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Widely Linear Adaptive Frequency Estimation of
Unbalanced Three-Phase Power Systems

Yili Xia, Student Member, IEEE, and Danilo P. Mandic, Senior Member, IEEE

Abstract—A novel technique for online estimation of the fun-
damental frequency of unbalanced three-phase power systems is
proposed. Based on Clarke’s transformation and widely linear
complex domain modeling, the proposed method makes use of
the full second-order information within three-phase signals, thus
promising enhanced and robust frequency estimation. The struc-
ture, mathematical formulation, and theoretical stability and sta-
tistical performance analysis of the proposed technique illustrate
that, in contrast to conventional linear adaptive estimators, the
proposed method is well matched to unbalanced system conditions
and also provides unbiased frequency estimation. The proposed
method is also less sensitive to the variations of the three-phase
voltage amplitudes over time and in the presence of higher order
harmonics. Simulations on both synthetic and real-world unbal-
anced power systems support the analysis.

Index Terms—Augmented complex least mean square (CLMS)
(ACLMS), complex noncircularity, frequency estimation, unbal-
anced three-phase voltage, widely linear modeling.

I. INTRODUCTION

IN A power system, large dynamics of frequency oscillations
can trigger a breakdown of standard phasor-based frequency

estimation techniques. Since the variations from a nominal
value can indicate unexpected abnormal system conditions and
disturbances, fast and accurate frequency estimation in the
presence of harmonics, noise, and unbalanced voltages has
attracted much attention. A variety of techniques and algo-
rithms have been developed to estimate frequency, for example,
the modified zero-crossing technique [1], [2], phase-locked
loop [3]–[5], least square error-based adaptive filters [6]–[8],
and recursive state estimation-based nonlinear observers and
extended Kalman filters [9]–[11], among which recursive state
estimation-based methods have been shown to achieve accurate
frequency estimation in critical cases under unbalanced voltage
conditions. However, most of these methods, being based on
the measurement of a single phase of the system, are limited in
terms of the characterization of system frequency. In a three-
phase system, if line-to-line voltages are also considered, no
single-phase signal adequately characterizes system frequency
because six different single-phase voltage signals may exist
[12]. Therefore, an optimal solution would be based on a

Manuscript received December 30, 2010; revised March 22, 2011; accepted
May 8, 2011. Date of publication July 7, 2011; date of current version
December 8, 2011. The Associate Editor coordinating the review process for
this paper was Prof. Alessandro Ferrero.

The authors are with the Department of Electrical and Electronic En-
gineering, Imperial College London, SW7 2AZ London, U.K. (e-mail:
yili.xia06@imperial.ac.uk; d.mandic@imperial.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIM.2011.2159409

framework which simultaneously considers all the three-phase
voltages; this would enable a unified estimation of system
frequency as a whole and provide enhanced robustness.

To this end, Clarke’s αβ transformation has been intro-
duced with the aim to construct a complex-valued signal with
the information provided by all the three-phase voltages in
a simultaneous way [13], thus equipping the classical single-
phase methods with more robustness in characterizing system
frequency. Based on this transformation, a number of solutions
have been developed in the complex domain C [14]–[19].
Among them, adaptive algorithms based on the minimization
of the mean square error are widely used owing to their sim-
plicity, computational efficiency, and robust performance on
frequency estimation in the presence of noise and harmonic
distortions. However, in critical cases under unbalanced voltage
conditions, such as when different amplitudes within the three-
phase source voltage or a voltage sag in one or two phases is
taking place, standard phase angle calculation techniques used
in a linear adaptive filter have proven suboptimal, resulting
in an unavoidable oscillatory estimation error. This problem
has been discussed in [20], where the complex-valued signal
obtained from an unbalanced three-phase voltage source was
represented as an orthogonal sum of the positive and negative
sequences. Since the standard complex linear adaptive filter can
only account for the positive sequences, the negative sequences
introduce inevitable estimation error oscillating at twice the
system frequency; recent attempts to estimate frequency under
unbalanced conditions using the information extracted by all
the three-phase voltages can be found in [21]–[23].

In this paper, the issue of frequency estimation using adaptive
filters under unbalanced conditions is addressed based on the
widely linear modeling of the complex-valued signal, derived
from three-phase voltages by the αβ transformation. Using
recent advances in augmented complex-valued second-order
statistics, we illustrate that, under unbalanced conditions, the
complex-valued signal is second order noncircular (improper),
for which the probability density function is not rotation in-
variant. For the modeling of noncircular signals, the standard
linear estimation, which is based on the covariance matrix of
a complex-valued random vector x, i.e., Cxx = E[xxH ], is
not adequate, and the pseudocovariance matrix Pxx = E[xxT ]
should also be taken into account to describe the complete
second-order behavior [24], [25]. In practice, this is achieved
by virtue of widely linear modeling [24], [26], where both x
and its complex conjugate x∗ are combined into the augmented
input xa = [xT ,xH ]T . Therefore, to deal with online frequency
estimation of noncircular signals, we here propose to use a
widely linear modeling-based adaptive filtering method.
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This paper is organized as follows. In Section II, an overview
of widely linear estimation and second-order augmented com-
plex statistics is provided. In Section III, the noncircular nature
of the complex-valued signal generated from the αβ transfor-
mation of unbalanced three-phase voltages is illustrated, and a
robust frequency calculation method is derived based on widely
linear modeling. In Section IV, to illustrate the suitability of the
proposed method, the augmented complex least mean square
(CLMS) (ACLMS) algorithm [27] is used, and its superiority
over the standard CLMS algorithm [16] is illustrated through
analysis and via simulations on various unbalanced conditions
and also in the presence of different levels of noise and higher
order harmonics. Finally, Section V concludes this paper.

II. PRELIMINARIES

A. Widely Linear Modeling

Consider a real-valued conditional mean estimator ŷ =
E[y|x], which estimates the signal y based on the observation
x. For zero mean, jointly normal y and x, the optimal solution
is the linear model, ŷ = xT h, where h = [h1, . . . , hL]T is
a vector of fixed filter coefficients, x = [x1, . . . , xL]T is the
regressor vector, and (·)T is the vector transpose operator. In
the complex domain, it is normally assumed that we can use
the same form of estimator, leading to the standard complex
linear minimum mean square error estimator

ŷ = ŷr + jŷi = xT h (1)

where j =
√
−1 and subscripts r and i denote the real and

imaginary parts of a complex variable, respectively. Note, how-
ever, that both the real and imaginary parts of complex variables
are real valued, i.e., yr, yi ∈ R; hence

ŷr = E[yr|xr, xi], ŷi = E[yi|xr, xi] (2)

and a more general form of (1) can be expressed as

ŷ = E[yr|xr, xi] + jE[yi|xr, xi]. (3)

Using xr = (x + x∗)/2 and xi = (x − x∗)/2j, we arrive at

ŷ = E[yr|x, x∗] + jE[yi|x, x∗] = E[y|x,x∗] (4)

that is, for an optimal linear estimator of the generality of
complex signals, the “augmented” input [xT ,xH ]T must be
used, leading to the widely linear estimator for complex valued
data [24]

ŷ = hT x + gT x∗ = xT h + xHg (5)

where h and g are complex-valued coefficient vectors. The
widely linear model naturally collapses into the strictly linear
model (g = 0) for proper data.

B. Augmented Complex Statistics

In practice, the widely linear estimate in (5) is based on a re-
gressor vector produced by concatenating the input vector bfx
with its conjugate x∗, to give an augmented 2L × 1 input vector

xa = [xT ,xH ]T , together with the corresponding augmented
coefficient vector wa = [hT ,gT ]T . The 2L × 2L augmented
covariance matrix [25] then becomes

Ca
xx = E

[
x
x∗

] [
xHxT

]
=

[
Cxx Pxx

P∗
xx C∗

xx

]
(6)

and contains the full second-order statistical information. From
(6), it is clear that the covariance matrix Cxx = E[xxH ] alone
does not have sufficient degrees of freedom to describe full
second-order statistics, and in order to make use of all the
available second-order information, we also need to consider
the pseudocovariance matrix Pxx = E[xxT ]. Processes with
the vanishing pseudocovariance Pxx = 0 are termed second
order circular (or proper); however, at present, in most real-
world applications, complex signals are considered second
order noncircular or improper.

III. FREQUENCY ESTIMATION BASED ON WIDELY

LINEAR ADAPTIVE FILTERING

The voltages in the power system in a noise-free environment
can be represented in a discrete time form as

va(k) = Va(k) cos(ωk�T + φ)

vb(k) = Vb(k) cos
(

ωk�T + φ − 2π

3

)
vc(k) = Vc(k) cos

(
ωk�T + φ +

2π

3

)
(7)

where Va(k), Vb(k), and Vc(k) are the peak values of each
fundamental voltage component at time instant k, �T is the
sampling interval, φ is the phase of the fundamental component,
and ω = 2πf is the angular frequency of the voltage signal,
with f being the system frequency. The time-dependent three-
phase voltage is conveniently transformed by the orthogonal
αβ0 transformation matrix [13] into a zero-sequence v0 and
direct- and quadrature-axis components, vα and vβ , as Clarke’s
transform⎡⎣ v0(k)

vα(k)
vβ(k)

⎤⎦ =

√
2
3

⎡⎣
√

2
2

√
2

2

√
2

2
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

⎤⎦ ⎡⎣ va(k)
vb(k)
vc(k)

⎤⎦ . (8)

The factor
√

2/3 is used to ensure that the system power
is invariant under this transformation. When Va(k), Vb(k),
and Vc(k) are identical, v0(k) = 0, vα(k) = A cos(ωkΔT +
φ), and vβ(k) = A cos(ωkΔT + φ + (π/2)), with a constant
amplitude A, where vα(k) and vβ(k) are the orthogonal coor-
dinates of a point whose position is time variant at a rate pro-
portional to the system frequency. In practice, normally, only
the vα and vβ parts are used in the modeling [14] (known as the
αβ transformation), whereas the zero-sequence component v0

is not necessary for analysis. The complex voltage signal v(k)
of the system, which serves as the desired signal in adaptive
frequency estimation, is therefore given by

v(k) = vα(k) + jvβ(k) (9)
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Fig. 1. Geometric view of circularity and noncircularity via a
“real–imaginary” scatter plot in the complex plane. The circle denoted
by “+” represents a circular complex-valued signal v(k) obtained from a
balanced situation where Va(k), Vb(k), and Vc(k) are identical at 1 p.u. and
time invariant. The ellipse denoted by “◦” represents a noncircular complex-
valued v(k) obtained in an unbalanced condition with Va(k) = 1 p.u.,
Vb(k) = 0.7 p.u., and Vb(k) = 0.5 p.u.

and can be estimated iteratively as

v(k + 1) = A(k + 1)ej(ω(k+1)ΔT+φ)

= AejωΔTej(ωkΔT+φ) = v(k)ejωΔT (10)

where the instantaneous system frequency f is represented
by the phasor ejωΔT (f = (ω/2π)). Observe that, in normal
operating conditions, samples of v(k) are located on a circle in
the complex plane with a constant radius A, depicted by “+”
in Fig. 1. For a constant sampling frequency, the probability
density function of v(k) is rotation invariant since v and vejθ

have the same distribution for any real θ. This, in turn, means
that v(k) is second order circular [28], and in this case, the fre-
quency estimation can be performed adequately by a standard
linear adaptive filter, based on the strictly linear model in (1).

The CLMS algorithm [29], which is widely used in sig-
nal processing applications, has also been used for fre-
quency estimation of three-phase voltages [16] and can be
summarized as

v̂(k + 1) = v(k)w(k)

e(k) = v(k + 1) − v̂(k + 1)

w(k + 1) = w(k) + μe(k)v∗(k) (11)

where w(k) is the weight coefficient at time instant k, v̂(k + 1)
is the estimate of desired signal v(k + 1), e(k) is the esti-
mation error, and μ is the step size. Comparing (10) and the
linear estimation model in (11), the system frequency can be
estimated from

f̂(k) =
1

2πΔT
sin−1 (� (w(k))) . (12)

However, when the three-phase power system deviates from
its normal condition, such as when the three channel voltages

exhibit different levels of dips or transients, voltages Va(k),
Vb(k), and Vc(k) are not identical, and samples of v(k) are not
allocated on a circle with a constant radius, as illustrated by the
ellipse denoted by “◦” in Fig. 1, causing the iterative model of
v(k) stated in (10) to break down. In this case, the distribution
of v(k) is rotation dependent (noncircular), and the signal is
accurately expressed (see Appendix A for the derivation) only
by using the widely linear model in (5), i.e.,

v(k) = A(k)ej(ωkΔT+φ) + B(k)e−j(ωkΔT+φ). (13)

In other words, when Va(k), Vb(k), and Vc(k) are not identical,
A(k) is no longer a constant, and B(k) �= 0, introducing a
rotation-variant probability density function, implying that, in
unbalanced conditions, v(k) exhibits a certain degree of noncir-
cularity. Since the widely linear model in (5) is the only second-
order optimal estimator for improper data, both v(k) and its
complex conjugate v∗(k) should be considered in the frequency
estimation in unbalanced cases, i.e.,

v̂(k + 1) = v(k)h(k)︸ ︷︷ ︸
standard update

+ v∗(k)g(k)︸ ︷︷ ︸
conjugate update

(14)

where h(k) and g(k) are the filter weight coefficients corre-
sponding to the standard and conjugate updates at time instant
k, respectively, and the estimation error e(k) and the cost
function J (k) can be defined as

e(k) = v(k + 1) − v̂(k + 1) andJ (k) = |e(k)|2 = e(k)e∗(k).
(15)

The update of both the standard and the conjugate term weight
coefficient can be obtained by using the steepest descent
gradient as

h(k + 1) =h(k) − μ∇hJ (k) (16)

g(k + 1) = g(k) − μ∇gJ (k) (17)

where the gradients (see [26] for more detail)

∇hJ (k) =
∂J (k)
∂h∗(k)

= e(k)
∂e∗(k)
∂h∗(k)

+ e∗(k)
∂e(k)
∂h∗(k)

(18)

∇gJ (k) =
∂J (k)
∂g∗(k)

= e(k)
∂e∗(k)
∂g∗(k)

+ e∗(k)
∂e(k)
∂g∗(k)

. (19)

Since

e∗(k) = v∗(k + 1) − v∗(k)h∗(k) − v(k)g∗(k) (20)

and ∂e(k)/∂h∗(k) = ∂e(k)/∂g∗(k) = 0, we obtain

∇hJ (k) = −e(k)v∗(k) (21)

∇gJ (k) = −e(k)v(k) (22)

giving the updates of the standard and conjugate weight coeffi-
cients h(k) and g(k) in the form

h(k + 1) = h(k) + μe(k)v∗(k) (23)

g(k + 1) = g(k) + μe(k)v∗(k). (24)
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Equations (23) and (24) describe the so-called ACLMS al-
gorithm [27], which is designed for training widely linear
adaptive filters. The stability of such a closed-loop adaptive
system based on ACLMS deserves more insights and is given
in Appendix B. To introduce the corresponding ACLMS-based
frequency estimation method for the three-phase unbalance
system, by substituting (13) into (14), the estimate v̂(k + 1) can
be expressed as

v̂(k+1)=A(k)h(k)ej(ωkΔT+φ)+B(k)h(k)e−j(ωkΔT+φ)

+ A∗(k)g(k)e−j(ωkΔT+φ)+B∗(k)g(k)ej(ωkΔT+φ)

= (A(k)h(k)+B∗(k)g(k)) ej(ωkΔT+φ)

+ (A∗(k)g(k)+B(k)h(k)) e−j(ωkΔT+φ) (25)

while from (13), the expression for v(k + 1) can be
rewritten as

v(k + 1) = A(k + 1)ejωΔTej(ωkΔT+φ)

+ B(k + 1)e−jωΔTe−j(ωkΔT+φ). (26)

Therefore, at the steady state, the first term on the right-
hand side (RHS) of (26) can be estimated approximately by
its counterpart in (25); hence, the term ejωΔT containing the
frequency information can be estimated as

ejω̂ΔT =
A(k)h(k) + B∗(k)g(k)

A(k + 1)
. (27)

Comparing the second term on the RHS of (25) and (26), the
evolution of the term e−jωΔT can be expressed as

e−jω̂ΔT =
A∗(k)g(k) + B(k)h(k)

B(k + 1)
. (28)

Upon taking the complex conjugate, we obtain

ejω̂ΔT =
A(k)g∗(k) + B∗(k)h∗(k)

B∗(k + 1)
. (29)

We here adopt the assumptions held implicitly in frequency
estimation by adaptive filtering algorithms that A(k + 1) ≈
A(k) and, also, B(k + 1) ≈ B(k), and thus, (27) and (29) can
be simplified as

ejω̂ΔT =h(k) +
B∗(k)
A(k)

g(k) (30)

ejω̂ΔT =h∗(k) +
A(k)
B∗(k)

g∗(k). (31)

As shown in (41) in Appendix A, the coefficient A(k) is
real valued, whereas B(k) is complex valued, and thus,
(B∗(k)/A(k)) = (B(k)/A(k))∗. Since (30) should be equal
to (31), using a(k) = (B(k)/A(k))∗, we can find the form of
a(k) by solving the following quadratic equation with complex-
valued coefficients:

g(k)a2(k) + (h(k) − h∗(k)) a(k) − g∗(k) = 0. (32)

The discriminant of this quadratic equation is given by

� =
√

(h(k) − h∗(k))2 + 4 |g(k)|2

= 2
√

−�2 (h(k)) + |g(k)|2 (33)

where the operator �(·) represents the imaginary part of a
complex-valued number. Since a(k) is complex valued, the
discriminant is negative, and the two roots can be found as

a1(k) =
−j� (h(k)) + j

√
�2 (h(k)) − |g(k)|2

g(k)

a2(k) =
−j� (h(k)) − j

√
�2 (h(k)) − |g(k)|2

g(k)
. (34)

From (30), the phasor ejω̂ΔT is estimated either by using
h(k) + a1(k)g(k) or h(k) + a2(k)g(k). Since the system fre-
quency is far smaller than the sampling frequency, the imagi-
nary part of ejω̂ΔT is positive, thus excluding the solution based
on a2(k). The system frequency f̂(k) is therefore estimated in
the form

f̂(k) =
1

2πΔT
sin−1 (� (h(k) + a1(k)g(k))) . (35)

The aforementioned equation is a generic widely linear exten-
sion of the standard linear frequency estimation method and
can be implemented by any type of widely linear adaptive filter
[30], [31]. In addition, when the system is balanced, g(k) = 0,
and the estimator in (35) simplifies into the standard linear
CLMS-based estimation.

IV. SIMULATIONS

The adaptive frequency estimator in (35) based on the widely
linear ACLMS algorithm was applied to estimate the funda-
mental frequency variations from sampled values of voltage
signals across several typical power system operating condi-
tions and was compared with the standard CLMS algorithm in
(12). Simulations were performed in the Matlab programming
environment with a sampling rate of 5 kHz, and the step size
μ of both algorithms was set to be 0.01 in all simulations. To
quantify the degree of noncircularity in different unbalanced
conditions, the circularity index η was used, given by [32]

η =
τ2
v

σ2
v

(36)

where σ2
v = E[v(k)v∗(k)] is the variance of v and τ2

v =
|E[v(k)2]| is the absolute value of the pseudovariance of v. The
values of the noncircularity index η lie in the interval [0, 1], the
value of 0 indicating that v(k) is perfectly circular, otherwise
indicating a second-order noncircular (improper) v(k).

In the first set of simulations, the simulated power system
was in its normal operating condition at 50 Hz, with a balanced
distortion-free three-phase input signal with unity magnitude,
as shown in Fig. 2(a) (left-hand part). Both algorithms were
initialized at 50.5 Hz and converged to 50 Hz in a very similar
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Fig. 2. Frequency estimation under unbalanced conditions. (a) To generate
an unbalanced condition, an extra 0.1-p.u. magnitude was imposed on (dashed
line) phase b and (thick line) phase c, plus a 0.05-p.u. magnitude on (solid line)
phase a, and subsequently, a 100% single-phase voltage sag in the third channel
of three-phase system occurred at t = 0.15 s. (b) Frequency estimation by both
algorithms for up to 0.15 s. The frequency parameter of both linear and widely
linear adaptive filters was initialized at 50.5 Hz, with the true system frequency
at 50 Hz.

way, as shown in Fig. 2(b). In a balanced condition, the circu-
larity index was η = 0, indicating a perfect circular v(k). Then,
an extra 0.1-per-unit (p.u.) magnitude was imposed on phases b
and c, together with a 0.05-p.u. magnitude on phase a, leading
to an unbalanced three-phase power system and, consequently,
a noncircular complex-valued input signal v(t) from t = 0.05 s,
with the noncircularity index η = 0.0306. There was an in-
evitable oscillation error at twice the system frequency of
100 Hz when using the linear CLMS algorithm (see right-hand
part of Fig. 2(b), and the reason is given in Appendix C) due
to its submodeling of the unbalanced widely linear system,
whereas the capacity of the proposed method in accurately esti-
mating (no steady-state errors) the frequency in an unbalanced
situation can clearly be observed. To illustrate the statistical
advantage of the ACLMS-based estimator over the CLMS-
based estimator, we next performed bias and variance analysis
of both algorithms in a noisy environment. According to (13)
and following the approach in [33], the Cramer–Rao lower
bound (CRLB), which characterizes the variance of a frequency
estimator on a single tone exponential contaminated by zero-
mean complex-valued doubly white Gaussian noise1 with vari-
ance σ2

n, can be expressed as (37), shown at the bottom of the
page. Fig. 3(a) and (b) illustrates the statistical bias and variance
performance of CLMS and ACLMS on frequency estimation
of the unbalanced system against different levels of noise. The
result was obtained by averaging 1000 independent trails. The

1For white Gaussian noise, n = nr + jni, σ2
nr

= σ2
ni

= (1/2)σ2
n, and

double whiteness implies the uncorrelated real and imaginary channels.

unbiased property of the ACLMS estimator can be observed in
the high SNR region, whereas due to the submodeling, CLMS
always performed a biased estimation. In Fig. 3(b), the ACLMS
achieved a very small error variance approaching the CRLB
within 4 dB when the SNR was between 30 and 50 dB. It is
also interesting to note that the error variance of CLMS was
nearly unaffected by the noise. This is due to the fact that,
compared with noise, the unavoidable estimation oscillation
error experienced by CLMS [which can be observed from
Fig. 2(b)] constituted the major part of the estimation variance.

In the next simulation, a 100% single-phase voltage sag
suddenly occurred at 0.15 s in channel c (Vc = 0) of the un-
balanced three-phase system with the degree of noncircularity
η = 0.8004; the geometric illustration of the noncircularity of
v(k) is shown in Fig. 4. The tracking performance in Fig. 5
shows that the CLMS algorithm lost its frequency tracking
capability, whereas after convergence, the ACLMS algorithm
was able to accurately track the system frequency, with no
oscillations.

The second set of simulations addressed the impact of os-
cillatory variations of magnitude on the estimated frequency.
In this case study, at t = 0.05 s, the magnitudes of bal-
anced three-phase voltages changed from their normal val-
ues according to Va(k) = 1 + 0.05 sin(2πkΔT), Vb(k) = 1 +
0.1 sin(2πkΔT), and Vc(k) = 1 + 0.15 sin(2πkΔT), causing
a noncircular behavior of v(k) with a degree of noncircularity
η = 0.0012. Fig. 6 shows that the tracking performance of the
proposed ACLMS-trained widely linear estimator exhibited a
very small oscillatory steady-state error with a maximum of
0.01 Hz, whereas the CLMS-based estimator diverged. This
small oscillatory steady-state error of the ACLMS stems from
the assumptions [see the simplification of (27) and (29)] that,
at two successive time instants, A(k + 1) ≈ A(k) and B(k +
1) ≈ B(k).

The next set of simulations shows that, when the input signal
is contaminated with harmonics, the estimated frequency is sub-
ject to an oscillatory steady-state error. In Fig. 7(a), a balanced
10% third harmonic and a 5% fifth harmonic of the fundamental
frequency were added into the unbalanced three-phase power
system at t = 0.05 s. The ACLMS algorithm achieved better
performance with a smaller oscillation error at the steady state
as compared with the CLMS algorithm; this advantage was
most pronounced when the magnitudes of the third and fifth
harmonics varied over a range of (0.0–0.5) p.u., as shown in
Fig. 7(b), with the corresponding degree of noncircularity η
varying from 0.0306 to 0.0413.

In the following set of simulations, the performances of the
proposed widely linear ACLMS and the strictly linear CLMS
were compared for the case of frequency variation. In Fig. 8(a),
a balanced voltage signal was affected by the 2-Hz step change
in frequency from 50 to 52 Hz at 0.05 s. In this case, both

var(f̂) ≥ σ2
n

2
∑K

k=0(2πkΔT)2
(
(A(k) + B(k))2 sin2(2πfkΔT + φ) + (A(k) − B(k))2 cos2(2πfkΔT + φ)

) (37)
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Fig. 3. Comparison of the proposed ACLMS and CLMS at different SNRs, obtained by averaging 1000 independent trials. (a) Bias error. (b) Variance.

Fig. 4. Geometric view of the noncircularity of v(k) via a “real–imaginary”
scatter plot when a 100% single-phase voltage sag happened in phase channel
c (Vc = 0).

Fig. 5. Frequency estimation by the standard and widely linear algorithms for
up to 0.7 s. The voltage sag occurred at t = 0.15 s.

algorithms achieved accurate frequency estimation; however,
at t = 0.3 s when the system signal became unbalanced and
the frequency was simultaneously changed back to 50 Hz, the

Fig. 6. Impact of oscillatory variations of amplitude on the frequency estima-
tion by CLMS and ACLMS.

ACLMS algorithm could still track the system frequency with
no steady-state error, whereas the CLMS algorithm suffered
from the oscillation error. In Fig. 8(b), the 50-Hz fundamental
frequency of the unbalanced signal arose and decayed at a rate
of 5 Hz/s; the estimated frequency obtained by the ACLMS
algorithm followed the actual system frequency very closely
with a delay of 0.05 s.

In the last set of simulations, we considered a real-world
problem, where unbalanced three-phase voltages were recorded
at a 110/20/10 kV transformer station. The REL 531 numerical
line distance protection terminal, produced by ABB Ltd., was
installed in the station and was used to monitor changes in the
three “phase-ground” voltages. The device was set to record
whenever the phase voltage value dropped below 90% of its
norminal value for longer than 20 ms. The measured three
“phase-ground” voltages with a system frequency of 50 Hz
were sampled at 1 kHz and were normalized with respect to
their normal peak voltage value. Two case studies are pro-
vided. In the first case, as shown in Fig. 9(a), at around t =
0.06 s, phase va experienced a shortcut with earth, and the
voltage dropped to 44% of its normal value. Meanwhile, both
phases vb and vc experienced 36% and 50% voltage swells,
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Fig. 7. Frequency estimation for phase voltages contaminated with harmonics. (a) 10% p.u. third harmonic and 5% p.u. fifth harmonic were added into the
unbalanced power system at t = 0.05 s. (b) Mean percentage error of CLMS and ACLMS algorithms over a range of amplitudes of both third harmonic and fifth
harmonic at the steady state.

Fig. 8. Frequency estimation under frequency variations. (a) Unbalanced and noncircular system input suffered from sudden frequency changes. (b) Unbalanced
and noncircular system input suffered from the frequency rise and decay at a rate of 5 Hz/s.

Fig. 9. Frequency estimation for real-world unbalanced three-phase voltage. (a) Time series of the real-world unbalanced three-phase voltage, where va

experienced a shortcut with earth. (b) Frequency estimation of both algorithms. (c) Time series of the real-world unbalanced three-phase voltage, where both
va and vc experienced shortcuts with earth. (d) Frequency estimation of both algorithms.

respectively, giving a degree of noncircularity of η = 0.0333.
In the second case study, as shown in Fig. 9(c), at around
t = 0.07 s, both phases va and vc experienced shortcuts with

earth, resulting in 20% and 11% voltage drops, respectively, and
a 41% voltage swell in phase vb, giving a degree of noncircu-
larity of η = 0.0705. The frequency tracking capabilities of the
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proposed ACLMS and standard CLMS methods are shown in
Fig. 9(b) and (d). Both methods provided accurate responses
under normal operating conditions; however, as expected, the
CLMS failed to deal with unbalanced situations, whereas the
fluctuations of the estimated frequency produced by ACLMS
were much lower than those of the CLMS method.

V. CONCLUSION

We have shown that the complex-valued signal, obtained
from the αβ transformation of unbalanced three-phase volt-
ages, is second order noncircular (improper), which renders
strictly linear adaptive filtering-based frequency estimation
methods suboptimal. To deal with frequency estimation based
on noncircular signals, a widely linear adaptive filter and a
corresponding robust frequency estimation method have been
introduced, achieving enhanced performance under various un-
balanced conditions. The proposed method has also been shown
to be less sensitive to higher order harmonics and noises as
compared with standard linear adaptive filters. Simulations over
a range of unbalanced system conditions support the approach.

APPENDIX A

From the standard three-phase system in (7) and (8), the
components vα(k) and vβ(k) of the complex voltage v(k) =
vα(k) + jvβ(k), obtained using the αβ transformation, can be
derived as

vα(k)=
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2
3

(
va(k)− vb(k)

2
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2

)
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cos(ωk�T + φ) =
ej(ωk�T+φ) + e−j(ωk�T+φ)

2

sin(ωk�T + φ) =
ej(ωk�T+φ) − e−j(ωk�T+φ)

2j
(40)

we have
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Then, the complex-valued v(k) in (41) can be written in the
form of a standard part (left-hand term) and a conjugate part
(right-hand term). Augmented complex statistics [26], [28]
shows that v(k) is second order circular with a rotation-
invariant probability density function in the complex plane if
and only if B(k) vanishes and A(k) is a constant, which can
only be achieved when Va(k), Vb(k), and Vc(k) are identical at
each time instant and (41) simplifies into (10). In unbalanced
conditions, A(k) is a real-valued variable, but B(k) �= 0 and
can be complex valued, which results in a rotation-variant
distribution of v(k) in the complex plane and a second-order
noncircular v(k).

APPENDIX B

This appendix outlines the theoretical stability analysis of the
proposed three-phase frequency estimator using the ACLMS
algorithm [27]. To achieve this, using the widely linear es-
timator in (5), the augmented weight vector and augmented
input vector are defined as wa(k) = [h(k), g(k)]T and va(k) =
[v(k), v∗(k)]T . The widely linear estimate of the desired signal
v(k + 1) thus becomes

v(k + 1) = v(k)ho + v∗(k)go

=vaT (k)wa
o (42)

where ho and go are the optimal weight coefficients for the
standard and the conjugate part, respectively, the optimal aug-
mented filter weight vector wa

o = [ho, go]T , and the weight er-
ror vector w̃a(k) = wa

o − wa(k). The evolution of the weight
error vector can be analyzed based on (23) and (24) as

w̃a(k + 1) = w̃a(k) − μe(k)va∗(k) (43)

where the widely linear output error

e(k) = v(k + 1) − v̂(k + 1)

=vaT (k)w̃a(k). (44)

Substituting (44) into (43) gives

w̃a(k + 1) =
(
1 − μvaT (k)va∗(k)

)
w̃a(k). (45)

Taking the statistical expectation of the aforementioned equa-
tion and following the standard convergence analysis, we obtain
[26], [34] ∣∣1 − 2μσ2

v

∣∣ < 1 (46)

to give

0 < μ <
1
σ2

v

(47)

where σ2
v is the variance of v(k). Comparing with the conver-

gence analysis of the CLMS algorithm given in [16], the upper
bound for the step size of ACLMS is half that of CLMS. For

more details on the convergence analysis of ACLMS, see [34]
and [35].

APPENDIX C

This appendix gives a theoretical illustration of the subopti-
mality of strictly linear adaptive filters for frequency estimation
of unbalanced three-phase voltage systems. The strictly linear
CLMS algorithm used in standard frequency estimation is sum-
marized in [16]. In any unbalanced condition, (13) stands, and
the estimator v̂(k + 1), obtained by using the CLMS algorithm,
can be expressed as

v̂(k + 1) =
(
A(k)ej(ωkΔT+φ) + B(k)e−j(ωkΔT+φ)

)
w(k).

In the steady state, v̂(k + 1) ≈ v(k + 1), resulting in

w(k)

=
A(k+1)ej(ωkΔT+φ)ejωΔT+B(k+1)e−j(ωkΔT+φ)e−jωΔT

A(k)ej(ωkΔT+φ)+B(k)e−j(ωkΔT+φ)
.

Under the standard assumptions that A(k + 1) ≈ A(k) and
B(k + 1) ≈ B(k), we have

w(k) = e−jωΔT +
ejωΔT − e−jωΔT

1 + B(k)
A(k)e

−2j(ωkΔT+φ)
(48)

where (B(k)/A(k)) is an unknown parameter and w(k) is
periodic as w(k) = w(k + (1/2fΔT)). In (12), function sin−1

is a monotonic function, resulting in periodic oscillations in
the estimated frequency f̂(k). The cycle frequency due to
undermodeling is 2f when using standard linear adaptive filters
for frequency estimation of unbalanced power systems, whereas
for balanced power systems, B(k) = 0, and the standard linear
estimate in (12) is adequate.

ACKNOWLEDGMENT

The authors would like to thank Z. Blazic of Elektroprenos,
BiH, for providing real-world data, fruitful discussions, and
expert advice.

REFERENCES

[1] G. P. Hancke, “The optimal frequency estimation of a noisy sinusoidal
signal,” IEEE Trans. Instrum. Meas., vol. 39, no. 6, pp. 843–846,
Dec. 1990.

[2] O. Vainio and S. Ovaska, “Digital filtering for robust 50/60 Hz
zero-crossing detectors,” IEEE Trans. Instrum. Meas., vol. 45, no. 2,
pp. 426–430, Apr. 1996.

[3] V. Kaura and V. Blasko, “Operation of a phase locked loop system
under distorted utility conditions,” IEEE Trans. Ind. Appl., vol. 33, no. 1,
pp. 58–63, Jan./Feb. 1997.

[4] S. K. Chung, “A phase tracking system for three phase utility interface
inverters,” IEEE Trans. Power Electron., vol. 15, no. 3, pp. 431–438,
May 2000.

[5] H. Karimi, M. Karimi-Ghartemani, and M. R. Iravani, “Estimation of
frequency and its rate of change for applications in power systems,” IEEE
Trans. Power Del., vol. 19, no. 2, pp. 472–480, Apr. 2004.

[6] M. S. Sachdev and M. M. Giray, “A least square technique for determining
power system frequency,” IEEE Trans. Power App. Syst., vol. PAS-104,
no. 2, pp. 437–444, Feb. 1985.



XIA AND MANDIC: ADAPTIVE FREQUENCY ESTIMATION OF UNBALANCED THREE-PHASE POWER SYSTEMS 83

[7] I. Kamwa and R. Grondin, “Fast adaptive schemes for tracking voltage
phasor and local frequency in power transmission and distribution sys-
tems,” IEEE Trans. Power Del., vol. 7, no. 2, pp. 789–795, 1992.

[8] V. V. Terzija, “Improved recursive Newton-type algorithm for frequency
and spectra estimation in power systems,” IEEE Trans. Instrum. Meas.,
vol. 52, no. 5, pp. 1654–1659, Oct. 2003.

[9] F. Nagy, “Measurement of signal parameters using nonlinear observers,”
IEEE Trans. Instrum. Meas., vol. 41, no. 1, pp. 152–155, Feb. 1992.

[10] P. K. Dash, R. K. Jena, G. Panda, and A. Routray, “An extended complex
Kalman filter for frequency measurement of distorted signals,” IEEE
Trans. Instrum. Meas., vol. 49, no. 4, pp. 746–753, Aug. 2000.

[11] A. Routray, A. K. Pradhan, and K. P. Rao, “A novel Kalman filter for
frequency estimation of distorted signals in power systems,” IEEE Trans.
Instrum. Meas., vol. 51, no. 3, pp. 469–479, Jun. 2002.

[12] V. Eckhardt, P. Hippe, and G. Hosemann, “Dynamic measuring of fre-
quency and frequency oscillations in multiphase power systems,” IEEE
Trans. Power Del., vol. 4, no. 1, pp. 95–102, Jan. 1989.

[13] E. Clarke, Circuit Analysis of A.C. Power Systems. New York: Wiley,
1943.

[14] M. Akke, “Frequency estimation by demodulation of two complex sig-
nals,” IEEE Trans. Power Del., vol. 12, no. 1, pp. 157–163, Jan. 1997.

[15] A. Cataliotti, V. Cosentino, and S. Nuccio, “A phase-locked loop for the
synchronization of power quality instruments in the presence of stationary
and transient disturbances,” IEEE Trans. Instrum. Meas., vol. 56, no. 6,
pp. 2232–2239, Dec. 2007.

[16] A. K. Pradhan, A. Routray, and A. Basak, “Power system frequency
estimation using least mean square technique,” IEEE Trans. Power Del.,
vol. 20, no. 3, pp. 1812–1816, Jul. 2005.

[17] B. Subudhi, P. K. Ray, S. R. Mohanty, and A. M. Panda, “A comparative
study on different power system frequency estimation techniques,” Int. J.
Autom. Control, vol. 3, no. 2/3, pp. 202–215, May 2009.

[18] P. K. Dash, A. K. Pradhan, and G. Panda, “Frequency estimation of
distorted power system signals using extended complex Kalman filter,”
IEEE Trans. Power Del., vol. 14, no. 3, pp. 761–766, Jul. 1999.

[19] M. M. Canteli, A. O. Fernandez, L. I. Eguiluz, and C. R. Estebanez,
“Three-phase adaptive frequency measurement based on Clarke’s trans-
formation,” IEEE Trans. Power Del., vol. 21, no. 3, pp. 1101–1105,
Jul. 2006.

[20] D. Beeman, Industrial Power System Handbook. New York:
McGraw-Hill, 1955.

[21] H. S. Song and K. Nam, “Instantaneous phase-angle estimation algorithm
under unbalanced voltage sag conditions,” Proc. Inst. Elect. Eng.—Gen.
Transm. Distrib., vol. 147, no. 6, pp. 409–415, Nov. 2000.

[22] P. Rodriguez, J. Pou, J. Bergas, J. I. Candela, R. P. Burgos, and
D. Boroyevich, “Decoupled double synchronous reference frame PLL for
power converter control,” IEEE Trans. Power Electron., vol. 22, no. 2,
pp. 584–592, Mar. 2007.

[23] M. Mojiri, D. Yazdani, and A. Bakhshai, “Robust adaptive frequency
estimation of three-phase power system,” IEEE Trans. Instrum. Meas.,
vol. 59, no. 7, pp. 1793–1802, Jul. 2010.

[24] B. Picinbono and P. Chevalier, “Widely linear estimation with com-
plex data,” IEEE Trans. Signal Process., vol. 43, no. 8, pp. 2030–2033,
Aug. 1995.

[25] P. J. Schreier and L. L. Scharf, “Second-order analysis of improper com-
plex random vectors and process,” IEEE Trans. Signal Process., vol. 51,
no. 3, pp. 714–725, Mar. 2003.

[26] D. P. Mandic and S. L. Goh, Complex Valued Nonlinear Adaptive Filters:
Noncircularity, Widely Linear and Neural Models. Hoboken, NJ: Wiley,
2009.

[27] S. Javidi, S. L. Goh, M. Pedzisz, and D. P. Mandic, “The augmented com-
plex least mean square algorithm with application to adaptive prediction
problems,” in Proc. 1st IARP Workshop Cogn. Inform. Process., 2008,
pp. 54–57.

[28] B. Picinbono, “On circularity,” IEEE Trans. Signal Process., vol. 42,
no. 12, pp. 3473–3482, Dec. 1994.

[29] B. Widrow, J. McCool, and M. Ball, “The complex LMS algorithm,” Proc.
IEEE, vol. 63, no. 4, pp. 719–720, Apr. 1974.

[30] S. L. Goh and D. P. Mandic, “An augmented extended Kalman filter al-
gorithm for complex-valued recurrent neural networks,” Neural Comput.,
vol. 19, no. 4, pp. 1039–1055, Apr. 2007.

[31] Y. Xia, B. Jelfs, M. M. V. Hulle, J. C. Príncipe, and D. P. Mandic, “An
augmented echo state network for nonlinear adaptive filtering of complex
noncircular signals,” IEEE Trans. Neural Netw., vol. 22, no. 1, pp. 74–83,
Jan. 2011.

[32] P. J. Schreier, “Bounds on the degree of impropriety of complex random
vectors,” IEEE Signal Process. Lett., vol. 15, pp. 190–193, 2008.

[33] D. C. Rife and R. R. Boorstyn, “Single-tone parameter estimation from
discrete-time observations,” IEEE Trans. Inf. Theory, vol. IT-20, no. 5,
pp. 591–598, Sep. 1974.

[34] S. C. Douglas and D. P. Mandic, “Performance analysis of the conven-
tional complex LMS and augmented complex LMS algorithms,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., 2010, pp. 3794–3797.

[35] D. P. Mandic, Y. Xia, and S. C. Douglas, “Steady state analysis of the
conventional CLMS and augmented CLMS algorithms for noncircular
complex signals,” in Proc. Asilomar Conf. Signals, Syst. Comput., 2010,
pp. 1635–1639.

Yili Xia (S’09) received the B.Eng. degree in in-
formation engineering from Southeast University,
Nanjing, China, in 2006, and the M.Sc. (with
distinction) degree in communications and signal
processing from the Department of Electrical and
Electronic Engineering, Imperial College London,
London, U.K., in 2007, where he is currently work-
ing toward the Ph.D. degree.

He is currently a Research Assistant with the
Department of Electrical and Electronic Engineer-
ing, Imperial College London. His research interests

include complex-valued linear and nonlinear adaptive filters and their applica-
tions on power systems.

Danilo P. Mandic (M’99–SM’03) received the
Ph.D. degree in nonlinear adaptive signal process-
ing from Imperial College London, London, U.K.,
in 1999.

He is a Reader in Signal Processing at Imperial
College London, London, U.K. He has been working
in the area of nonlinear adaptive signal process-
ing and nonlinear dynamics. His publication record
includes two research monographs titled Recurrent
Neural Networks for Prediction: Learning Algo-
rithms, Architectures and Stability (first edition,

August 2001) and Complex Valued Nonlinear Adaptive Filters: Noncircular-
ity, Widely Linear and Neural Models (first edition, Wiley, April 2009), an
edited book titled Signal Processing Techniques for Knowledge Extraction
and Information Fusion (Springer, 2008), and more than 200 publications on
signal and image processing. He has been a Guest Professor at for Katholieke
Universiteit Leuven, Leuven, Belgium, at Tokyo University of Agriculture
& Technology, Tokyo, Japan, and at Westminster University, London, and a
Frontier Researcher in RIKEN Japan.

Dr. Mandic is a member of the London Mathematical Society. He is a mem-
ber of the IEEE Technical Committee on Machine Learning for Signal Process-
ing and an Associate Editor for the IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS II, the IEEE TRANSACTIONS ON SIGNAL PROCESSING, the IEEE
TRANSACTIONS ON NEURAL NETWORKS, and the International Journal of
Mathematical Modeling and Algorithms. He has produced award winning
papers and products resulting from his collaboration with industry.


