

7 September 2023

Computational Imaging: Theory and Applications

Pier Luigi Dragotti

Imperial College London

Computational Imaging

Digital World

The complexity of modern imaging workflows call for a rethink imaging as an integrated sensing and inference model.

Seeing imaging as a whole is the domain of Computational Imaging

Imperial College Central Topics in Computational Imaging London

Sampling theory

- Sampling theory provides
 - the bridge between the analogue and digital domains
 - appropriate models for the signals and the acquisition devices
 - constructive reconstruction algorithms that can inspire the design of deep neural networks
 - performance bounds

Interplay between physical and learned models

- How to embed priors about the signal and the device in neural networks
 - Deep Unfolding

Imperial College Three Case Studies in Computational Imaging London

Event-Driven Cameras for energy efficient fast sensing¹ → *Time-based* Sampling → *End-to-End learning* using sampling and deep unfolding

Imperial College London Sensing based on Timing Information

- Energy-efficient sensing inspired by nature raises a fundamental representation question:
 - How can we embed information related to complex signals into the timing information of spikes?
 - Besides its theoretical implications, addressing this question will lead to new neuromorphic sensing devices

Videos from Inivation.com

Imperial College Bio-Inspired Energy Efficient Sensing

- Current sensing methods are energy inefficient especially when low-latency is needed.
- Example: Rainfall estimation

Imperial College Bio-Inspired Energy Efficient Sensing

Approach 2

• Only record the day when the bucket is full and then empty it

Imperial College Bio-Inspired Energy Efficient Sensing

Approach 2 maps analogue information into a time sequence and is used by nature (e.g., integrateand-fire neurons)

Time encoding appears in nature, as a mechanism used by neurons to represent sensory information as a sequence of action potentials, allowing them to process information **very** efficiently.

Imperial College Time-Encoding Machines

Integrate-and-fire System

A. A. Lazar and L. T. Toth, "Perfect recovery and sensitivity analysis of time encoded bandlimited signals," IEEE Trans. Circuits Syst. I, Oct. 2004.

- Reconstruction achieved by imposing iteratively:
 - Consistency constraint
 - Signal prior (e.g., bandlimited function) constraint

- Reconstruction achieved by imposing iteratively:
 - Consistency constraint
 - Signal prior (e.g., bandlimited function) constraint

• **Key result:** if the density of samples D≥1 then perfect reconstruction can be achieved (Aldroubi and Grochenig¹)

- **Key Issue 1**: In the case of uniform sampling the density is D = 1. This means that current TEMs are **less** energy efficient than uniform sampling!
- Key Issue 2: Cannot sample sparse (non-bandlimited) signals with the current methods.

¹A. Aldroubi and K, Grochenig, "Non-Uniform Sampling and Reconstruction in shift-invariant spaces" SIAM Review 2001

• For integrate-and-fire machines exact reconstruction proved here: A. A. Lazar and L. T. Toth, "Time encoding and perfect recovery of bandlimited signals", ICASSP 2003

See also: Gauntier-Vetterli-2014, Adam et al 2019,

Imperial College London Time-based Sampling of Sparse Signals

Signals:

• We consider sparse continuous-time signals like stream of pulses, piecewise constant or regular signals

Sensing Systems:

• We filter before using a TEM

Imperial College Integrate and Fire – Reconstruction of Pulses

Imperial College London Our approach for time decoding of signals

- Reconstruction of x(t) depends on the
 - sampling kernel $\varphi(t)$
 - the density of time instants $\{t_n\}$
- We achieve a sufficient density of output samples by imposing conditions on:
 - The trigger mark of the integrator (integrate-and-fire TEM).

Imperial College Integrate and Fire TEM

• Given the times $t_1, t_2, ..., t_n$, the amplitude values are

$$y_n = y(t_n) = \pm C_T = \int_{t_{n-1}}^{t_n} f(\tau) d\tau = \int_{t_{n-1}}^{t_n} \int x(\alpha) \varphi(\alpha - t) d\alpha d\tau.$$

Imperial College Integrate and Fire TEM

• Equivalently the output samples can be expressed as:

W

$$y(t_n) = \langle x(t), (\varphi * q_{\theta_n})(t - t_{n-1}) \rangle,$$

here $\theta_n = t_n - t_{n-1}$ and $q_{\theta_n}(t)$ is defined as:
 $q_{\theta_n}(t) = egin{cases} 1, & 0 \leq t \leq heta_n, \ 0, & otherwise. \end{cases}$

Imperial College Integrate and Fire TEM

- When $\varphi(t)$ is e.g., an E-spline, the equivalent kernel $(\varphi * q_{\theta_n})(t t_{n-1})$ is able to reproduce exponentials
- So trigger mark must guarantee enough samples in a short interval
- *Proposition:* when $C_T < \frac{A_{min}}{4\omega_0^2} \left(1 \cos\left(\frac{\omega_0 L}{2}\right)\right)$ then $t_1, t_2, t_3 \in \left[\tau_1, \tau_1 + \frac{L}{2}\right]$ and perfect reconstruction is possible

Imperial College Reproduction of Exponentials London

 $\sum_{n} c_{m,n} \varphi(n-t) \approx e^{j\omega_m t}$ n

Pulse shape

Reproduction of exponentials

Imperial College Reconstruction of an input Dirac from time-encoded information London

- The output samples are: $y(t_n) = \langle x(t), (\varphi * q_n)(t) \rangle = x_1 \varphi_n(\tau_1)$
- Since $\varphi_n(t) = a_{0,n}e^{\alpha_0 t} + a_{1,n}e^{\alpha_1 t}$, we find c_1, c_2, d_1, d_2 such that in $I_1 = [t_2 T, t_1]$: $c_1 \varphi_1(t) + c_2 \varphi_2(t) = e^{\alpha_0 t}$ $d_1 \varphi_1(t) + d_2 \varphi_2(t) = e^{\alpha_1 t}$
- We then use these coefficients to define the signal moments, in $I_1 = [t_2 T, t_1]$: $s_0 = c_1 y(t_1) + c_2 y(t_2) = x_1 [c_1 \varphi_1(\tau_1) + c_2 \varphi_2(\tau_1)] = x_1 e^{\alpha_0 \tau_1}$ $s_1 = d_1 y(t_1) + d_2 y(t_2) = x_1 [d_1 \varphi_1(\tau_1) + d_2 \varphi_2(\tau_1)] = x_1 e^{\alpha_1 \tau_1}$

Imperial College Integrate and Fire – Reconstruction of Pulses

Imperial College Energy Efficient Sampling -Results

If the distance *S* between discontinuities is on average S > (L - 1)T with *T* being the sampling period in uniform sparse sampling then the new time encoding framework² is **more efficient** than sparse sampling (lower sampling density

²R. Alexandru and P.L. Dragotti, Reconstructing Classes of Non-bandlimited Signals from Time Encoded Information, IEEE Trans. on Signal Processing, vol.68, 2020.

Imperial College Integrate and Fire and Neuromorphic Cameras London

Imperial College Integrate and Fire and Neuromorphic Cameras London

Imperial College Sensing Diversity for Neuromorphic Cameras London

• Key insight: design an end-to-end neural network where the acquisition

V2E

- process is part of the learned architecture
- · Key approach: each pixel behaves differently
- The network architecture for reconstruction is model-based

Imperial College Sensing Diversity for Neuromorphic Cameras London

• The network architecture for reconstruction is model-based: intensity and event frames share the same sparse representation

Imperial College Deep Unfolding Strategy

Explicit embedding of priors and constraints in deep networks

Iterative algorithm with y as input and x as output

Unfolded version of the iterative algorithm with learnable parameters

Ŷ

Need to re-synthesize the input, if self-supervised

Imperial College London

Dictionary Learning

- The network architecture for reconstruction is model-based: intensity and event frames share the same sparse representation
- The dictionary is usually learned

Imperial College Model of dependency between intensity and events

n m > nп m > n

Assumption: intensity and event frames share the same sparse representation

Imperial College Deep Unfolding Strategy London

- The network architecture for reconstruction is model-based: intensity and event frames share the same sparse representation Z_t
- The sparse vector can be found using ISTA: $Z_t^k = h_{\theta}(Z_t^{k-1} + D_k^T(X_t D_kZ_t^{K-1}))$

Imperial College Sensing Diversity for Neuromorphic Cameras London

• The network architecture for reconstruction is model-based: intensity and event frames share the same sparse representation

Imperial College Model-based reconstruction from events London fountain_02 spinning_umbrella bridge_lake_01 lake_03.

Imperial College Model-based reconstruction from events London

Imperial College Reconstruction using DU London

Imperial College Sensing Diversity for Neuromorphic Cameras London

- Key insight: design an end-to-end neural network where the acquisition process is part of the learned architecture
- Key approach: each pixel behaves differently
- The network architecture for reconstruction is model-based

V2E

Imperial College End-to-end learning - Results London

without sensing diversity

with sensing diversity

Imperial College **Event-driven systems – first set of conclusions** London

- Neuromorphic sensing systems inspire a new paradigm for sampling
- Sampling provides insights into the design of event-driven systems (end-to-end learning)
- Model-based deep learning leads to lighter and more universal architectures

Imperial College London Two-Photon Microscopy for Neuroscience

- Goal of Neuroscience: to study how information is processed in the brain
- Neurons communicate through pulses called Action Potentials (AP)
- Need to measure in-vivo the activity of large populations of neurons at cellular level resolution
- Two-photon microscopy combined with right indicators is the most promising technology to achieve that

Imperial College Two-Photon Microscopy

- Fluorescent sensors within tissues
- Highly localized laser excites fluorescence from sensors
- Photons emitted from tissue are collected
- Focal spot sequentially scanned across samples to form image
- Two-photon microscopes in raster scan modality can go deep in the tissue but are slow

Imperial College Two-Photon Microscopy

- In order to speed up acquisition one can change the illumination strategy
- This mitigates the issue but does not fix it
- Issue with scattering

Light-field Microscopy

Light-Field Microscopy (LFM) is a highspeed imaging technique that uses a simple modification of a standard microscope to capture a 3D image of an entire volume in a single camera snapshot

Imperial College Light-field Microscopy and EPI

Imperial College Light-field Microscopy and Illumination London Strategies

Key insight: use the 2P microscope for high-resolution structural information and the LFM for monitoring the activity of neurons.

Light-field Microscopy

Challenge: given a sequence of lightfields (2-D signals), need to reconstruct a sequence of volumes (3-D+t)

Imperial College Volume reconstruction from LF Data

Challenges

- Scattering induces blur, making inversion more challenging
- Lack of ground-truth data for learning

Opportunities

- Forward model structured and linear
- Data is sparse (neurons fire rarely and are localized in space)
- Occlusion can be ignored

Volume

Forward Model

- Forward model is linear which means y = Hx
 - *H* is estimated using wave-optics
 - For each depth, *H* is block-circulant (periodically shift invariant) and can be modelled with a filter-bank
 - The entire forward model can be modelled using a linear convolutional network with known parameters (given by the wave-optics model)

Imperial College London Neural network for volume reconstruction

- Data is sparse (neurons fire rarely and are localized in space)
- Solve $\min_{x}(\|y Hx\|^2 + \|x\|_1)$ s.t $x \ge 0$
- This leads to the following iteration:

 $x_{k+1} = ReLU(x_k - H^T H x_k + H^T y + \lambda)$

• Approach: Convert the iteration in a deep neural network using the unfolding technique

Imperial College London Neural network for volume reconstruction

• Convert the iteration in a deep neural network using the unfolding technique

 $x^{k+1} = ReLU(x^k - H^T H x^k + H^T y + \lambda)$

Imperial College Training of the neural network

- Training, in this context, is difficult due to lack of ground-truth data
- Our approach: semi supervised learning
 - Small ground truth dataset
 - Adversarial network for adversarial loss
 - Aight-field loss based on re-synthesizing light-field from reconstructed volume

Imperial College Training of the neural network

Imperial College Results – Functional Data London

Three brain samples are shown in parts (a), (b), and (c)

Imperial College Technical Examination of Paintings

Images © The National Gallery, London

Imperial College Structure of a painting London

56

Art-Investigation

X-ray

Visible

Imperial College Demixing using a connected auto-encoder London

Machine Learning to extract painting underneath¹

(b)

Francisco de Goya, Dona Isabel de Porcel (NG1473), before 1805. Oil on canvas. (a). RGB image. (b). X-ray image.

¹W. Pu, J. Huang, B. Sober, N. Daly, C. Higgitt, I. Daubechies, P.L. Dragotti and M. Rodrigues, "Mixed X-Ray Image Separation for Artworks With Concealed Designs", IEEE Trans. on Image Processing, 2022.

Machine Learning to extract painting underneath

Separation Results

Imperial College MA-XRF Datacube and Spectrum

- Macro X-ray provides volumetric data and the locations of the pulses in the energy direction are related to the chemical elements present in the painting.
- This potentially allows us to create maps that show the distribution of different chemical elements

Imperial College Extraction of Elemental Maps

Our XRF

Deconvolution

Algorithm

Vincent van Gogh, "Sunflowers (NG3863)", © The National Gallery, London.

Imperial College Results London

Leonardo da Vinci's "The Virgin of the Rocks"

Highlighted is the region of an XRF dataset collected on the painting with an M6 Bruker JETSTREAM instrument (30 W Rh anode at 50 kV and 600 μ A, 60 mm² Si drift detector, and data collected with 350 μ m beam and pixel size and 10 ms dwell time).

Leonardo da Vinci, "The Virgin of the Rocks (NG1093)," about 1491/2-9 and 1506-8, oil on poplar, 189.5 x 120 cm, The National Gallery, London.

Imperial College **Results** London

Copper (Cu) distribution maps

- Why Computational Imaging?
 - It is fun 🙂
 - It is inter-disciplinary
 - It is the right way to handle 'big data': joint sensing, representation, analysis and inference
 - Models and priors can reduce complexity and lead to better results
 - Some computational approaches are transfearable

Thank you!

Imperial College References

On Sparse Sampling

• J. Uriguen, T. Blu, and P.L. Dragotti 'FRI Sampling with Arbitrary Kernels', IEEE Trans. on Signal Processing, November 2013

On time-based Sampling and event-driven cameras

- R. Alexandru and P. L. Dragotti, "Reconstructing classes of non-bandlimited signals from time encoded information", IEEE Transactions on Signal Processing, Vol.68, pp. 747-763, Year 2020
- S. Liu and P.L. Dragotti, Sensing Diversity and Sparsity Models for Event Generation and Video Reconstruction from Events, IEEE Trans. on Pattern Recognition and Machine Intelligence, 2023

Imperial College References

On Art Investigation

- S. Yan, J.-J. Huang, N. Daly, C. Higgitt, and P. L. Dragotti, "When de Prony Met Leonardo: An Automatic Algorithm for Chemical Element Extraction in Macro X-ray Fluorescence Data", IEEE Transactions on Computational Imaging, vol.7, 2021.
- W. Pu, J. Huang, B. Sober, N. Daly, C. Higgitt, I. Daubechies, P.L. Dragotti and M. Rodrigues, "Mixed X-Ray Image Separation for Artworks With Concealed Designs", IEEE Trans. on Image Processing, 2022.
- Y. Su et al. "A Fast Automatic Method for Deconvoluting Macro X-ray Fluorescence Data Collected from Easel Painting", IEEE Transactions on Computational Imaging, 2023.

On Light-Field Microscopy and Neuroscience

- P. Song P, H. Verinaz Jadan, C. Howe, A. Foust and P.L. Dragotti, Light-Field Microscopy for optical imaging of neuronal activity: when model-based methods meet data-driven approaches, IEEE Signal Processing Magazine, March 2022.
- H. Verinaz et al. "Physics-based Deep Learning for Imaging Neuronal Activity via Twophoton and Light-field Microscopy", IEEE Trans. on Computational Imaging, 2023.