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Abstract—We address the problem of adaptive frequency
estimation of unbalanced three-phase power systems in practical
situations when the voltage samples are contaminated with
measurement noise. The complex-valued -transformed voltages
are used in order to utilise all the available information in the
three-phase reference channels, at the expense of modest addition
in computational complexity. A widely linear predictive model is
established over multiple noisy voltage measurements to cater
for the system unbalance conditions, which are manifested in
noncircular empirical distributions. To obtain frequency esti-
mates in an adaptive manner, the total least-squares fitting and
gradient descent optimisation techniques are adopted based on
the augmented complex statistics. The so introduced augmented
complex total least mean square (ACTLMS) algorithm is shown
to enable, by design, more reliable frequency estimates over its
augmented complex least mean square (ACLMS) counterpart.
The ACTLMS is also shown to provide the user with a choice in
the degrees of freedom to control the trade-off between tracking
speed and estimation accuracy. Simulations on both synthetic and
real-world noisy unbalanced power systems support the analysis.

Index Terms—Unbalanced three-phase power systems, multi-
ple noisy measurements, adaptive frequency estimation, widely
linear model, augmented complex total least mean squares
(ACTLMS)

I. INTRODUCTION

The frequency of a power system is a crucial power quality
parameter and is allowed to vary around its nominal value only
within a prescribed tolerance level. Even a small deviation
from the nominal value of an electric power system is an
indicator of the generation-consumption mismatch in power
grids. Therefore, fast and precise frequency tracking and
estimation is of prime importance in power system analysis,
by enabling to monitor the health state of the power grid and
to assure reliable measurement of other system parameters
such as voltages and currents [1]–[6]. The importance of
frequency estmation becomes even more pronounced in the
context of smart grid, where frequent switching from the main
grid to microgrids, and electricity islands, together with dual
natures of some loads, such as plug in hybrid electric vehicles
(PHEVs), all trigger imbalance in the power generation-load
chain, and hence frequency variations [7].

Since in three-phase power systems, none of the single

phases can faithfully characterise the whole system and its
properties, a robust frequency estimator should take into
account the information of all three phases; this would en-
able a unified estimation of system frequency as a whole
and provide enhanced robustness. To this end, Clarke’s αβ
transformation has been introduced to construct a complex-
valued signal with the information provided by all the three-
phase voltages in a simultaneous way, and has equipped the
classical single phase methods with more robustness in charac-
terising system frequency [8]. Most complex-valued frequency
estimation algorithms applied to the αβ-transformed voltage
work well under normal balanced power system conditions
[8]–[10]. However, balanced system conditions are likely to
be violated in practice. A major cause of voltage unbalance
is the uneven distribution of single-phase loads. This can
happen, for example, in rural electric power systems with long
distribution lines, as well as in large urban power systems
where heavy single-phase demands, such as lighting loads,
are imposed by large commercial facilities. Additional causes
of power system voltage unbalance can be asymmetrical trans-
former winding impedances and asymmetrical transmission
impedances. Such unbalanced system problems give rise to the
so called negative sequence, a complex exponential rotating
clockwise at the system frequency, within the αβ-transformed
voltage [11], [12]. Due to the explicit or implicit omission
of the negative sequence component, standard phase angle
calculation techniques employed by the conventional complex-
valued frequency estimators encounter unavoidable estimation
bias and oscillations, resulting in incorrect frequency estimates
and perhaps false alarm spread through the system, although
the system frequency was indeed in its nominal range [13].

Our earlier work showed that this complex-valued αβ-
transformed voltage under unbalanced system conditions ad-
mits a first-order widely linear autoregressive (AR) predictive
model in the time domain [7], [14]. This observation enables
us to exploit the noncircular statistical nature of the αβ-
transformed voltage and to extend standard strictly linear
model based frequency estimation algorithms into the more
general widely linear form. This makes it possible to take
into account the frequency information contained both in the



positive sequence component and the negative sequence com-
ponent and to achieve unbiased frequency estimates. Examples
include the augmented (widely linear) complex least mean
square (ACLMS), augmented minimum variance distortionless
response (AMVDR) spectrum, and the augmented Kalman
filtering based adaptive frequency estimators [14]–[17].

By considering the practical situations, where several kinds
of error would contaminate the measurements, e.g., sampling,
quantisation, and instrument errors, in this paper, we first
extend the first order widely linear predictive model to cater
for multiple noisy voltage measurements. Next, to achieve
frequency estimates in an adaptive manner, the total least-
squares fitting and gradient descent optimisation techniques
are employed. By virtue of such a combination of enhanced
memory and advanced learning strategies, the so introduced
augmented complex total least mean square (ACTLMS) algo-
rithm by design enables more reliable frequency estimates than
its scalar-based version [18] and its noise-free counterpart, the
augmented CLMS (ACLMS) algorithm [14]. Simulations on
both synthetic and real-world noisy unbalanced power systems
support the analysis.

II. UNBALANCED THREE-PHASE POWER SYSTEM

The three-phase voltages of a power system in a noise-free
environment can be represented in a discrete time form as

va(k) = Vacos(kω△T + ϕ)

vb(k) = Vbcos(kω△T + ϕ− 2π

3
)

vc(k) = Vccos(kω△T + ϕ+
2π

3
) (1)

where Va, Vb, Vc are the peak values of each fundamental
voltage component at time instant k, ∆T = 1/fs is the
sampling interval,where fs is the sampling frequency, ϕ is
the initial phase, and ω = 2πf is angular frequency of the
voltage signal, with f being the system frequency. Although
the frequency of the system can be estimated directly from
any one of the three-phases, utilising the information from all
three phases gives more robust frequency estimates [8]. To
achieve this with modest complexity, the dimensionality of
the signal is first reduced from R3 to C via the following αβ
transformation [19][
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where the vα and vβ parts are used to form the complex-
valued voltage v(k), i.e., v(k) = vα(k) + jvβ(k). When the
three-phase power system deviates from its nominal condition,
such as in the presence of unequal levels of voltage magnitude
variations along the three phases, or the phase difference
between any two phases deviates from the nominal 2π/3, the
αβ transformed voltage v(k) becomes

v(k) = Aejkω∆T +Be−jkω∆T (3)

where A and B are complex-valued, for which the detailed
expressions can be found in [7], [14].

III. PROPOSED AUGMENTED COMPLEX TOTAL LEAST
MEAN SQUARE (ACTLMS) ALGORITHM

In a noiseless setting, the αβ-transformed voltage v(k) of
the unbalanced power system in (3), obeys a first order widely-
linear AR predictive model, given by [7], [14], [16]

v(k)h◦ + v∗(k)g◦ = v(k + 1) (4)

where h◦ and g◦ are the optimal filter weight coefficients, and
(·)∗ is the complex conjugate operator. The values of both
h◦ and g◦ depend on a system imbalance ratio B∗/A, and
a phasor ejω∆T which contains the instantaneous frequency
information. The widely linear nature of v(k) requires adap-
tive frequency estimation algorithms, e.g., the ACLMS and
augmented Kalman filtering algorithms [14], [16], which use a
widely linear estimation model in order to achieve statistically
unbiased estimates, given by [20], [21]

v(k)h(k) + v∗(k)g(k) ≈ v(k + 1) (5)

where h(k) and g(k) are respectively the standard and conju-
gate filter weights used to track h◦ and g◦ in (4) in an adaptive
manner. By taking into the consideration that in realistic
situations, the noiseless voltage observations are almost never
available since several kinds of imperfections, e.g., sampling,
quantisation, and instrument errors, would contaminate the
measurements, noisy voltage measurements should be used
within the underlying widely linear estimation model, to give
[18]

ṽ(k)h(k) + ṽ∗(k)g(k) ≈ ṽ(k + 1) (6)

where ṽ(k) = v(k) + △v(k) and the perturbation term
△v(k) represents the measurement imperfections. By further
assuming that the system parameters are time-invariant within
a short sliding window consisting of N consecutive voltage
measurements, the underlying widely linear relationship in (6)
still stands, and generalises to [22]

ṽ(k)
ṽ(k−1)

...
ṽ(k−N+1)

h(k)+


ṽ∗(k)
ṽ∗(k−1)

...
ṽ∗(k−N+1)

g(k)≈


ṽ(k+1)
ṽ(k)

...
ṽ(k−N+2)


which can be written in a compact vectorial form as

ṽ(k)h(k) + ṽ∗(k)g(k) ≈ ṽ(k + 1) (7)

where ṽ(k) = [ṽ(k), ṽ(k− 1), . . . , ṽ(k−N +1)]T . The main
motivation for the use a sliding window technique here is
in that it provides enhanced robustness to interferences as
compared to its scalar version in (6). It also provides a user-
defined degree of freedom to compromise between tracking
speed and estimation accuracy within the associated adaptive
filtering algorithms [23]. It is well known that by defining
an augmented data matrix, Z̃(k), and an augmented weight
vector, w(k), as

Z̃(k) = [ṽ(k), ṽ∗(k), ṽ(k + 1)]H (8)
w(k) = [h(k), g(k),−1]T (9)



and applying the singular value decomposition (SVD) on
Z̃
H
(k) gives the optimal total least squares (TLS) solution

for (7), given by [24]

w(k) = − [u1, u2, u3]
T

u3
(10)

where [u1, u2, u3]
T is the right singular vector corresponding

to the smallest singular value of the augmented data matrix
Z̃
H
(k) or the eigenvector corresponding to the smallest eigen-

value of the matrix

R̃(k) = Z̃(k)Z̃
H
(k) (11)

Following the analysis in [25], a more computationally ef-
ficient alternative to the TLS solution can be obtained by
minimising the following Rayleigh quotient over w(k), given
by

J(w(k)) =
wH(k)R̃(k)w(k)

∥w(k)∥2

=
wH(k)Z̃(k)Z̃

H
(k)w(k)

∥w(k)∥2

=
∥e(k)∥2

∥w(k)∥2
(12)

where

e(k) = Z̃
H
(k)w(k)

= ṽ(k)h(k) + ṽ∗(k)g(k)− ṽ(k + 1) (13)

is the output error vector according to (7). Instead of achieving
the TLS solution at the cost of updating and performing either
the SVD of the augmented data matrix Z̃(k) or eigendecom-
position of the matrix R̃(k), a more computationally efficient
alternative is to employ a gradient descent method, e.g., like
complex least mean square (CLMS), to recursively minimise
the Rayleigh quotient based cost function in (12), where the
gradient of the cost function J(w(k)) is calculated as

∇J(w(k))

=
∂J(w(k))

∂w∗(k)

=
2R̃(k)w(k)wH(k)w(k)−2wH(k)R̃(k)w(k)w(k)

(∥w(k)∥2)2

=
2∥w(k)∥2Z̃(k)e(k)−2w(k)eH(k)e(k)

(∥w(k)∥2)2

=
2
(
∥w(k)∥2Z̃(k)− w(k)eH(k)

)
e(k)

(∥w(k)∥2)2
(14)

Subsequently, a gradient descent weight update can be itera-
tively performed as

w(k + 1) = w(k)− µ

2
∇J(w(k))

= w(k) +
µ
(
w(k)eH(k)− ∥w(k)∥2Z̃(k)

)
e(k)

(∥w(k)∥2)2
(15)

where µ is the step-size. Given an appropriate choice of µ, the
global minimum of J(w(k)) can be arrived from any initial

point [24], [26], [27]. We shall refer to this proposed algo-
rithm, which is based on the widely linear estimation model
over multiple noisy measurements, as the augmented complex
total least mean square (ACTLMS). When the length of the
sliding window N = 1, it degrades into the method proposed
in [18]. Accordingly, the instantaneous system frequency is
adaptively estimated as [14]

f(k) =
1

2π∆T
sin−1(

√
ℑ2(w1(k))− |w2(k)|2) (16)

where ℑ(·) and | · | respectively denote the imaginary part and
the absolute value of a complex-valued number, and w1(k)
and w2(k) are the first and second elements in w(k), obtained
in an adaptive manner by using (15).

IV. SIMULATIONS

To verify the benefits of the proposed ACTLMS algorithm
and the associated sliding window technique over its scalar
version and its noise-free ACLMS counterpart for adaptive
frequency estimation of unbalanced power systems, numerical
simulations on unbalanced power systems contaminated by
noise and harmonics, as well as real-world measurements,
were conducted in the MATLAB programming environment.
The system frequency f and the sampling frequency fs were
fixed at f = 50 Hz and fs = 5000 Hz, respectively, and the
step-size µ of both algorithms was set to be µ = 0.01 in all
the simulations.

We first performed the statistical bias and variance analysis
of the considered frequency estimators for unbalanced three-
phase power systems with Va = 1.1, Vb = 0.9, and Vc = 1.05,
contaminated by white Gaussian noise with various signal-
to-noise ratios (SNRs). Fig. 1(a) and Fig. 1(b) respectively
illustrate the estimation bias and variance of the considered
frequency estimators against different levels of noise. The
results were obtained by averaging 1,000 independent tri-
als. By design, the scalar version of ACTLMS algorithm
always exhibited better noise rejection than ACLMS due to
its consideration of noise within the underlying widely linear
estimation model, especially in heavy noise situations. The
performance advantages of using a sliding window technique
within ACTLMS algorithm was more pronounced with a
larger window length N . The tradeoff between the frequency
tracking speed and estimation accuracy provided by the length
of the sliding window N can be observed from Fig. 2 where
the simulated unbalanced power system experienced higher
order harmonic distortion composing of a 10% third harmonic,
a 5% fifth harmonic and a 2% seventh harmonic on all
the three phases at 0.2 sec. Both the ACTLMS frequency
estimators with N = 1 and N = 10 were initialised at
50.2 Hz. Although a larger number of observations resulted
in a slightly slower convergence, they equipped the proposed
ACTLMS method with enhanced robustness against higher
order harmonics.

We next considered a real-world power system. The three-
phase voltages were recorded at a 110/20/10 kV transformer



5 10 15 20 25 30
−30

−20

−10

0

10

20

SNR (dB)
(a)

B
ia

s
 (

d
B

)

 

 

ACTLMS (N=1)

ACTLMS (N=5)

ACTLMS (N=10)

ACLMS (N=1)

5 10 15 20 25 30
−60

−40

−20

0

20

40

60

SNR (dB)
(b)

V
a
ri
a
n
c
e
 (

d
B

)

 

 
ACTLMS (N=1)

ACTLMS (N=5)

ACTLMS (N=10)

ACLMS (N=1)

Fig. 1. Statistical evaluation of the considered frequency estimation methods
for a noisy unbalanced power system against different SNRs. (a) Bias. (b)
Variance.
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Fig. 2. Performance comparison of the proposed ACTLMS algorithm for
different filter lengths, N .

station. The REL 531 numerical line distance protection ter-
minal, produced by ABB Ltd., was installed in the station
and was used to monitor changes in the three “phase-ground”
voltages on the 20 kV busbars (neutral earthed by 40 Ω
resistor). The measured three phase-ground voltages with a
system frequency around 50 Hz were normalised with respect
to the normal peak voltage values, as shown in Fig. 3(a). The
three-phase power system was initially in a balanced condition,
at around 0.13 sec, phase vb(k) experienced an earth fault,
causing a 51.6% voltage drop, and a 48.5% and a 23.9%
voltage swells in phases va(k) and vc(k), respectively. The
three phase-ground voltages were sampled at 1000 Hz by the
terminal. The frequency tracking capabilities of the proposed
ACTLMS and the ACLMS methods are illustrated in Fig. 3.
After a short disturbance during the system transition from a
balance to unbalance state, the ACTLMS provided more robust
frequency estimates over ACLMS. This advantage, quantified
by estimation variance, was more pronounced when multiple
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Fig. 3. Frequency estimation using the proposed ACTLMS based algorithms
for a real-world unbalanced three-phase power system. (a) The waveform of
the three-phase power system. (b) Comparison of frequency estimation results
by the considered methods.

TABLE I
ESTIMATION VARIANCES OF THE CONSIDERED ALGORITHMS FOR THE

REAL WORLD SYSTEM VOLTAGES.

ACLMS (N=1) ACTLMS (N=1) ACTLMS (N=10)
2.7e-003 1.6e-003 3.0e-004

noisy measurements were used underlying the widely linear
estimation model of ACTLMS, which is further summarised
by Table I.

V. CONCLUSION

We have introduced a widely linear predictive model for
frequency estimation over multiple noisy voltage measure-
ments in unbalanced three-phase power systems. To obtain
frequency estimates in an adaptive manner, a gradient descent
ACTLMS algorithm has been proposed based on the recursive
minimisation of the Rayleigh quotient associated with this
model. The sliding window framework enables the proposed
ACTLMS frequency estimation method to be less sensitive
to measurement noises and higher order harmonic distortion
compared to its scalar version and a noise-free ACLMS
method. It has also been shown that ACTLMS is inherently
equipped with one more degree of freedom which allows to
control the tradeoff between tracking speed and estimation
accuracy. Simulations on both synthetic and real-world noisy
unbalanced power systems support the analysis.
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