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ccurate estimation of system frequency in real 
time is a prerequisite for the future smart grid, 

where the generation, loading, and topology 
will all be dynamically updated. In this article, 

we introduce a unified framework for the esti-
mation of instantaneous frequency in both balanced and unbal-
anced conditions in a three-phase system, thus consolidating the 
existing approaches and providing next-generation solutions capa-
ble of joint adaptive frequency estimation and system fault identifica-
tion. This is achieved by employing recent developments in the 
statistics of complex variables (augmented statistics) and the associated 
widely linear models, allowing us to benefit from a rigorous account of varying 
degrees of noncircularity corresponding to different sources of frequency varia-
tions. The advantages of such an approach are illustrated for both balanced and unbalanced 
conditions, including voltage sags, harmonics and supply-demand mismatch, all major obstacles 
for accurate frequency estimation in the smart grid. 

WHY FREQUENCY ESTIMATION IN THE SMART GRID
Electricity networks are undergoing wholesale changes both from the generation and the user (load) sides. Major challenges in 
this direction are envisaged to be the management of largely increased load levels, due to e.g., charging a large number of plug-
in electric vehicles (PEVs), and the duality between loads and supplies, for instance, when PEVs are used in the “vehicle to grid” 
mode to mitigate power shortage and system imbalances. Generation, historically aggregated into large power plants and far 
from the user, is gradually moving towards being located at the distribution level and based on renewable sources, that is, 
intrinsically intermittent [1]. This will require enhanced flexibility of the grid and the ability to accommodate islanding and 
microgrids [2], [3]. 
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The idea behind smart distributed grids and microgrids is 
to balance as much as possible locally between production and 
consumption. However, the deployment of intermittent 
renewable sources will inevitably lead to frequent imbalance 
between supply and demand, as exemplified by the difficulties 
in maintaining system balance due to wind power variability 
[4]. Signal processing is certain to play a significant role in 
dealing with the complexity and uncertainty associated with 
the smart grid, with stochastic models being a natural choice. 

Unexpected frequency variations from the nominal value 
can trigger abnormal power system conditions that can propa-
gate and aggregate. Accurate and fast frequency tracking is a 
prerequisite to the system responding quickly to such prob-
lems [5], [6]. Approaches to frequency estimation from a sin-
gle phase result in nonunique solutions, and robust frequency 
estimators should consider all of the three-phase voltages [7]. 
For instance, the ab transform produces a complex-valued 
signal from the three-phase voltages [8], where system fre-
quency is obtained from the phase of this signal. 

Complex domain solutions for frequency tracking include 
phase-locked loops (PLLs) [9], least squares [10], demodula-
tion methods [11], and Kalman filtering [12]. Recently, adap-
tive tracking algorithms based on the minimization of mean 
square error (MSE) have become a standard, as they are natu-
rally suited to deal with noise, harmonics, and nonstationary 
environments [10], [13]. However, unbalanced events make it 
difficult to calculate phase angle [14], [15], as in this case the 
complex-valued signal obtained from an unbalanced three-
phase voltage source is represented as an orthogonal sum of 
positive (reflecting the energy transfer between generators and 
consumers) and negative (indicating imbalance between 
three-phase voltages) sequences. Standard complex linear 
adaptive filters can only cater for the positive sequences, 
whereas the negative sequences introduce a modeling error 
that oscillates at twice the system frequency [16], [17]. 

This work addresses adaptive tracking of system frequency in 
the three-phase system and proposes next-generation solutions for 
fault identification and troubleshooting in the following events 
that lead to frequency deviations: 

 ■ Imbalance in the generation (G) and load (L). In the smart 
grid, the system will frequently switch between the main grid 
(MG) and microgrids (mG), with parts of the system completely 
switching off the MG for prolonged periods of time (islanding). 
The system frequency rises for G . L and decreases for G , L. 

 ■ Single- and dual-phase faults. The system frequency is 
derived from the relationship between the three-phase volt-
ages (using Clarke’s transform [8]). Faults in one or two 
phases and voltage sags (sudden drop in voltage for a short 
period of time) will cause an incorrect frequency estimate 
and alarm spread through the system, although the actual 
system frequency was correct. 

 ■ Dual character of load-supply. The smart grid employs 
dynamic loads and dual load-generator devices, such as PEVs, 
which can give the energy back to the grid in the case of emer-
gency. Frequent switching will cause problems with reactive 

power, whose drifting causes oscillations of power levels and 
harmonics in frequency. 

 ■ Harmonics. Some loads (power supplies, motors, heating 
elements) have nonlinear V 2 I characteristics and introduce 
harmonics, which may be slowly floating and not integer mul-
tiplies of system frequency. They may cause resonance in the 
system leading to significant increase in currents and overheat-
ing of transformers [18]. Switching on the shunt capacitors for 
reactive power compensation also causes strong transients and 
harmonics that are damaging to some equipment. 

 ■ Transient stability issues. Faults and short circuits could 
trigger instability, and actions such as shedding loads (or gen-
erators) that are needed to mitigate the problem require accu-
rate frequency estimation.
Some of the above events could be dealt with if detected in 

time, however, current systems do not have sufficient information 
about the state at the distribution end to do so. This applies partic-
ularly to problems related to the management of single- and dual 
phase faults, short duration voltage sags, and reactive power—
these cause harmonics, false alarms congesting the system, and 
slow response to critical events. 

To this end, we introduce a robust framework for adaptive fre-
quency estimation under unbalanced system conditions, a typical 
case in microgrids, coupled microgrids, and power islands. We 
first analyze the complex-valued signal, obtained by the ab trans-
formation of a three-phase power system, and illustrate the suit-
ability of complex valued filters in this context by illuminating 
their magnitude-phase relationship and tracking abilities. We 
then address the geometry of learning to leverage between mag-
nitude-only and phase-only adaptive tracking, and demonstrate 
the tradeoff between bias and variance of such adaptive frequency 
estimators. It is further illustrated that under unbalanced system 
conditions the ab-transformed complex voltage signal is second-
order noncircular (improper), for which current, strictly linear, 
complex-valued adaptive estimators are suboptimal. A second-
order optimal adaptive widely linear frequency estimator is next 
introduced, and is shown to cater for both the balanced and 
unbalanced system conditions and to produce unbiased estimates 
with greatly reduced variance, asymptotically approaching the 
Cramer-Rao lower bound (CRLB) for high signal to noise ratios. 
Experimental results include both benchmark and real world case 
studies, addressing frequency estimation in several typical unbal-
anced system conditions. 

FROM THE HIERARCHICAL GRID TO THE SMART GRID
The operation of the power system at a constant frequency is 
maintained by regulating the balance between generation and load 
in real time. Figure 1 shows a simplified diagram of the transmis-
sion and distribution part of the grid, illustrating the available 
loads (L), generators (G), and measurements (M) at both the substa-
tion and consumer level. Phasor measurement units (PMUs) pro-
vide synchronized measurements of the three-phase voltages, 
currents, system frequency, and loads; conventional units and 
PMUs are deployed at the substations and forward synchronized 
data to the main station. This part is well modeled, however, at 
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present the transmission side of the grid does not have sufficient 
information about the behavior at the distribution level to incor-
porate it into the operator model. The progress towards 
microgrids, coupled microgrids, and islanding will introduce 
numerous problems related to power quality, whose rectification 
requires more metering devices at the distribution and consumer 
level. For instance, photovoltaic sources that produce 1 | 2 kW are 
often located at the customer’s site; they offset the connection load 
and can also feed the energy back into the grid [19]. 

MICROGRIDS AND ENERGY ISLANDS 
Microgrids are small connected clusters within the main grid, 
which operate in parallel to the grid or isolated (as an energy 
island). They respond to fault events autonomously and based on 
only local information, and facilitate the implementation of key 
smart grid functions, such as load control, reliability and self-heal-
ing, and a greater use of renewables. Microgrids will disconnect 
when the power quality of the main grid is below certain stan-
dards, switching to the islanding mode in the case of faults 
(dynamic islanding), such as large voltage sags and power outages. 
It is desirable for the microgrid to seamlessly change its mode of 
operation between an island and a grid resource; this requires 
local stability and constant monitoring of large circulating reac-
tive currents between sources, together with voltage versus power 
droop control. In this way: 

 ■ In normal operation, the loads in microgrid receive power 
from both the main grid and local generators. When the grid 

power is lost, the microgrid dynamically transforms into the 
islanding mode. 

 ■ If the microgrid was taking the energy from the grid, local 
generation needs to increase the available power, resulting in a 
temporary drop in microgrid frequency. 

 ■ If islanding occurred while mG was exporting power to the 
MG, the microgrid frequency temporarily increases.

VOLTAGE SAGS 
Voltage sags refer to a temporary drop in the one- or two-phase 
voltages for several hundreds of milliseconds [3]. Despite their 
short duration, they are harmful to a range of equipment, 
including computers, adjustable speed devices, and three-phase 
loads. A voltage sag is defined by the IEEE Standard 1159-1995 
as a “decrease in root mean square (RMS) voltage at the power 
frequency for durations from 0.5 cycles to 1 minute.” Three-
phase sags can be symmetric, for instance, when starting a large 
motor in an industrial plant, or unbalanced as when energizing 
a large transformer. Sags that occur at the higher voltage 
(transmission) side are spread to the lower voltage systems (dis-
tribution side) through transformers, also sags and faults that 
appear at one circuit of the distribution side will affect other cir-
cuits at the same substation (see Figure 1). When one line volt-
age goes into a sag, the other two go into a swell (increase in 
voltage) to maintain the power required by the load. Since the 
system frequency is estimated from the three-phase voltages, 
this poses a major problem. 
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[FIG1] Nodal estimation. Various loads (L) and small generators (G) operate locally and contribute to the variability of power quality. A 
substation has three to five circuits. The sum of all the circuit loads SL and all the generation SG equals that of the substation. A G-L 
mismatch in one circuit is compensated from the generation in another circuit or from the main grid.
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COMPLEX FORM OF THE THREE-PHASE VOLTAGES
The voltages of a three-phase power system in a noise-free envi-
ronment can be represented in the discrete time form as 

 va 1k 2 5 Va 1k 2cos 1vk^T 1 f 2  
 vb 1k 2 5 Vb 1k 2cosavk^T 1 f 2

2p

3
b  

 vc 1k 2 5 Vc 1k 2cosavk^T 1 f 1
2p

3
b, (1)

where Va 1k 2 , Vb 1k 2 , Vc 1k 2  are the peak values of each phase 
voltage component at time instant k, ^T is the sampling inter-
val, f is the phase of the fundamental component, v 5 2pf  is 
the angular frequency of the voltage signal, and f  is the system 
frequency. Direct estimation of power quality parameters from 
the individual phase voltages in (1) is not practical, and it is dif-
ficult to select the most representative phase since six different 
phase voltages exist in a three-phase system when also line-to-
line voltages are considered. Solutions operating simultaneously 
on all the three phases employ invertible transformations, 
which cast the original system to a physically meaningful trans-
form domain. 

To this end, Clarke’s transform employs the orthogonal ab0 
transformation matrix [8] to map the time-dependent three-phase 
voltage into a zero-sequence v0 and the direct- and quadrature-
axis components, va and vb, as 
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vb 1k 2 §  5Å2
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For a balanced system, Va 1k 2 5 Vb 1k 2 5 Vc 1k 2 and thus v0 1k 2 5 0, 
va 1k 2 5 Acos 1vkDT 1 f 2 , and vb 1k 2 5 Acos 1vkDT 1 f 1 p

2 2 , 
where A 5 const, and va 1k 2  and vb 1k 2  are the orthogonal 
coordinates of a point whose position is time variant at a rate 
proportional to the system frequency. In practice, only va and 
vb are used and the resulting complex voltage signal v 1k 2  is 
given by [11] 

 v 1k 2 5 va 1k 2 1.vb 1k 2 , (3)

where .5"21. There is no loss in information in using this rep-
resentation, and this voltage also serves as the desired signal in 
adaptive frequency estimation and can be calculated iteratively from 

 v 1k 1 1 2 5 Ae. 1v 1k112DT1f2 5 v 1k 2e.vDT. (4)

COMPLEX CIRCULARITY AND WIDELY LINEAR MODELS
We shall now introduce a general framework for both the strictly 
linear and widely linear complex-valued frequency estimation, 
based on the complex voltage in (4). 

Complex circularity is a property of probability density func-
tions (pdf), indicating that the distributions of a complex random 
variable x and its rotation e.wx are equal for any rotation angle w. 
 Real-world complex-valued signals are typically noncircular, and 
for their description we usually consider second-order circularity 
(properness) and second-order noncircularity (improperness), 
notions related to the powers in the real and imaginary part (for 
an overview, see [20]). 

WIDELY LINEAR MODELING 
Consider a real-valued conditional MSE estimator 

 ŷ 5 E 3y|x 4, (5)

which estimates the signal y in terms of another vector-valued 
observation x. For zero mean, jointly normal y and x, the optimal solu-
tion is the linear estimator given by 

 ŷ 5 xT h, (6)

where h 5 3h1, c, hL 4T is a vector of fixed filter coefficients, 
x 5 3x1, c, xL 4T the regressor vector, and 1 # 2T the vector 
transpose operator. 

In the standard, strictly linear estimation in the complex 
domain, it is assumed that we can use the same form 

 ŷ 5 ŷr 1 .ŷi 5 xTh, (7)

where the subscripts r and i denote respectively the real and 
imaginary parts of a complex variable. Since both the real and 
imaginary parts of complex variables are real, ŷ 5 E 3 yr|xr, xi 41  
.E 3 yi|xr, xi 4.  Substitute xr 5 1x 1 x* 2/2 and xi 5 1x 2 x* 2/2. 
to arrive at 

 ŷ 5 E 3 yr|x, x* 41 .E 3 yi|x, x* 45 E 3y|x, x* 4  (8)

giving the widely linear estimator for complex valued data 

 ŷ 5 hTx 1 gTx* 5 xTh 1 xHg 5 xTwa, (9)

where h and g are complex-valued coefficient vectors. In prac-
tice, this estimator uses a regressor vector produced by con-
catenating the input vector x with its conjugate x*, to give an 
augmented input vector xa 5 3xT, xH 4T, and similarly the aug-
mented coefficient vector wa 5 3hT, gT 4T. 

AUGMENTED COMPLEX STATISTICS 
The 2L32L augmented covariance matrix, corresponding to the 
widely linear model in (9), now becomes [20]–[22] 

 Cxx
a 5 E c x

x* d  3xH xT 45 cCxx Pxx

Pxx
* Cxx

* d  (10)

and contains the full second-order statistical information. Observe 
that the covariance matrix, Cxx 5 E 3xxH 4, alone does not have suf-
ficient degrees of freedom to explain complete second-order infor-
mation, and to capture the second-order information we also need 
to consider the pseudocovariance matrix, Pxx 5 E 3xxT 4. Processes 
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with the vanishing pseudocovariance, Pxx 5 0, are termed second-
order circular (or proper). Therefore, the widely linear estimator 
in (9) is optimal for the generality of complex signals (both proper 
and improper), and simplifies into the strictly linear model in (7), 
for which g 5 0, for proper data. 

INDEX OF IMPROPERNESS 
The degree of improperness can be calculated using the circularity 
index, given by [23] 

 h 5
|tx|

2

sx
2 , (11)

where sx
2 5 E 3x 1k 2x* 1k 24 is the variance of the signal x and 

tx
2 5 E 3x 1k 2 xT 1k 24  the pseudovariance of x. Note that 

h [ 30, 1 4, with h 5 0 a second-order circular (proper) x 1k 2 , 
and a second-order noncircular (improper) x 1k 2  for h . 0. 
Examples of circular and noncircular doubly white noises, 
together with their kurtosis values Kc, are given in Figure 2, 
where the symbol R 1 # 2  denotes the real and I 1 # 2  the imagi-
nary part of a complex number. For the assessment of noncir-
cularity in real time, we refer to [24]. 

WIDELY LINEAR AUTOREGRESSIVE MODELING 
Based on (9), the widely linear autoregressive (WLAR) model is 
given by 

 y 1k 2 5 hT 1k 2x 1k 2 1 gT 1k 2x* 1k 2 1 n 1k 2 ,  n | N 10, tx
2, sx

2 2 . 
Its coefficients are obtained from the widely linear Yule-Walker 
equations, given by [24] 

     ch*

g* d 5 c C P
P* C* d 21 c c

p* d . (12)

The advantage of widely linear over strictly linear estimation 
can be quantified by the difference between their correspond-
ing MSEs, eL

2 and eWL
2 , given by 

 de2 5 eL
2 2 eWL

2 $ 0, (13)

which is strictly positive for improper data and zero for proper 
data [20], [22]. Thus, widely linear estimators have a performance 
advantage over their strictly linear counterparts for improper 
data: their performances for proper data are identical [20]. 

VOLTAGE SAGS AND NONCIRCULARITY
It is now possible to relate complex circularity with the distribu-
tion of the ab voltage v 1k 2  in (3), both in balanced and unbal-
anced system conditions. Figure 3 shows the amplitude 
distribution diagrams for a balanced case and an unbalanced 
voltage sag event. When the phase voltages exhibit dips or tran-
sients (a sag event), Va 1k 2 , Vb 1k 2 , Vc 1k 2  are not identical and 
samples of v 1k 2  are located on an ellipse (noncircular), whereas 
for a balanced system the distribution of v 1k 2  remains on a cir-
cle (circular). 

From Figure 3, observe that by accounting for second-order 
(non)circularity, it is possible in principle to identify the type 
and parameters of a voltage sag within a quarter of frequency 
cycle, providing a very fast indication of a system fault [25]. 

FREQUENCY ESTIMATION MODELS IN BALANCED AND 
UNBALANCED THREE-PHASE SYSTEMS
The current state of the art is based on the ab voltage in (3) 
and the subsequent application of the stochastic gradient-
based complex least mean square (CLMS) algorithm. Such 
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[FIG3] Circularity via the “real-imaginary” (R 2 I) scatter 
plot. The blue circle denoted by “+” corresponds to a circular 
v (k) in a balanced system (Va(k) 5 Vb(k) 5 Vc (k)) at 1 per unit 
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algorithms aim to minimize the instantaneous error power 
J 1k 2 5 e 1k2 e* 1k 2 5 |e1k 2 |2, using a gradient descent-based 
update of the filter coefficient vector w 1k 2 , in the form 

 w 1k 1 1 2 5 w 1k 2 2 m=w J 1k 2 5
CLM w 1k 2 1 me 1k 2 x*1k 2 , (14)

where m is a small positive learning rate, e 1k 2  the output 
error of the filter, y 1k 2 5 xT 1k 2w 1k 2  the filter output, and 
x 1k 2  the filter input vector (regressor vector). 

THE STRICTLY LINEAR CLMS MODEL 
For adaptive frequency estimation based on the ab voltage in (3), 
we only need a single filter coefficient [10], thus all the estima-
tors will have this form. Upon solving (14), the CLMS-based 
model becomes 

 v̂ 1k 1 1 2 5 w 1k 2v 1k 2  
 e 1k 2 5 v 1k 1 1 2 2 v̂ 1k 1 1 2  
 w 1k 1 1 2 5 w 1k 2 1 me 1k 2v* 1k 2 , (15)

where the filter weight w 1k 2  estimates the phasor e.vDT in (4), 
v̂ 1k 1 1 2  is the estimate of v 1k 1 1 2 , and the estimated instan-
taneous system frequency is derived from 

 f̂ 1k 2 5
1

2pDT
sin21 1I 1w 1k222  (16)

based on the evolution of the coefficient w 1k 2  of the strictly linear 
adaptive estimator in (15). 

This algorithm aims to minimize both the amplitude and 
phase error, however, it is often advantageous to perform esti-
mation based on phase-only or magnitude-only information. 

GEOMETRY OF LEARNING IN THE COMPLEX DOMAIN 
From (16), the instantaneous system frequency estimate is 
obtained from the phase in e.vDT, that is, in balanced conditions it is 
primarily the phase rather than the magnitude that conveys 
useful information. However, in unbalanced conditions the 
magnitude should also be taken into account. 

The least mean magnitude phase (LMMP) algorithm [26] 
decomposes the cost function in J5 e 1k 2e* 1k 2  into the mag-
nitude-only, Jm, and phase-only, Jp, parts as 

 J 1d, y 2 5 m1Jm 1d, y 2 1 m2Jp 1d, y 2 5 |e 1k 2 |2, (17)

where for the standard CLMS m1 5 m2 5 m, the teaching signal 
d 1k 2 5 y 1k 2 1 e 1k 2 , and the costs (/ is the angle operator)

 Jm 1d, y 2 5 1 |d| 2 |y| 2 2
 Jp 1d, y 2 |/d 2/y|2 5 2|d || y| 112cos 1/d 2/y22 . (18)

By weighting the terms in (18), the LMMP (shaded area in 
Figure 4) leverages between magnitude-only and phase-only 
estimation, and spans a whole range of algorithms, including 
the standard CLMS, denoted by yclms, and the least mean phase 
(LMP) algorithm, ylmp [27], [13]. Figure 4 illuminates the 

geometry of learning: the phase only estimate, ylmp, corrects for 
the phase but cannot deal with magnitude changes, whereas 
the magnitude only estimate, ycma, corrects only for the magni-
tude and not for the phase changes. 

The update of the complex LMP algorithm is given by 

 wlmp 1k 1 1 2 5 wlmp 1k 2 1
.mepe 1k 2v* 1k 2
Qv 1k 2wlmp 1k 2 R*

  (19)

while the complex LMMP update is 

wlmmp 1k 1 1 2 5 wlmmp 1k 2  1 mm 1|v 1k 1 12 |sgn 1 v̂ 1k 1 1 22  
 2 v̂ 1k 1 1 22v* 1k 2 1 mp 1v 1k 1 12
 2 |v 1k 1 12|sgn 1 v̂ 1k 1 1 222 v* 1k 2 , (20)

where mm and mp are the respective stepsizes and sgn 1 # 2  is the 
sign operator. 

THE ACLMS-BASED FREQUENCY ESTIMATION 
Figure 3 shows that in unbalanced conditions the voltage in (3) 
is noncircular and is adequately modeled only by using the 
widely linear model in (9), whose adaptive version is (see [25] 
and “Noncircularity Under Unbalanced Conditions”)  

 v 1k 2 5 A 1k 2e.1vkDT1f2 1 B 1k 2e2. 1vkDT1f2. (21)

In other words, when the phase voltages Va 1k 2 , Vb 1k 2 , Vc 1k 2  
are not identical, A 1k 2  is no longer a constant, B 1k 2 2 0, and 
the standard strictly linear model in (4) is not adequate. The 
coefficients of the widely linear estimator can be adapted using 
the augmented CLMS (ACLMS), given by [20] and [28] 

Estimator:  v̂ 1k 1 1 2  5  v 1k 2h 1k 2 1 v* 1k 2g 1k 2
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 Update:   h 1k 1 1 2 5 h 1k 2 1 me1k 2v* 1k 2  
 g 1k 1 1 2 5 g 1k 2 1 me1k 2v 1k 2 . (22)

The stability of ACLMS has been investigated in [29]. From (21) 
and (22), the estimate v̂ 1k 1 1 2  becomes

 v̂ 1k 1 1 2 5 1A 1k 2h 1k 2 1 B* 1k 2g 1k 22e. 1vkDT1f2 
 1 1A* 1k 2g 1k 2 1 B 1k 2h 1k 22e2.1vkDT1f2. (23)

Comparing the corresponding terms in (21) and (23), we have 

 ejv̂DT 5
A 1k 2g* 1k 2 1 B* 1k 2h* 1k 2

B* 1k 1 1 2 . (24)

Using the assumption held implicitly in frequency estimation 
that at two consecutive time instants, A 1k 1 1 2 < A 1k 2 , and 
also B 1k 1 1 2 < B 1k 2 , after some algebraic manipulation (for 
more detail and MATLAB sources, see [30]), we arrive at the 
widely linear three phase system frequency estimate 

  f̂ 1k 2 5
1

2pDT
 sin21 1I 1h 1k 2 1 a1 1k 2g 1k 222 . (25)

This is a widely linear extension of the standard, strictly linear, 
estimator in (16). When the system is balanced, v 1k 2  is circu-
lar, g 1k 2 5 0, and we have the standard solution in (16). 

UNBALANCED SYSTEM CONDITIONS: VOLTAGE SAGS
There are seven typical three-phase voltage sags that cause sys-
tem imbalance: four single-phase-to-ground sags and three two-
phase-to-ground sags. The phasor diagrams for the former case, 

together with the associated circularity plots, are shown in 
Figure 5. Observe that apart from the symmetric Type A voltage 
sag, all the other sags exhibit noncircular amplitude distribu-
tions and the frequency drifts are thus expected to be best mod-
eled by widely linear models. The shape, orientation, and 
principal axes of circularity diagrams reveal the type of sags, 
allowing us more degrees of freedom compared to standard fre-
quency estimation and enabling us to identify a fault based on 
its circularity properties in as little as 1/4 of the cycle. For 
instance, Type C sag is noncircular and aligned horizontally, 
whereas Type B sag is noncircular and aligned vertically. Similar 
observations can be made for the two-phase-to-ground faults; 
for more details, see [30]. 

NONCIRCULARITY UNDER UNBALANCED CONDITIONS 
For the three-phase system in (1) and (2), the complex-
valued v 1k 2 5 va 1k 2 1 .vb 1k 2  comprises the standard 
part (left-hand term) and the conjugate part (right-
hand term), that is 

 v 1k 2 5 A 1k 2e. 1vk^T1f2 1 B 1k 2e2. 1vk^T1f2, (S1)

where 

 A 1k 2 5
"6 1Va 1k 2 1 Vb 1k 2 1 Vc 1k 2 2

6
 

 B 1k 2 5
"6 12Va 1k 2 2 Vb 1k 2 2 Vc 1k 22

12
 

 2
"2 1Vb 1k 2 2 Vc 1k 22

4
..

Figure 3 shows that v 1k 2  is second-order circular with a 
rotation invariant probability density function in the com-
plex plane if B 1k 2 5 0 and A 1k 2 is a constant. This can be 
achieved only when Va 1k 2 , Vb 1k 2 , Vc 1k 2  are identical at 
each time instant, when (S1) simplifies into (4). In unbal-
anced conditions, A 1k 2  is real valued, but B 1k 2 2 0 and 
can be complex valued, resulting in a second-order noncir-
cular (improper) v 1k 2 . 
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[FIG5] Unbalanced voltage sags due to single phase-to-ground 
faults, for the characteristic voltage of V 5 0.7. (a) Phasor 
diagram (dotted line denotes balanced operation) and 
(b) circularity via a “real-imaginary” plot.
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WIDELY LINEAR FREQUENCY ESTIMATION
The following situations occur frequently in practical frequency 
estimation and will be addressed in this section. 

 ■ frequency estimation in the presence of voltage sags, where 
the system frequency remains at 50 Hz, but due to system 
imbalance the frequency estimate is wrong 

 ■ frequency rise and decay, due to a mismatch between pro-
duction and consumption (microgids, islands) 

 ■ harmonics caused by certain loads and imbalance of active 
and reactive power (renewables, microgrids).
Simulations were performed for signals sampled at 5 kHz, 

and the step-size was m 5 0.01 in all simulations. 

BALANCED SYSTEM OPERATION 
In the first set of simulations, the power system was balanced and 
was operating at the system frequency f 5 50 Hz, and all the con-
sidered algorithms were initialized with f0 5 50.5 Hz. Table 1 
shows that the strictly linear CLMS and LMP and the widely linear 
ACLMS had similar performances in terms of the error percentage 
over a range of SNR. The phase-only LMP outperformed CLMS, as 
it was designed to deal effectively with the phase information and 
the frequency is estimated from the phase in (16). 

FREQUENCY ESTIMATION: VOLTAGE SAGS 
Figure 6 compares performances of the strictly linear CLMS, LMP, 
and LMMP for a system with Type C voltage sag (with characteris-
tic complex voltage V 5 0.7) occurring at t 5 0.05 s, having a 12% 
voltage drop and 9.58 phase angle offset for phases vb and vc. This 
led to an unbalanced system with a degree of noncircularity 
h 5 0.3501 (see Figure 5). The LMMP algorithm showed smallest 
variation whereas the phase error-based LMP algorithm was the 
only unbiased algorithm. None was optimal for the noncircular 
unbalanced three-phase system. 

FREQUENCY ESTIMATION: 
HARMONICS AND CASCADED EVENTS 
Figure 7 illustrates the behavior of ACLMS, LMP, and CLMS for a 
system undergoing a sequence of harmful events. At 
t = 0.05 s, a Type C sag occurred, with around a 12% voltage drop 
and 9.58 phase angle offset in phases vb and vc, leading to an 
unbalanced system with a degree of circularity h 5 0.3501 (see 
Figure 5). There was an inevitable oscillation error at twice of the 
system frequency for both the CLMS- and LMP-based estimation 
due to the undermodeling (see “Suboptimality of Strictly Linear 
Estimators”). The phase error-based LMP algorithm did not 
exhibit the bias encountered by CLMS, whereas the advantage of 
the widely linear ACLMS-based estimator in accurately estimat-
ing the frequency can be seen after convergence (after about 100 
ms). Then at t 5 0.25 s, a Type D sag took place exhibiting a 30% 
voltage drop for phase va and 6.6% voltage drop for both the 
phases vb and vc, together with a 88 phase angle offset, exhibiting 
the degree of noncircularity of h 5 0.3433. Again, the widely lin-
ear ACLMS gave an unbiased estimate, whereas the CLMS was 
not adequate. Finally, after t 5 0.4 s, a 10% of the third harmon-
ic and 10% of the fifth harmonic of the fundamental frequency 

were added into the unbalanced system suffering from the same 
Type D sag to give the circularity index of h 5 0.3920. The 
ACLMS achieved significantly better performance with a smaller 
oscillation error than the strictly linear CLMS and LMP. 

FREQUENCY ESTIMATION: SUPPLY-DEMAND MISMATCH 
Figure 8 illustrates the superior performance of the widely linear 
ACLMS over CLMS for a power system experiencing frequency 
rise and decay due to the G-L mismatch. In the simulations, the 
50 Hz frequency estimate was offset by a Type D unbalanced three-
phase voltage sag, and the frequency rose and decayed at a rate of 
5 Hz/s. The ACLMS algorithm followed the true system frequency 
very closely after an initialization period of around 0.05 s, whereas 
CLMS produced a biased estimate with large error variance. 

[TABLE 1] ABSOLUTE ERROR % FOR THE ESTIMATION 
IN BALANCED SYSTEMS.

SNR [DB] 50 40 30 20 10 

CLMS 0.047% 0.17% 0.53% 2.73% 14.73%

LMP 0.032% 0.11% 0.33% 1.05% 13.72%

ACLMS 0.048% 0.17% 0.53% 1.83% 13.21%
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[FIG6] Frequency estimation for Type C voltage sag.
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[FIG7] Frequency estimation for a cascade of harmful events: 
strictly linear CLMS and LMP versus widely linear ACLMS.
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THEORETICAL PERFORMANCE BOUNDS 
Bias in frequency estimation is particularly damaging, as it indi-
cates nonexisting shifts in frequency (causing alarms), while 
high estimator variance indicates that the algorithm used was 
not adequate. Figure 9 shows statistical bias and variance 

 analysis for all the algorithms considered, conducted in a noisy 
environment by averaging 1,000 independent trials. The CRLB 
was calculated for both the frequency as the only unknown 
parameter (approximate CRLB can be found in [25]) and for a 
general case (frequency, voltages); for more detail, see [30]. 
Compared with CLMS and LMMP, the phase error-based LMP 
achieved smaller bias; the strictly linear CLMS, LMP, and LMMP 
were inadequate for unbalanced system conditions (noncircular), 
their bias was not affected by the noise level. The widely linear 
ACLMS-based estimator was asymptotically unbiased for high 
SNR. Similar conclusions can be drawn for the estimation vari-
ance—the widely linear ACLMS was consistent, approaching the 
CRLBs to within 9 dB in the high SNR region [see Figure 9(b)]. 

SUBOPTIMALITY OF STRICTLY LINEAR ESTIMATORS
Here we give theoretical justification for the suboptimality 
of standard, strictly linear, complex adaptive filters for fre-
quency estimation in unbalanced three-phase voltage sys-
tems. In any unbalanced condition, the expression (21) 
stands, and the estimator v̂ 1k 1 1 2 obtained using strictly 
adaptive algorithms, such as CLMS, LMMP, and LMP can be 
expressed as 

 v̂ 1k 1 1 2 5 1A 1k 2e. 1vkDT1f2 1 B 1k 2e2.1vkDT1f2 2w 1k 2. 
In the steady state, v̂ 1k 1 1 2 < v 1k 1 1 2 , resulting in 

 w 1k 2 5
A 1k 1 1 2e. 1vkDT1f2e jvDT

A 1k 2e.1vkDT1f2 1 B 1k 2e2.1vkDT1f2 

 1
B 1k 1 1 2e2. 1vkDT1f2e2jvDT

A 1k 2e.1vkDT1f2 1 B 1k 2e2.1vkDT1f2. (S2)

Under the standard assumptions that A 1k 1 1 2 < A 1k 2 , 
and B 1k 1 1 2 < B 1k 2 , we have (since sampling frequen-
cy ..  f) 

 w 1k 2 5 e2jvDT 1
ejvDT 2 e2jvDT

1 1
B 1k 2
A 1k 2  e22. 1vkDT1f2, (S3)

where B 1k 2 /A 1k 2  is an unknown parameter and 
w 1k 2 5 w 1k 1 11/2fDT 2 2  is periodic. In (16), the function 
sin21 is monotonic, resulting in periodic oscillations of 
the estimated frequency f̂ 1k 2 . The cycle frequency due 
to undermodeling is 2f  when using standard, strictly 
linear, adaptive filters in unbalanced power systems, 
whereas for balanced power systems B 1k 2  = 0, and the 
standard linear estimate in (16) is adequate.
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[FIG8] Estimation for a mismatch between generation and 
consumption (frequency rise and decay). The widely linear 
ACLMS approached the correct value to within 5% in 50  ms. 

20 25 30 35 40 45 50

10−1

10−2

10−3

10−4

SNR (dB)
Bias

20 25 30 35 40 45 50
SNR (dB)

(a)

(b)

Variance 

P
er

ce
nt

ag
e 

E
rr

or

−110

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

E
st

im
at

io
n 

V
ar

ia
nc

e 
(d

B
)

CLMS and LMP
LMMP ACLMS

CRLB—Frequency Only
CRLB—Multivariate 

CLMS
LMP
LMMP
ACLMS

[FIG9] Bias and variance of the widely linear ACLMS, and the 
strictly linear CLMS, LMP, and LMMP compared to CRLB (curves 
averaged over 1,000 independent trials). (a) Bias: the widely 
linear ACLMS is asymptotically unbiased, followed by LMP and 
(b) variance: the widely linear ACLMS is a consistent estimator.



IEEE SIGNAL PROCESSING MAGAZINE   [53]   SEPTEMBER 2012

FREQUENCY ESTIMATION: REAL WORLD VOLTAGE SAGS 
Real-world three phase voltage sags were recorded at a 
110/20/10 kV transformer station, using the ABB REL 531 numer-
ical line distance protection terminal monitoring “phase-to-
ground” voltages. The device was set to record whenever the 
phase voltage value dropped below 90% of its nominal value for 
longer than 20 ms, and was sampling at 1 kHz; the voltage wave-
forms, normalized with respect to their nominal peak values, are 
shown in Figure 10(a) and (c). In the first case study, a problem in 
phase vc occurred (short circuit with earth), causing a 94% volt-
age drop, while the voltages in phases va and vb kept their nominal 
values to give a degree of noncircularity of h 5 0.8081 (see Figure 
11). In the second case study, at around t = 0.07 s, phase vb experi-
enced a shortcut with earth, resulting in a 65.32% voltage sag and 
79.25% and 21.92% voltage swells in phases va and vc respectively, 
to give a degree of noncircularity of h 5 0.2151 (see Figure 11). 
Figure 10 shows that CLMS was not adequate for the unbalanced 
situation, while ACLMS recovered quickly and was able to accu-
rately estimate the true system frequency at 50 Hz, not indicating 
false alarms. 

SUMMARY AND FUTURE OPPORTUNITIES
We have shown that widely linear estimators of instantaneous sys-
tem frequency are second-order optimal for both balanced and 
unbalanced three-phase systems. Unlike the strictly linear CLMS, 
LMP, and LMMP, the widely linear ACLMS has been shown to yield 
unbiased minimum variance solutions, whereby the performance 
gain over standard methods increases with the degree of system 
imbalance (noncircularity of the phasor). This perfectly suits 
smart grid applications, where severe frequency variations are 
expected due to the on-off switching of subgrids, dual roles of gen-
erators and loads (e.g., PEVs), and false alarms due to voltage sags. 
Widely linear estimation in this context provides new opportuni-
ties, whereby a rigorous account of improperness (second-order 
noncircularity) of the complex ab voltage makes it possible to 
implement fast, accurate, robust, and statistically enhanced solu-
tions for the following: 

 ■ Rapid frequency trackers at the distribution level, which are 
envisaged to become part of many future appliances—smart 
loads must be able to detect rapid frequency changes and take 
appropriate action. 

 ■ Identification and classification of system faults from volt-
age dips, based on their different degrees of noncircularity and 
shapes of circularity diagrams (see Figures 5 and 11). It is criti-
cal that the frequency estimator remains accurate during the 
fault, in order not to send false alarms, and to indicate whether 
the system experienced a one-, two-, or three-phase fault. 

 ■ Rate of change frequency trackers, which are crucial for the 
operation of microgrids and in events of islanding. 

 ■ Loss-of-mains detection in real time, as a drop in frequency 
may indicate loss of a generator, and a rise in frequency loss of 
a load. The way renewables react to these situations depends 
on the type of voltage sag—the widely linear methodology 
enables their identification and tracking at the subcycle scale 
(less than 20 ms). 
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 ■ Optimal operation of microgrids: in a cooperative distribut-
ed mode, we not only must bring in new generators and 
dynamically interconnect the grid, but we also remove low pri-
ority loads when power quality deteriorates. 

 ■ Low-voltage ride through and transient stability routines to 
cater for the bidirectional flow of active and reactive power 
when renewables are profusely used. 

 ■ More degrees of freedom in scheduling routines, since small 
scale renewables are a must-take resource, but are intrinsically 
intermittent—causing system imbalance.
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