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Digital World

The complexity of modern imaging
workflows call for a rethink imaging as an
integrated sensing and inference model.

Computational

Imaging '

Analogue world

Seeing imaging as a whole is the domain of
Computational Imaging
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Sampling theory
« Sampling theory provides
« the bridge between the analogue and digital domains
« appropriate models for the signals and the acquisition devices

« constructive reconstruction algorithms that can inspire the design of deep neural
networks

« performance bounds

Interplay between physical and learned models

 How to embed priors about the signal and the device in neural networks
* Deep Unfolding




imperial CollegeThree Case Studies in Computational Imaging

Energy
0-40 keV

Event-Driven Cameras for energy

efficient fast sensing’ i'gggnels ’

- Time-based Sampling Light field microscopy

> End-to-End learning using Technical study of Old Masters paintings | > Traditional sampling theor
sampling and deep unfolding ~ Sparse sampling methods ->Deep unfolding y‘

"Note: video taken from Inivation.com
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Energy-efficient sensing inspired by nature raises a fundamental representation
question:
— How can we embed information related to complex signals into the timing information of
spikes?
— Besides its theoretical implications, addressing this question will lead to new
neuromorphic sensing devices

Videos from Inivation.com




Imperial College
London

Bio-Inspired Energy Efficient Sensing

«  Current sensing methods are energy inefficient especially when low-latency is needed.
- Example: Rainfall estimation
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imperial College  Bjo-Inspired Energy Efficient Sensing

Approach 2

Only record the day when the bucket is full and then empty it

July 18 July 28 September 2




imperial College  Bis-Inspired Energy Efficient Sensing

Approach 2 maps analogue information into a time sequence and is used by nature (e.g., integrate-
and-fire neurons)

Time encoding appears in nature, as a mechanism used by neurons to represent sensory

information as a sequence of action potentials, allowing them to process information very
efficiently.
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London Time-Encoding Machines

Integrate-and-fire System
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A.A. Lazar and L. T. Toth, “Perfect recovery and sensitivity analysis of time encoded bandlimited signals,” IEEE

Trans. Circuits Syst. |, Oct. 2004.




imperial College Reconstruction from time-encoded information

Reconstruction achieved by imposing iteratively:
— Consistency constraint
— Signal prior (e.g., bandlimited function) constraint

S —

July 18 July 28 September 2




imperial College Reconstruction from time-encoded information

Reconstruction achieved by imposing iteratively:
— Consistency constraint
— Signal prior (e.g., bandlimited function) constraint

July 18 July 28 September 2




imperial College Reconstruction from time-encoded information

« Key result: if the density of samples D=1 then perfect reconstruction can be achieved
(Aldroubi and Grochenig')

* Key Issue 1: In the case of uniform sampling the density is D = 1. This means that
current TEMs are less energy efficient than uniform sampling!

*  Key Issue 2: Cannot sample sparse (non-bandlimited) signals with the current methods.

A. Aldroubi and K, Grochenig, “Non-Uniform Sampling and Reconstruction in shift-invariant spaces” SIAM Review 2001
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London

. For integrate-and-fire machines exact reconstruction proved here: A. A. Lazar and L. T.
Toth, “Time encoding and perfect recovery of bandlimited signals”, ICASSP 2003
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See also: Gauntier-Vetterli-2014, Adam et al 2019,
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London Time-based Sampling of Sparse Signals

Signals:

*  We consider sparse continuous-time signals like stream of pulses, piecewise constant or

regular signals
Sensing Systems:
*  We filter before using a TEM
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imperial College  Our approach for time decoding of signals

« Reconstruction of x(t) depends on the
— sampling kernel ¢(t)
— the density of time instants {t,,}

*  We achieve a sufficient density of output samples by imposing conditions on:
— The trigger mark of the integrator (integrate-and-fire TEM ).
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+ Given the times ty, t,, ..., t,, the amplitude values are

Yn=Yy(th) = £Cr = /t,: f(r)dr = /t,: /x(a)go(oz — t)dadT.
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Lomdon Integrate and Fire TEM
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* Equivalently the output samples can be expressed as:

y(tn) = (x(t), (¢ * go,)(t — tn—1)),
where 0, = t, — tp—1 and gy, (t) is defined as:

o {1 ostson
035 = 0, otherwise.
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xlb‘(;—rl)
Cr N
———»x(t) o(—t) UQ) Integrator y® T;;S::&,I? — I ¢ /A
' t1 |ta|ts  ts T /
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et P, N—
« When ¢(t) is e.g., an E-spline, the equivalent kernel (¢ * qo )(t — t,,_1) is able to reproduce
exponentials

» So trigger mark must guarantee enough samples in a short interval

o tion: Amin (1 _ g (Lo L
Proposition: when Cr < 102 (1 cos( . )) then tq,t,, t3 € [Tl,rl + 2] and perfect

reconstruction is possible
- -
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Z Cm,ngo(n - t) ~ ejwmt

Pulse shape Reproduction of exponentials
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. The output samples are: y(t,,) = (x(t), (¢ * ) (t)) = x10,(71)
Since @, (t) = agne™* + a; ne™t, we find cq, ¢, dq, d; such thatin I; = [t, — T, t4]:
c1 1(t) + c2 @2 (t) = e’
dy @1(t) + dy @a(t) = e*t?
We then use these coefficients to define the signal moments, in I; = [t, — T, t4]:
So = a1y (t1) + 2y (t2) = x1[c101(T1) + c202(71)] = x, %™
s1 = diy(ty) + dyy(ty) = x1[d11(t1) + dop2(71)] = x1 €M%
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imperial College  Energy Efficient Sampling -Results

D-Z ‘ D-i If the distance S between discontinuities

J o is on average S > (L — 1)T with T being
05 - . . . .
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2R. Alexandru and P.L. Dragotti, Reconstructing Classes of Non-bandlimited Signals from Time
Encoded Information, IEEE Trans. on Signal Processing, vol.68, 2020.
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o ) Time encoding at each pixel
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« Key insight: design an end-to-end neural network where the acquisition
» process is part of the learned architecture

» Key approach: each pixel behaves differently
 The network architecture for reconstruction is model-based

. pixels corresponding to pg, g
V2E | LEL pixels corresponding to p;, q;
(It—9' T It—l' It)
Adaptive E 10 fr. .
Upsampling ~ =VerY 1 Tames Lindog P Lowpass ||  Events
filter Generation _l

feo = @fc Co = qC” Shpt
fe1 = qsfe C, = q,C* | Noise
v
to voxel
grids

Y
: *“I@

Customized v2e
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» The network architecture for reconstruction is model-based: intensity and
event frames share the same sparse representation

Ct—2 Z{, G2
g1 b M= vZiy Zi_, Z¢ - ‘
=1l t—1 o
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4
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Deep Unfolding Strategy

Explicit embedding of priors and constraints in deep networks

Xk
,

v

fC)

lterative algorithm with y
as input and x as output

=

y

v
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Unfolded version of the iterative algorithm with
learnable parameters

Need to re-synthesize the input, if self-supervised

v
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* The network architecture for reconstruction is model-based: intensity and
event frames share the same sparse representation
« The dictionary is usually learned
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Imperial College  Model of dependency between intensity and
London

events
— n :
Assumption: intensity and SSIRRIRSIRNERMERRERNEREERRY)):
event frames share the same m>n

sparse representation DI




Imperial College Deep Unfolding Strategy
London

« The network architecture for reconstruction is model-based: intensity and
event frames share the same sparse representation Z;
« The sparse vector can be found using ISTA: Z¥ = hg(Z¥1 + DI (X, — D, ZK™1)

ISTAK

Z{“LI
Dy, ~D Py
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» The network architecture for reconstruction is model-based: intensity and
event frames share the same sparse representation
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static

slow very slow very slow slow
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- gun_bullet_mug
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« Key insight: design an end-to-end neural network where the
acquisition process is part of the learned architecture

» Key approach: each pixel behaves differently
 The network architecture for reconstruction is model-based

. pixels corresponding to pg, g

pixels corresponding to p;, q;
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London

without sensing diversity with sensing diversity




Imperial College Event-driven systems — first set of conclusions
London
» Neuromorphic sensing systems inspire a new paradigm for sampling

« Sampling provides insights into the design of event-driven systems
(end-to-end learning)

* Model-based deep learning leads to lighter and more universal
architectures
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* Goal of Neuroscience: to study how
information is processed in the brain

* Neurons communicate through pulses called
Action Potentials (AP)

* Need to measure in-vivo the activity of large
populations of neurons at cellular level
resolution

« Two-photon microscopy combined with right
indicators is the most promising technology
to achieve that
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London Two-Photon Microscopy

Fluorescent sensors within tissues

Highly localized laser excites fluorescence Point scanning (2PLSM)
from sensors
Photons emitted from tissue are collected /:, Axial
Focal spot sequentially scanned across Scan
samples to form image y

Two-photon microscopes in raster scan
modality can go deep in the tissue but are
slow




imperial College  Two-Photon Microscopy

* In order to speed up acquisition one can change the illumination strategy
«  This mitigates the issue but does not fix it
* Issue with scattering

Point detector Camera sensor Camera sensor

= A A

T
Pl
% yd ‘
Z y zZ y V Z y ,,,,, v
X X X
Point illumination Line illumination Plane (light-sheet)
illumination
Excitation —> Scan direction




imperial College Light-field Microscopy

Native Image Plane
Uxp)

Native Object Plane Fourier Plane
U,Gp) Us(x.p)
Light-Field Microscopy (LFM) is a high- : |
speed imaging technique that uses a 0’“«“"\/
simple modification of a standard '
microscope to capture a 3D image of an
entire volume in a single camera snapshot gealpoint |

source at p

—
fob] f;?bj fa fu __)]sdens ‘E

Back Mictol/e-ns Image

Objective Aperture Tube Lens Array Sensor

(Telecentric Stop)
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London Light-field Microscopy and EPI

Native Object Plane Fourier Plane Native Image Sensor Light-field PSF Eni-polar Plane I
(a) Camera (b)  uew Utxp) Plane Uj(x,p) Plane _(image space) pi-polar Plane Image
Sensor ! Objective Tube Lens
+x

6,(6,)

1:1 Relay lens

i
ideal point :
i

‘ (Dt
Microlens source at p - - . . . <
Array [ S ——— j’obj fohj B ack .ft[ .f![ J fMLA X(y)
Emission | Aperture  Microlens Array ]
i - Em 5
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LED Dichroic
! mirror

Excitation beam
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Objective
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Imperial College Light-field Microscopy and lllumination
London Strategies

/ Point detector \ Camera sensor Camera sensor / Camera sensor \
Microlens
array =
A
“+ oy R Z 2Ly Y P P ——
X X X X
Point illumination Line illumination Plane (light-sheet) Volume (wide-field)

illumination \ illumination /
\o Excitation 7)—> Scan direction

Key insight: use the 2P microscope for high-resolution structural information and the LFM for monitoring the
activity of neurons.
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Light-field Microscopy

Challenge: given a sequence of lightfields (2-D signals), need to reconstruct a sequence of
volumes (3-D+t)

Native Object Plane Fourier Plane Native Image
U x.p) UAx.p) Plane U(x,p)
! Objective Tube Lens :
+x i
i
......... S | e —, o
i
i |
. , - « :
" Joy Jobj Back [t S f./fw.a

2D Measured LF image

3D Input ¢—— Computational PR

Algorithm
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London Volume reconstruction from LF Data

* Challenges
» Scattering induces blur, making
inversion more challenging
» Lack of ground-truth data for learning

* Opportunities
* Forward model structured and linear
» Data is sparse (neurons fire rarely
and are localized in space) 2.DLF
* Occlusion can be ignored

Volume
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* Forward model is linear which means y = Hx

* H is estimated using wave-optics

- For each depth, H is block-circulant : e
(periodically shift invariant) and can be - z=0| |[|Objective !
modelled with a filter-bank o I

* The entire forward model can be
modelled using a linear convolutional
network with known parameters (given
by the wave-optics model)

Tube Lens
Microlens!Arra

=2

o

o
—
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London Neural network for volume reconstruction

Data is sparse (neurons fire rarely and are localized in space)

Solve min(|ly — Hx||? + ||x]|;) s.tx =0
X

This leads to the following iteration:

Xr+1 = ReLU(x, — HTHx), + HTy + 1)

Approach: Convert the iteration in a deep neural network using the unfolding technique




imperial College - Neural network for volume reconstruction

Convert the iteration in a deep neural network using the unfolding technique

x**t1 = ReLU(x* — HTHx* + HTy + 1)

9(;0)
LISTA
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?C y o ~
oc T T — 5
W o ey |k
y — hOT
Layer1 13
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London Training of the neural network

« Training, in this context, is difficult due to lack of ground-truth data
» Our approach: semi supervised learning
« Small ground truth dataset
» Adversarial network for adversarial loss
» Light-field loss based on re-synthesizing
light-field from reconstructed volume

y TR
- — Jur 16

v
S
-
N
v

Critic
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Structural (a) Training s PR
LF S Q ; S z-stack
& i - 3N
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Functlonal

53-depths
3D reconstruction

LF Sequence
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PSNR:23.18 PSNR:25.10 PSNR:33.80
SSIM:0.420 SSIM:0.525 SSIM:0.809

Ground-truth ISRA ADMM New method (0.3s to
reconstruct one volume)

H. Verinaz et al. "Physics-based Deep Learning for Imaging Neuronal Activity via Two-photon and Light-field
Microscopy”, |IEEE Trans. on Computational Imaging, 2023.
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Three brain samples are shown in parts (a) b) and
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| NATIONAL
GALLERY

National Gallery &
@NationalGallery

Images © The National Gallery, London



56

Imperial College  Structure of a painting
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|dealised painting stratigraphy

- Ty
—
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Visible X-ray




l{gﬁﬁﬁﬂ College Demixing using a connected auto-encoder

Machine Learning to extract painting underneath’

Lad

@ (b) Q
Francisco de Goya, Dona Isabel de Porcel (NG1473), .
before 1805. Oil on canvas. (a). RGB image. (b). X-ray image.

TW. Pu, J. Huang, B. Sober, N. Daly, C. Higgitt, |. Daubechies, P.L. Dragotti and M. Rodrigues, ‘Mixed X-Ray Image Separation for Artworks With
Concealed Designs”, |IEEE Trans. on Image Processing, 2022.
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Machine Learning to extract painting underneath

Separation Results
I ————————————————————————————N——————————




'Lfgﬁg';')?: College M A-XRF Datacube and Spectrum

» Macro X-ray provides volumetric data and the locations of the
pulses in the energy direction are related to the chemical
elements present in the painting.

* This potentially allows us to create maps that show the
distribution of different chemical elements

(&)

o 60 — XRF spectrum

a

S 40

Q

(&)

320

0

e

o Q e Al Energy
0 0.5 1 1.5 2 2.5 3 3.5 0-40 keV

Energy (eV) %<10% 4096
channels

Images © The National Gallery, London
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Cu K-alpha -- quantity map
p—

Iron

' Lead

100

Our XRF

Deconvolution

60

Algorithm

40

20

Vincent van Gogh, “Sunflowers (NG3863)”, © The National Gallery, London.
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Leonardo da Vinci’'s “The Virgin of the
Rocks”

Highlighted is the region of an XRF dataset collected on the painting with an M6
Bruker JETSTREAM instrument (30 W Rh anode at 50 kV and 600 pA, 60 mm?2 Si drift
detector, and data collected with 350 um beam and pixel size and 10 ms dwell time).

Leonardo da Vinci, “The Virgin of the Rocks (NG1093),” about 1491/2-9 and 1506-8, oil on poplar, 189.5 x 120 cm, The National 62
Gallery, London.
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Copper (Cu) distribution maps

120

1100
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40

20

Cu confidence map Cu quantity map
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Zinc (Zn) distribution maps

Zn quantity map
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*  Why Computational Imaging?
— ltis fun &
— Itis inter-disciplinary

— It is the right way to handle ‘big data’: joint sensing, representation, analysis and
inference

— Models and priors can reduce complexity and lead to better results

— Some computational approaches are transfearable
- -
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Thank you!
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