight that the coefficients of the compression layer c(·) are
learned together with LISTA. The end-to-end network g(·; ✓),
where ✓ represents the learnable parameters of the network, is
shown in Figure 6. If additional simplification is needed, some
convolutional layers in g(·) can be replaced by a cascade of
layers with a smaller filter size.

B. CNN Training

We learn the parameters ✓ of our LISTA network g(·; ✓) with
a proper loss function and a mixture of labelled and unlabelled
datasets. In our scenario, a labelled dataset comprises LF im-
ages and the corresponding 2P volumes. For many applications
in LFM, capturing a huge labelled dataset is too expensive or
even unfeasible. For instance, when studying the behavior of
neurons in mammalian tissue, capturing a clean 3D label is
challenging due to the scattering media. Furthermore, using
only synthetic data for training is problematic if noise is not
appropriately modelled.

In our setting, we propose acquiring a very small labelled
training dataset. We label neurons in a single brain sample
using TdTomato fluorophore. The TdTomato allows capturing
the static distribution of the neurons in space using both 2P
and LF modalities. The 2P raster scanning modality provides
the ground truth volume that can be paired with the LF images
acquired with the same fluorophore. Therefore, to train LISTA
we exploit the small labelled dataset, the large amount of
unpaired LF images, and the knowledge of the forward model.
The training loss is stated as follows:

• Training, in this context, is difficult due to lack of ground-truth data
• Our approach: semi supervised learning

• Small ground truth dataset
• Adversarial network for adversarial loss
• Light-field loss based on re-synthesizing 

light-field from reconstructed volume



Training of the neural network 



Results – Structural Data 
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Results – Functional Data 

Three brain samples are shown in parts (a), (b), and (c) 
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Conclusions

• Cross fertilization between sparse representation and deep learning 
is fruitful

• Computational Imaging:

• Light field microscopy can have an impact in neuroscience 
because of the crucial trade-off between resolution in time and 
space

• Understanding the physics of the problem is crucial

• Learning will labelled data is challenging   



Thank you!
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