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A Full Mean Square Analysis of CLMS for
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Abstract—A full mean square transient and steady-state analysis
of the complex least mean square (CLMS) algorithm is provided for
strictly linear estimation of general second-order noncircular (im-
proper) Gaussian inputs. To this end, we also consider the perfor-
mance assessment in terms of the evolution of the complementary
mean square error (CMSE) and the complementary covariance
(pseudocovariance) matrix of the weight error vector of CLMS.
This makes it possible to measure the degrees of noncircularity
of the output error and the weight error vector, which arise due
to second-order noncircularity (improperness) of the system input
and system noise. The recently introduced approximate uncorre-
lating transform, which allows for joint direct diagonalization of
both the input covariance and complementary covariance matrices
with a single singular value decomposition, is then employed in or-
der to derive a unified bound on the step-size, which guarantees the
convergence of both the standard MSE and the proposed CMSE.
A joint consideration of the standard mean square performance
analysis and the proposed complementary performance analysis
is shown to provide full second order, closed form, statistical de-
scriptions of both the transient and steady state performances of
CLMS for second-order noncircular (improper) Gaussian input
data. Simulations in the system identification setting support the
analysis.

Index Terms—Complex LMS (CLMS), second order noncircu-
larity (improperness), complementary mean square convergence
analysis, approximate uncorrelating transform (AUT).

I. INTRODUCTION

THE complex least mean square (CLMS) algorithm is prob-
ably the most-often-used adaptive signal processing al-

gorithm in the complex domain C, the applications of which
include communications, image processing, speech process-
ing, and medicine [1]. For an N × 1 weight vector h(k) =
[h1(k), h2(k), . . . , hN (k)]T at a time instant k, the CLMS al-
gorithm updates a simple quadratic error cost function using
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stochastic gradient descent, and is given by

e(k) = d(k) − hH (k)x(k) (1)

h(k + 1) = h(k) + μe∗(k)x(k) (2)

wherex(k) = [x1(k), x2(k), . . . , xN (k)]T ∈ CN ×1 is the input
vector, e(k) the output error, μ the step-size, while (·)H and
(·)∗ are respectively the Hermitian and complex conjugation
operator. Within CLMS, the desired signal d(k) can be assumed
to be generated by a strictly linear estimation (SLE) model,
given by

d(k) = hoH x(k) + q(k) (3)

where ho = [ho
1 , h

o
2 , . . . , h

o
N ]T is the optimal system impulse

response vector to be estimated and q(k) is zero-mean indepen-
dent identically distributed noise with variance σ2

q .
The seminal paper by Horowitz and Senne [2] considers the

situation where the pair of the desired and input signals, {d(k),
x(k)}, is jointly circularly distributed Gaussian. The zero-mean
Gaussian input x(k) is also implicitly assumed to be second or-
der circular (proper), with a rotation invariant probability density
function in the complex domain C and a vanishing complemen-
tary covariance matrix P = E[x(k)xT (k)] = 0 [3], [4]. The
work in [2] then provides convergence analysis, in the SLE
setting, based on the mean square error (MSE) and the covari-
ance matrix of the weight vector of CLMS. Fisher and Bershad
extended the analysis by establishing that the matrix which di-
agonalises the input covariance matrix also diagonalises the
weight error covariance matrix [5]. This makes it possible to
analyse the covariance matrix of the weight error vector, which,
together with MSE, represents the standard mean square conver-
gence analysis of complex-valued adaptive filtering algorithms
[5]. The above assumption of circularity simplifies the analysis
framework in many aspects, since in this way complex-valued
random signals statistically behave like real-valued ones, and
hence, it has been implicitly or explicitly adopted for the analy-
sis of CLMS and its variants in different applications [6]–[13].

Recent advances in so-called augmented complex statistics
have established a framework for the analysis of second order
noncircular random signals, jointly characterised by both the
standard covariance matrix R and complementary covariance
matrix P. The non-vanishing complementary covariance may
be caused by different powers in the real and imaginary parts or
a degree of correlation between the real and imaginary parts, or
both. Therefore, in order to make use of all the available second
order information, we need to consider the complementary co-
variance matrix P, in addition to the standard covariance matrix
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R = E[x(k)xH (k)] [14]–[19]. A concept intimately related to
augmented complex statistics is so-called widely linear estima-
tion (WLE), which considers the desired signal, dWL(k), to be
generated by the widely linear model [15], [16], [20]

dWL(k) = hoH x(k) + goH x∗(k) + q(k) (4)

where go = [go
1 , go

2 , . . . , go
N ]T is the so-called conjugate opti-

mal system impulse response vector, associated with the input
conjugate x∗(k). The WLE can be therefore considered as a
generalised estimation framework in the complex domain C,
and has provided modelling advantages over SLE in numerous
applications in signal processing, communications, power sys-
tems, biomedical engineering and renewable energy [21]–[32].
For instance, the augmented complex statistics have opened the
possibility to design LMS-type adaptive algorithms based on
the widely linear model, an example of which is the augmented
CLMS (ACLMS), given by [24], [25]

e(k) = dWL(k) − hH (k)x(k) − gH (k)x∗(k) (5)

h(k + 1) = h(k) + μe∗(k)x(k) (6)

g(k + 1) = g(k) + μe∗(k)x∗(k) (7)

Compared with the standard CLMS, the ACLMS updates
an additional weight vector g(k) in order to track the optimal
“conjugate” system impulse response vector,go , associated with
the desired signal dWL(k) generated by the widely linear model
in (4). Due to the advantages of the widely linear modelling,
the ACLMS is second order optimal for both the WLE and SLE
of second order circular and noncircular zero-mean Gaussian
input signals [32]–[34], since it always yields mean square error
(MSE) that is smaller than or equal to that of the strictly linear
CLMS.

However, there are several strong motivations, in both theory
and practice, for the investigation of the use of CLMS (instead
of ACLMS), for the SLE problem in (3) with second order non-
circular Gaussian inputs x(k). On one hand, CLMS remains
‘first order’ optimal for this task since it gives unbiased estima-
tion of the unknown system weights ho in the mean sense [35].
It is even ‘second order’ optimal in terms of the weight error
variance, while ACLMS often encounters a relative performance
loss caused by its over-fitting problem, and this performance loss
has been proved to increase with an increase in the degree of
the noncircularity of the input [36]. Real-world applications of
the SLE model include the representation of the received base-
band signals over fading channels when the transmission system
adopts noncircular complex-valued constellation schemes, e.g.,
8 phase shift-keying (8PSK), offset quadrature amplitude modu-
lation (OQAM), and 32QAM [37]–[39]. Its usefulness becomes
even more pronounced in multi-user communication systems
in the modelling of the receiver in the presence of interference
channels where improper Gaussian signals are intentionally em-
ployed, because the associated complementary second order
statistics provide one more degree of freedom in order to im-
prove the system throughput and reliability [40]–[42]. The SLE
model is also adequate to represent the underlying time-series
relationships between consecutive complex-valued system

voltage samples, which are second order noncircular in unbal-
anced power systems [43].

The standard mean square convergence behaviour of CLMS
for SLE of second order noncircular zero-mean Gaussian in-
puts is different from that for circular ones in the sense
that the nonzero input complementary covariance matrix P =
E[x(k)xT (k)], a counterpart to its standard covariance matrix
R = E[x(k)xH (k)], appears in the evolution of the weight error
covariance matrix, and consequently, in the mean square error
(MSE) analysis of CLMS [35], [36]. By considering that a joint
diagonalisation of both R and P with a single singular value de-
composition (SVD) is a prerequisite to achieve the closed-form
expressions of the weight error covariance vector and the MSE
at the steady state, the strong uncorrelating transform (SUT)
was introduced [35], [36], with a limitation that a single SVD
by SUT is allowed only for a special type of correlated second
order noncircular signals. To investigate the steady state mean
square performance of CLMS for the general second order non-
circular Gaussian signals, the recently introduced approximate
uncorrelating transform (AUT) [44] was employed in [34] for a
joint single SVD of both R and P, based on a reasonable ap-
proximation. The above analyses directly inherit the principles
from the corresponding real domain analyses [45]–[48], and in-
vestigate the variances of the output error and the weight error
vector, as well as their transient and steady state behaviours. We
argue that this reflects only one aspect of the full second order
statistics in C, since the complementary second order statistics
of the output error and the weight error vector, which reflect
their degrees of noncircularity, are not taken into consideration.

Therefore, in this paper, we first propose a novel complemen-
tary mean square performance analysis of CLMS for SLE of
general second order noncircular zero-mean Gaussian inputs,
by investigating the complementary mean square error (CMSE)
and the complementary covariance matrix of the weight error
vector. We illustrate, for the first time, the evolution of the com-
plementary output error and the weight error vector of CLMS,
in terms of their second order noncircularity, when the system
input x(k) or/and the system noise q(k) within the SLE model
is/are second order noncircular. The statistical convergence be-
haviours of CMSE and complementary covariance matrix of the
weight error vector are subsequently investigated, and a unified
conservative bound on the step-size is derived to guarantee the
convergence and stability of both the conventional MSE and
the proposed CMSE, for which a joint direct diagonalisation of
both the input covariance matrix and its complementary coun-
terpart is enabled by AUT. Next, the closed-form expression for
the steady-state complementary MSE (CMSE) of CLMS is ob-
tained, and its dependence on the degree of input noncircularity
is quantified for doubly white1 Gaussian input data. In this way,
the proposed complementary mean square analysis augments
the standard mean square convergence analysis in [34], and
benefiting from the augmented complex statistics, they together

1A complex-valued random signal is called doubly white if the off-diagonal
elements of its covariance matrix R and complementary covariance matrix P
are all zeros [16], [18], [19]. Doubly white signals can be both circular and
noncircular.
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provide the full second order statistical description of CLMS in
both transient and steady state stages. The so established full
mean square analysis, via a joint consideration of both the stan-
dard and complementary mean square analyses, equips us with
an additional insight into the mean square evolutions of the real
part and imaginary part of the output error and the weight er-
ror vector independently, an important property that cannot be
achieved by using the standard mean square analysis only. Nu-
merical simulations in the system identification setting support
the analysis.

II. FULL MEAN SQUARE ANALYSIS OF CLMS

Consider the use of CLMS, summarised in (1) and (2), for
SLE of a desired response d(k), given in (3). Upon introducing
the N × 1 weight error vector

˜h(k) = h(k) − ho (8)

the output error e(k) in (1) becomes

e(k) = q(k) − ˜hH(k)x(k) (9)

while for its conjugate we have

e∗(k) = q∗(k) − ˜hT(k)x∗(k) (10)

From (2), the recursion for the evolution of the weight error
vector ˜h(k) now becomes

˜h(k + 1) = ˜h(k) + μ
(

q∗(k) − ˜hT(k)x∗(k)
)

x(k)

=
(

I − μx(k)xH (k)
)

˜h(k) + μq∗(k)x(k) (11)

where I is an N × N identity matrix. Based on (11), the evolu-
tion of ˜hH (k + 1) and ˜hT (k + 1) can be recursively expressed
as

˜hH(k + 1) = ˜hH(k)
(

I − μx(k)xH (k)
)

+ μq(k)xH (k) (12)

˜hT(k + 1) = ˜hT (k)
(

I − μx∗(k)xT (k)
)

+ μq∗(k)xT (k) (13)

A. Summary of Standard Mean Square Analysis

The standard mean square error (MSE) performance criterion
of CLMS, denoted by J(k), can be defined as

J(k) = E[|e(k)|2 ] = E[e(k)e∗(k)] (14)

where E[·] is the statistical expectation operator, and | · | denotes
the absolute value of a complex number. In order to aid the
theoretical mean square performance analysis of CLMS with
mathematical tractability, the standard independence assump-
tions commonly used in adaptive filtering analyses, that is, the
system noise q(k) is statistically independent of any other sig-
nal in the CLMS algorithm and the weight error vector ˜h(k) is
statistically independent of the adaptive filter input x(k) [49],
have been adopted in [2], [5], [6], [10], [34], [35] to decompose
J(k) in (14) as

J(k) = σ2
q + E[˜hH(k)x(k)xH (k)˜h(k)]

= σ2
q + tr[RK(k)] (15)

where tr[·] is the matrix trace operator, and

K(k) = E[˜h(k)˜hH(k)] (16)

is the weight error covariance matrix. However, we should men-
tion that in some practical applications, such as blind chan-
nel equalisation, the independence between the ˜h(k) and x(k)
may be violated [50]. The mean square performance analysis of
CLMS in (15) now rests upon the standard second order char-
acteristics of the weight error vector ˜h(k). By multiplying both
sides of (11) and (12), taking the statistical expectation E[·], and
using the standard independence assumptions, the evolution of
the weight error covariance matrix K(k) in (16) is obtained in
the form [34], [35]

K(k + 1) = K(k) − μ
(

RK(k) + K(k)R
)

+ μ2(σ2
q R + E[x(k)xH(k)˜h(k)˜hH(k)x(k)xHd(k)]

)

(17)

Under the independence assumptions, the (i, j)th entry of the
expectation matrix of the last term on the right hand side (RHS)
of (17) becomes

{

E[x(k)xH (k)˜h(k)˜hH (k)x(k)xH (k)]
}

ij

=
N

∑

l=1

N
∑

m=1

E[xi(k)x∗
l (k)xm (k)x∗

j (k)]E[˜hl(k)˜h∗
m (k)]

Upon employing the Gaussian fourth order moment factorising
theorem, we have

E[xi(k)x∗
l (k)xm (k)x∗

j (k)] = rilrmj + pim p∗lj + rij rml

and hence [34], [35],

E [x(k)xH (k)˜h(k)˜hH (k)x(k)xH (k)]

= RK(k)R + PK∗(k)P∗ + Rtr[RK(k)]

Thus, the evolution of the weight error covariance matrix K(k)
in (17) now becomes [34], [35]

K(k + 1) = K(k) − μ
(

RK(k) + K(k)R
)

+ μ2(σ2
q R + RK(k)R + PK∗(k)P∗ + Rtr[RK(k)]

)

(18)

Equations (15) and (18) together describe the standard mean
square performance of the CLMS algorithm for second order
noncircular Gaussian input data, and its dependence on the input
noncircularity, represented by the complementary covariance
matrix P, can be clearly observed.

B. Proposed Complementary Mean Square Analysis

Since the zero-mean Gaussian input x(k) and the system
noise q(k) are considered to be second order noncircular, it is
also natural to investigate whether the so introduced noncircu-
larity propagates into the error e(k) and the weight error vector
˜h(k), the two key system parameters which govern the CLMS
algorithm2. By virtue of the augmented complex statistics

2This information will give key new insights into the behaviour of CLMS for
general inputs, and such analysis has not been conducted so far.
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[14]–[19], we can now first define the complementary mean
square error (CMSE) ˜J(k) as

˜J(k) = E[e2(k)] (19)

to represent the noncircularity of the output error e(k). Based on
(9) and using the standard assumptions discussed above, ˜J(k)
can be further evaluated as

˜J(k) = E[(q(k) − ˜hH (k)x(k))2 ]

= E[q2(k)] + E[˜hH (k)x(k)xT (k)˜h∗(k)]

= σ̃2
q + tr[P ˜K∗(k)] (20)

in which σ̃2
q = E[q2(k)] is the complementary variance

(pseudo-variance) of the second order noncircular system noise
q(k), and

˜K(k) = E[˜h(k)˜hT (k)] (21)

is the complementary covariance matrix of the weight error
vector ˜h(k). Upon multiplying both sides of (11) by ˜hT (k + 1)
in (13), and again applying the statistical expectation operator
and the standard independence assumptions, we obtain

˜K(k + 1) = ˜K(k) − μ
(

R ˜K(k) + ˜K(k)R∗)

+ μ2(σ̃2∗
q P + E[x(k)xH (k)˜h(k)˜hT (k)x∗(k)xT (k)]

)

(22)

The (i, j)th entry of the statistical expectation of the last term
on the RHS of (22) can be expressed as

{

E[x(k)xH (k)˜h(k)˜hT (k)x∗(k)xT (k)]
}

ij

=
N

∑

l=1

N
∑

m=1

E[xi(k)x∗
l (k)x∗

m (k)xj (k)]E[˜hl(k)˜hm (k)]

Upon employing the Gaussian fourth order moment factorising
theorem, we now have

E[xi(k)x∗
l (k)x∗

m (k)xj (k)] = rilrjm + rim rjl + pij p
∗
lm

and hence

E [x(k)xH (k)˜h(k)˜hT (k)x∗(k)xT (k)]

= 2R ˜K(k)R∗ + Ptr[P∗
˜K(k)]

Therefore, the recursion for the complementary covariance ma-
trix of the weight error vector ˜h(k), that is, ˜K(k) in (21), now
becomes

˜K(k + 1) = ˜K(k) − μ
(

R ˜K(k) + ˜K(k)R∗)

+ μ2(σ̃2∗
q P + 2R ˜K(k)R∗ + Ptr[P∗

˜K(k)]
)

(23)

Remark 1: Equations (20) and (23) indicate that both e(k)
and ˜h(k) can be second order noncircular if the Gaussian in-
put x(k) or the system noise q(k) is second order noncircular.
Both equations describe the complementary mean square per-
formance of CLMS, and together with the standard mean square
performance provided in (15) and (18), they provide a complete
description on the second order statistical behaviour of CLMS,
based on the augmented complex statistics [14]–[19].

III. FULL MEAN SQUARE STABILITY OF CLMS

We now consider sufficient conditions for the full mean square
convergence of the weight error vector ˜h(k) of CLMS for the
general second order noncircular Gaussian input data. This is
challenging in the sense that it requires a simultaneous diagonal-
isation of both the covariance matrix R and the complementary
covariance matrix P in (18) and (23). The first attempt in this
direction was the work in [35], which applies the strong un-
correlating transform (SUT) [51], [52] on R and P. However,
since SUT admits a single SVD for both matrices only for a
special type of correlated second order noncircular signals, the
analysis in [35] cannot be straightforwardly extended to the case
of general second order noncircular signals for which the off-
diagonal elements in both R and P contain nonzero elements. In
order to both address the diagonalisation problem encountered
by SUT and simplify the analysis, we here employ the recently
introduced approximate uncorrelating transform (AUT), which
allows for the diagonalisation of R and P based on a single
singular value decomposition (SVD), within some reasonable
approximations [34], [44].

The Takagi factorisation states that any complex-valued
symmetric matrix, like the complementary covariance matrix
P = PT , can be diagonalised as

P = QΛpQT (24)

while for its conjugate

P∗ = Q∗ΛpQH (25)

where Q is a unitary matrix, QQH = I, and Λp = diag{p1 ,
p2 , . . . , pN } is a diagonal matrix of real-valued entries, where
p1 ≥ p2 ≥ · · · ≥ pN are the nonnegative square roots of PPH

[53].
The approximate uncorrelating transform (AUT) [44] states

that this same matrix Q can be used to approximately diago-
nalise the covariance matrix R, so that

R � QΛrQH (26)

and hence its inversion

R−1 � QΛ−1
r QH (27)

where Λr = diag{λ1 , λ2 , . . . , λN }, λ1 ≥ λ2 ≥ · · · ≥ λN , and
λi are the real-valued eigenvalues of R. The approximations in
(26) and (27) are valid for univariate data, and the equality is
achieved when x(k) is real-valued, that is, maximum noncircu-
lar [34], [44]. The benefits of using AUT to obtain the stability
bound on the step-size μ in the mean square sense, and for
the closed-form solutions for the steady state performance of
CLMS, are illustrated in the following analysis.

With the use of AUT, we can now rotate the weight error
vector and the input vector to give

ĥ(k) = QH
˜h(k) and x̂(k) = QH x(k) (28)
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and to decompose the term tr[RK(k)] on the RHS of (18) as

tr[RK(k)] = E[˜hH (k)x(k)xH (k)˜h(k)]

= E[ĥH (k)Λrĥ(k)]

= λT
r κ(k) (29)

where λr = [λ1 , λ2 , . . . , λN ]T , and κ(k) is the N × 1 weight
error variance vector after data diagonalisation, the components
of which are the diagonal elements of E[ĥ(k)ĥH (k)], defined
as

κ(k) =
[

E[|ĥ1(k)|2 ], E[|ĥ2(k)|2 ], . . . , E[|ĥN (k)|2 ]]T
(30)

Then, based on (18), we obtain the evolution of κ(k) for general
second order noncircular inputs, as discussed in [34], [35], given
by

κ(k + 1) =
(

I − 2μΛr + μ2(Λ2
r + Λ2

p + λrλ
T
r

))

︸ ︷︷ ︸

F

κ(k)

+ μ2σ2
q λr (31)

We shall now consider the diagonalisation of the complemen-
tary weight error covariance matrix ˜K(k). To this end, we first
observe that by using (25) and (28), the term tr[P∗

˜K(k)] on the
RHS of (23) can be decomposed as

tr[P∗
˜K(k)] = E[˜hT (k)x∗(k)xH (k)˜h(k)]

= E[ĥT (k)Λpĥ(k)]

= λT
p κ̃(k) (32)

where λp = [p1 , p2 , . . . , pN ]T and κ̃(k) is the complementary
weight error variance vector, the components of which are the
diagonal elements of E[ĥ(k)ĥT (k)], defined as

κ̃(k) =
[

E[ĥ2
1(k)], E[ĥ2

2(k)], . . . , E[ĥ2
N (k)]

]T
(33)

Based on (23) and (32), and after a few algebraic manipulations,
the evolution of κ̃(k) can be expressed as

κ̃(k +1) =
(

I − 2μΛr+ μ2(2Λ2
r + λpλT

p

))

︸ ︷︷ ︸

˜F

κ̃(k) + μ2 σ̃2∗
q λp

(34)

Remark 2: From (34), observe that when the Gaussian input
x(k) and the system noise q(k) are second order noncircular,
the driving term μ2 σ̃2∗

q λp for the recursion of κ̃(k) in (34)
does exist. Their noncircularity therefore propagates into both
the weight error vector, ˜h(k) and the output error, e(k), the
noncircularity of which is measured by the complementary cost
˜J(k), according to (32) and (20). The noncircularity of ˜h(k)
vanishes when either x(k) or q(k) is second order circular,
since κ̃(k) would then converge to 0. While the noncircularity
of e(k) vanishes when both x(k) and q(k) are second order
circular, notice that its noncircularity degree would be a constant
governed by the complementary variance σ̃2

q , only when q(k) is
second order noncircular.

Strictly speaking, we are not able to talk about the conver-
gence for a complex-valued vector, like κ̃(k) in (34), since the

complex domain C is not ordered. However, the real-valued na-
ture of ˜F guarantees that the real and imaginary parts of κ̃(k)
evolve independently, except for the shared transition matrix ˜F,
and that the convergence of κ̃(k) implies that both its real and
imaginary parts converge, which would consequently lead to the
convergence of the CMSE ˜J(k) in the same way, according to
(20), (32) and (34). Based on (31) and (34), the full mean square
convergence of CLMS is then subject to the condition that all
the eigenvalues of the transition matrices F and ˜F are less than
unity.

We shall first consider the upper bound on μ in order to
establish the stability of ˜F. To achieve this, we here follow the
classic work of A. Feuer and E. Weinstein in [45], and consider
that the eigenvalues of ˜F in (34) are the solutions of an equation
in α, so that

det[˜F − αI] = 0 (35)

where det[·] is the matrix determinant operator. By defining

ρi = 1 − 2μλi + 2μ2λ2
i , i = 1, 2, . . . , N (36)

the matrix ˜F now can be expressed as

˜F = diag{ρ1 , ρ2 , . . . , ρN } + μ2λpλT
p

and hence

det [˜F −αI]

= det
[

diag{ρ1 − α, ρ2 − α, . . . , ρN − α} + μ2λpλT
p

]

= det
[

diag{ρ1 − α, ρ2 − α, . . . , ρN − α}]

· det
[

I + μ2λT
p diag

{

1
ρ1− α

,
1

ρ2− α
, . . . ,

1
ρN − α

}

λp

]

=

[

N
∏

i=1

(ρi − α)

]

·
[

1 +
N

∑

i=1

μ2p2
i

ρi − α

]

= 0

Since the common denominator of the sum of terms
∑N

i=1
p2

i /(ρi − α) is
∏N

i=1(ρi − α), we only need to consider the
equation

f(α) = 1 +
N

∑

i=1

μ2p2
i

ρi − α
= 0 (37)

Clearly, the poles of f(α) are ρi , and from (36)

ρi = 1 − 2μλi + 2μ2λ2
i = (1 − μλi)2 + μ2λ2

i > 0 (38)

Therefore, the poles of f(α) are placed on the positive real axis.
From (37), we further observe that

∂f(α)
∂α

=
N

∑

i=1

μ2p2
i

(ρi − α)2 > 0 (39)

which indicates that f(α) must therefore assume a strict form in
the sense that between each pair of successive poles, the function
f(α) has a single zero, as illustrated in Fig. 1. If we arrange the
poles in an increasing order, i.e., 0 < ρ1 < ρ2 < · · · < ρN , then

0 < ρ1 < α1 < ρ2 < α2 < · · · < αN −1 < ρN < αN (40)
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Fig. 1. Geometric illustration of the general form of f (α).

where αi are the zeros of f(α), and hence the eigenvalues of ˜F.
The stability requirement αN < 1 means that all the eigenvalues
of ˜F are located within the unit circle, and hence the recursion
in (34) is stable. From Fig. 1, this is the case if and only if

ρi < 1, i = 1, 2, . . . , N (41)

and

f(α) |α=1= 1 +
N

∑

i=1

μ2p2
i

ρi − α
> 0 (42)

Substituting (36) into (41) and (42) yields the following neces-
sary and sufficient conditions

0 < μ <
1
λi

, i = 1, 2, . . . , N (43)

and
N

∑

i=1

μp2
i

2(λi − μλ2
i )

− 1 < 0 (44)

It is of great practical interest to translate the conditions in (43)
and (44) into direct bounds on the step-size μ. To this end, we
first denote the left hand side of (44) by g(μ), to give

g(μ) =
N

∑

i=1

μp2
i

2(λi − μλ2
i )

− 1 (45)

This is a monotonically increasing function of μ since

∂g(μ)
∂μ

=
N

∑

i=1

2p2
i λi

4(λi − μλ2
i )2

> 0 (46)

Moreover, g(μ) has poles at 1/λi, i = 1, 2, . . . , N , all of which
are located on the positive real axis, its values are equal to−1 for
μ = 0, and limμ→∞ g(μ) < 0. Therefore, if μi, i = 1, 2, . . . , N ,
are the roots of g(μ) = 0, and are arranged in an increasing
order, i.e., 0 < μ1 < μ2 < · · · < μN , then g(μ) strictly obeys
the form that between each pair of successive zeros, g(μ) has a
single pole, as illustrated in Fig. 2, and hence

0 < μ1 <
1

λN
< μ2 <

1
λN −1

< · · · < μN <
1
λ1

(47)

Fig. 2. Geometric illustration of the general form of g(μ).

It is now clear that the condition 0 < μ < μ1 is equivalent to
conditions in (43) and (44). In general, a closed-form solution
for μ cannot be obtained. However, we will take the advantage
of a theorem established in [54] to obtain a tight lower bound
on μ1 . To achieve this, first note that after a few mathematical
manipulations, the polynomial g(μ) = 0 can be rewritten in the
form

(

1
μ

)N

− l1

(

1
μ

)N −1

+ l2

(

1
μ

)N −2

+ · · · + (−1)N lN

=
N
∏

i=1

(

1
μ
− 1

μi

)

= 0 (48)

where

l1 =
1
2

N
∑

i=1

(

2λi +
p2

i

λi

)

(49)

l2 =
N

∑

i=1

N
∑

j>i

(

λi +
p2

i

λi

)

λj (50)

In this setting, μ1 is the smallest root of (48), and the theorem
developed in [54] shows that μ1 is lower bounded by

μ1 ≥ N

l1 +
√

(N − 1)2 l21 − 2N(N − 1)l2
= μ0 (51)

Thus, to ensure that κ̃(k) in (34) converges in the mean square
sense, μ should be bounded by

0 < μ < μ0 (52)

To make (52) more practical, from (51) we note that

μ0 ≥ 1
l1

=
2

N
∑

i=1

(

2λi +
p2

i

λi

)

(53)
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Then

0 < μ <
1

N
∑

i=1

(

λi +
p2

i

2λi

)

(54)

Using the same procedure to analyse the transition matrix F, as
shown in Appendix A, we can find that the conservative bound
on μ which enables the mean-square convergence of κ(k) in
exactly the same way as that given in (54) for κ̃(k).

Remark 3: Equation (54) provides a unified conservative
bound on μ for the full mean square convergence of CLMS
for second order noncircular Gaussian inputs. It indicates that
the step-size μ within this bound, which enables the recursive
minimisation of the MSE J(k) = E[|e(k)|2 ], also guarantees
the convergence of the second order noncircularity of the output
error e(k), represented by the CMSE ˜J(k) = E[e2(k)], in terms
of uncoupled evolutions of its real and imaginary components.
It is also interesting to observe that when x(k) is real-valued,
that is, maximum noncircular, the upper bound in (54) becomes
2/(3tr[R]), identical to that derived for mean square convergence
of real-valued LMS [45], [55]. This is because for a real-valued
x(k), we have R = P = P∗ and pi = λi , and so the transition
matrix F coincides with ˜F, and is also identical to that of the
real-valued LMS algorithm. Note that 2μ is used in the LMS
recursion in [45], which yields a slightly different expression for
the transition matrix used in [45]. When x(k) is second order
circular, we have pi = 0, and the upper bound in (54) becomes
1/tr[R], which, as desired, coincides with the existing results in
[2], [10], [11].

IV. FULL MEAN SQUARE STEADY STATE ANALYSIS OF CLMS

Suppose that μ is chosen such that the full mean square sta-
bility of CLMS is guaranteed. To perform a full steady state
performance analysis on CLMS with second order noncircular
Gaussian inputs, observe that when k → ∞, then based on (15)
and (29) the steady state MSE (SS-MSE) of CLMS, denoted by
J(∞), can be expressed as

J(∞) = σ2
q + λT

r κ(∞) (55)

In a similar way, based on (20) and (32), the steady state com-
plementary MSE (SS-CMSE) of CLMS, denoted by ˜J(∞), can
be derived as

˜J(∞) = σ̃2
q + λT

p κ̃∗(∞) (56)

Based on (34), the steady-state value of κ̃(k) is given by

κ̃(∞) =
(

2Λr − 2μΛ2
r − μλpλT

p

)−1
μσ̃2∗

q λp (57)

Upon defining

Λ1 = 2Λr − 2μΛ2
r (58)

and employing the matrix inversion lemma, we have
(

Λ1 − μλpλT
p

)−1

=
(

Λ1(I − μΛ−1
1 λpλT

p )
)−1

=
(

I + (I − μΛ−1
1 λpλT

p )−1μΛ−1
1 λpλT

p

)

Λ−1
1

=
(

I + μΛ−1
1 (I − λpλT

p μΛ−1
1 )−1λpλT

p

)

Λ−1
1

=
(

I + μΛ−1
1 λp(1 − λT

p μΛ−1
1 λp)−1λT

p

)

Λ−1
1

=

(

I +
μΛ−1

1 λpλT
p

1 − μλT
p Λ−1

1 λp

)

Λ−1
1 (59)

Upon substituting (59) into (57), we have

κ̃(∞) = μσ̃2∗
q

(

I +
μΛ−1

1 λpλT
p

1 − μλT
p Λ−1

1 λp

)

Λ−1
1 λp

while its conjugate takes the form

κ̃∗(∞) = μσ̃2
q

(

I +
μΛ−1

1 λpλT
p

1 − μλT
p Λ−1

1 λp

)

Λ−1
1 λp (60)

Upon substituting (60) into (56), and after a few algebraic ma-
nipulations, we obtain the closed-form expression of the steady
state complementary MSE (SS-CMSE), ˜J(∞), as

˜J(∞) = σ̃2
q +

N
∑

i=1

μσ̃2
q p2

i

2λi − 2μλ2
i

1 −
N

∑

i=1

μp2
i

2λi − 2μλ2
i

(61)

In a similar way, the closed-form expression of the standard
SS-MSE of CLMS, J(∞) in (55), can be obtained as [34]

J(∞) = σ2
q +

N
∑

i=1

μσ2
q λ2

i

2λi − μλ2
i − μp2

i

1 −
N

∑

i=1

μλ2
i

2λi − μλ2
i − μp2

i

(62)

Remark 4: Equations (61) and (62) jointly provide a com-
plete view on the steady state performance of CLMS for
general second order noncircular Gaussian inputs, whereby the
off-diagonal elements of both R and P contain nonzero ele-
ments. The full steady state performance of CLMS is governed
by the augmented second order statistics of input data (both co-
variance and complementary covariance), in terms of λi and pi ,
and by system noise, in terms of its variance σ2

q , complementary
variance σ̃2

q , and the step-size μ.

A. Steady State Performance of CLMS vs. Degree of Input
Noncircularity

It is of particular interest to find an explicit link between
the degree of input noncircularity and the full steady state per-
formance of CLMS. To simplify our analysis, we consider a
setting where the second order noncircular Gaussian input x(k)
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is doubly white (DW), for which xr (k) ⊥ xı(k) and

R = σ2
xI and P = σ̃2

xI (63)

where σ2
x = E[x(k)x∗(k)] and σ̃2

x = E[x2(k)] are respectively
the variance and complementary variance of x(k) [18], [19].
Since the diagonal elements pi , i = 1, 2, . . . , N , in Λp , obtained
by the Takagi factorisation, are nonnegative square roots of
PPH [53], from (63), for doubly white second order noncircular
data, we have PPH = |σ̃2

x |2I, and hence

λi = σ2
x and pi = |σ̃2

x | (64)

Consider a measure, η, of the degree of input noncircularity
in a signal, defined as the ratio of the absolute value of its
complementary covariance σ̃2

x to its variance σ2
x , giving η =

|σ̃2
x |/σ2

x , which is bounded within [0, 1] [56], [57]. Then from
(62), the SS-MSE J(∞) of CLMS can be derived as

J(∞) = σ2
q +

μNσ2
q σ4

x

2σ2
x − μσ4

x − μ|σ̃2
x |2

1 − μNσ4
x

2σ2
x − μσ4

x − μ|σ̃2
x |2

= σ2
q +

μNσ2
q σ2

x

2 − μ(N + 1)σ2
x − μσ2

xη2 (65)

In a similar way, from (61), the SS-CMSE, ˜J(∞) of CLMS
becomes

˜J(∞) = σ̃2
q +

μNσ̃2
q |σ̃2

x |2
2σ2

x − 2μσ4
x

1 − μN |σ̃2
x |2

2σ2
x − 2μσ4

x

= σ̃2
q +

μNσ̃2
q σ2

xη2

2 − 2μσ2
x − μNσ2

xη2 (66)

Remark 5: Both the SS-MSE, J(∞), in (65) and the SS-
CMSE, ˜J(∞), in (66) which is evaluated through its real and
imaginary parts denoted as 	[ ˜J(∞)] and 
[ ˜J(∞)], are mono-
tonically increasing functions of the degree of input noncircu-
larity η. This is readily verified through the first derivative of
J(∞), 	[ ˜J(∞)] and 
[ ˜J(∞)] with respect to η, which gives
∂J(∞)/∂η > 0, ∂	[ ˜J(∞)]/∂η > 0 and ∂
[ ˜J(∞)]/∂η > 0,
for η ∈ [0, 1].

V. FURTHER INSIGHTS INTO THE PROPOSED FULL MEAN

SQUARE ANALYSIS OF CLMS

In general, the proposed complementary mean square analysis
enables us to quantify the influence on the performance of the
time-variant second order noncircularity of both the error e(k)
and the weight error vector ˜h(k) of CLMS, in both the transient
and steady state stages, which is overlooked by the existing
mean square analyses in the literature. Due to the complex-
valued nature of the complementary second order statistics, we
have two degrees of freedom to describe the noncircularity on
e(k) and ˜h(k), the two key parameters which govern the CLMS
algorithm. This will become clear through the expressions for

the individual mean square evolutions of the real and imaginary
parts of e(k) and ˜h(k), as follows. When e(k) is rewritten in
terms of its real and imaginary components as e(k) = er (k) +
ıeı(k), the complementary MSE ˜J(k) in (19) becomes

˜J(k) = E[e2(k)] = E[e2
r (k)] − E[e2

ı (k)] + 2ıE[er (k)eı(k)]
(67)

the real part of which represents the noncircularity (impropri-
ety) introduced by the power mismatch between the real and
imaginary components of the error e(k), while the imaginary
part of ˜J(k) is twice of the cross-correlation between the two
components of e(k).

The complementary weight error covariance matrix ˜K(k) in
(21) can be factorised in a similar way by considering ˜h(k) =
˜hr (k) + ı˜hı(k), to give

˜K(k) = E[˜h(k)˜hT (k)]

= E[˜hr (k)˜hT
r (k)] − E[˜hı(k)˜hT

ı (k)]

+ı
(

E[˜hı(k)˜hT
r (k)] + E[˜hr (k)˜hT

ı (k)]
)

(68)

Note that the diagonal elements of ˜K(k) are of particular inter-
est, since they quantify the time-varying second order noncircu-
lar behaviour of the weight error coefficients ˜h(k), in the sense
that their real components reflects the power imbalance between
the real part and imaginary part of ˜h(k), while the imaginary
components of the diagonal elements in ˜K(k) are twice the
cross-correlation between the real and imaginary components
of the weight error coefficients ˜h(k).

In a similar way, we can partition J(k) in (14) and K(k) in
(16) to yield

J(k) = E[|e(k)|2 ]
= E[e2

r (k)] + E[e2
ı (k)] (69)

K(k) = E[˜h(k)˜hH (k)]

= E[˜hr (k)˜hT
r (k)] + E[˜hı(k)˜hT

ı (k)]

+ ı
(

E[˜hı(k)˜hT
r (k)] − E[˜hr (k)˜hT

ı (k)]
)

(70)

Upon inspection of both sides of (67) and (69), we obtain

E[e2
r (k)] =

J(k) + 	[ ˜J(k)]
2

(71)

E[e2
ı (k)] =

J(k) −	[ ˜J(k)]
2

(72)

E[er (k)eı(k)] =

[ ˜J(k)]

2
(73)

while a comparison of both sides of (68) and (70) yields

E[˜hr (k)˜hT
r (k)] =

	[K(k) + ˜K(k)]
2

(74)

E[˜hı(k)˜hT
ı (k)] =

	[K(k) − ˜K(k)]
2

(75)
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Fig. 3. Comparison of the theoretical and simulated curves for the MSE J (k) and the CMSE ˜J (k), quantified in terms of its real component 	[˜J (k)] and

imaginary component 
[˜J (k)], with σ2
q = 0.005 and different step-sizes μ.

E[˜hr (k)˜hT
ı (k)] =


[ ˜K(k) − K(k)]
2

(76)

E[˜hı(k)˜hT
r (k)] =


[ ˜K(k) + K(k)]
2

(77)

From (71)–(77), an important application of the proposed full
mean square analysis of CLMS for second order noncircular
Gaussian inputs stems from the fact that this provides enough
degrees of freedom to describe the individual mean square
evolutions of the real and imaginary parts, as well as their
cross-correlation, of both the output error e(k) and the weight
error vector ˜h(k). This can only be achieved via a joint
consideration of the proposed complementary and the standard
mean square analyses together, when e(k) and ˜h(k) are
second order noncircular. The standard mean square analysis
itself is adequate for this second order statistical decoupling
only in a limited scenario when e(k) and ˜h(k) are circular,
i.e., E[e2

r (k)] = E[e2
ı (k)] = E[e2(k)]/2, E[er (k)eı(k)] = 0,

E[˜hr (k)˜hT
r (k)] = E[˜hı(k)˜hT

ı (k)] = E[˜h(k)˜hT (k)]/2, and
E[˜hr (k)˜hT

ı (k)] = E[˜hı(k)˜hT
r (k)] = 0. From this perspective,

the proposed full mean square analysis is not limited to the
CLMS algorithm, but is also applicable to other gradient
descent based adaptive filtering algorithms, which may derived
from different cost functions, e.g., Gaussian entropy criteria
[36], [58], with second order noncircular inputs and system
noises. The noncircularity of the output error and the weight
error vector has also been observed within these algorithms.

VI. SIMULATIONS

Numerical examples were conducted in the MATLAB pro-
gramming environment in order to evaluate the theoretical
findings on the proposed complementary and full mean square
convergence analysis of the CLMS algorithm for strictly linear
estimation (SLE) with second order noncircular Gaussian input
data. The experiments were performed in a system identifica-
tion setting as described in (3), where the system coefficients to
be identified, ho , formed a strictly linear FIR channel of length

N = 5, for which the weight coefficients were drawn from a
uniform complex-valued random distribution. The system noise
q(k) was a zero-mean complex-valued Gaussian process with
variance σ2

q , and with correlated real and imaginary parts ob-
tained through

qr (k) = ρqı(k) +
√

1 − ρ2q1(k) (78)

where ρ is a parameter which controls the correlation level be-
tween the two channels, set to be ρ = 0.5 in the simulations, and
q1(k) is a real-valued Gaussian process with variance σ2

q . In this
way, the noncircularity of q(k) arose from two sources, that is,
from the power mismatch between the real and imaginary com-
ponents and their cross-correlation. The Gaussian input x(k)
was a second order noncircular linear autoregressive (AR)(1)
process, given by

x(k) = 0.7x(k − 1) + u(k) (79)

where u(k) is a zero-mean doubly white (DW) noncircular
Gaussian process with variance σ2

u = 1 and complementary
variance σ̃2

u = 0.9, which gave a high degree of noncircular-
ity η = |σ̃2

u |/σ2
u = 0.9. The weights within the CLMS algorithm

were initialised with zeros, and simulation results were obtained
by averaging over 10,000 independent trials.

Fig. 3 shows the theoretical and simulated learning curves
of the standard MSE, J(k), and the proposed complementary
MSE (CMSE), ˜J(k), of CLMS for the considered second order
noncircular Gaussian input vector x(k) and the system noise
q(k) with σ2

q = 0.005 and different values of step-size μ. The

theoretical evaluations of J(k) and ˜J(k), obtained by using (15)
and (17), and (20) and (22), respectively, and their high accuracy
in predicting the simulated behaviours can be observed. Note
that in order to illustrate the convergence of both J(k) and ˜J(k)
in detail, their logarithmic values in dB were plotted, and since
the real and imaginary components of ˜J(k), that is, 	[ ˜J(k)]
and 
[ ˜J(k)] can be negative, their absolute values |	[ ˜J(k)]|
and |
[ ˜J(k)]| were used. The simulation results are in line with
Remark 2, which states that the noncircularity of both x(k) and
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Fig. 4. Comparison of the theoretical and simulated curves for the mean square convergence of the real and imaginary parts of e(k) and ˜h(k), as well as their
cross-terms, with μ = 0.001 and σ2

q = 0.1.

Fig. 5. Comparison of the theoretical and simulated curves for the mean square convergence of the real and imaginary parts of e(k) and ˜h(k), as well as their
cross-terms, with μ = 0.01 and σ2

q = 0.1.

q(k) would propagate into the output error e(k), as indicated
by a non-vanishing CMSE ˜J(k). Furthermore, as discussed in
Remark 3, the real and imaginary components of ˜J(k) are both
convergent during the recursive minimisation process of J(k).
Observe that there is a deep V-shape in the beginning of the
evolutions of |	[ ˜J(k)]| and |
[ ˜J(k)]|, because of a transition
from a negative value to positive value.

As discussed in Section V, only the joint consideration of
the proposed complementary mean square convergence analysis
in (20) and (23), and the standard mean square convergence
analysis in (15) and (18), enables a full insight into the evolution
of the mean square error and the weight error covariance matrix
of the real and imaginary channels, as well as their cross-terms,
by using (71)–(77). This is supported by Fig. 4 and Fig. 5, where
the results were obtained with σ2

q = 0.1 and for different μ. Note
that in these simulations, for simplicity of illustration, we used
the power of weight error coefficients, which is the trace of the
weight error covariance matrix, instead of the whole matrix.
It can be also seen from Fig. 4 and Fig. 5 that the theoretical
analysis accurately described the full mean square convergence

TABLE I
COMPARISON OF THE EIGENVALUES OBTAINED BY EVD AND AUT

of the CLMS algorithm. Due to the fact that those cross-terms,
that is, E[er (k)eı(k)] and tr

(

E[˜hr (k)˜hT
ı (k)]

)

, can be negative,
we used their absolute values for the illustration. Note that the
noncircularity of both e(k) and ˜h(k) was also indicated by Fig. 4
and Fig. 5 in the sense that both the power mismatch between
their real and imaginary components and the cross-correlation
between both channels did exist.

In the next stage, we investigated the validity of the proposed
full steady state performance analysis of CLMS. In order to
achieve the closed-form expressions of the steady state MSE
(SS-MSE), J(∞), and the steady state complementary MSE
(SS-CMSE), ˜J(∞), of CLMS given in (62) and (61), the approx-
imate uncorrelating transform (AUT) [34], [44] was employed
to approximately diagonalise the input covariance matrix R by
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TABLE II
COMPARISON OF THEORETICAL AND SIMULATED STEADY STATE MSE J (∞) AND CMSE ˜J (∞) OF THE CLMS ALGORITHM FOR SECOND ORDER NONCIRCULAR

GAUSSIAN INPUT DATA AGAINST DIFFERENT VALUES OF THE STEP-SIZE μ AND THE SYSTEM NOISE VARIANCE σ2
q

Fig. 6. Theoretical and simulated SS-CMSE, ˜J (∞), of CLMS against varying
degrees of noncircularity η, for doubly white Gaussian input data with σ2

q =

0.01 and μ = 0.05. (a) 	[˜J (∞)], and (b) 
[˜J (∞)].

using the same orthogonal matrix Q from the Takagi factorisa-
tion of its complementary counterpart P, as given in (26). We
should mention that for a highly noncircular univariate input
x(k), AUT gives a near perfect approximate diagonalisation for
small sizes of covariance matrices, e.g., N ≤ 20 [44]. This is
evidenced by Table I, which compares the eigenvalues obtained
by using the standard eigenvalue decomposition (EVD) and the
AUT, and observe very tiny difference along all the five eigen-
values. Table II compares theoretical and simulated SS-MSE
and SS-CMSE against different system noise variances σ2

q and
step-sizes μ, showing a good agreement between the analytical
and empirical results.

As discussed in Section IV-A, we have been able to build
up an intuitive and explicit link between the full steady state
MSE performance of both the CLMS algorithm and the degree
of noncircularity η of the doubly white Gaussian input data. We
have also shown that the steady state complementary MSE (SS-
CMSE), ˜J(∞), in (66), expressed in terms of its real and imag-
inary components, monotonically increases with an increase in
the input noncircularity η. To further illustrate this phenomenon,
in the final experiment we evaluated the SS-CMSE, ˜J(∞), for
varying degrees of input noncircularity η. Since the doubly white
Gaussian input with unit variance was used in the simulations,
for a fair comparison, different degrees of input noncircularity
η were achieved by varying its complementary covariance σ̃2

x .
The upper panel and the lower panel of Fig. 6 conform with the
analysis in Remark 5, and the agreement between the simulated

and theoretical SS-CMSE for the CLMS algorithm can also be
observed in Fig. 6.

VII. CONCLUSION

A full mean square transient and steady state performance
analysis of complex least mean square (CLMS) has been intro-
duced for strictly linear estimation of second order noncircular
Gaussian input data. This has been achieved by jointly consider-
ing the convergence of the complementary second order statis-
tics of both the error and the weight error vector, namely the
complementary mean square error (CMSE) and the complemen-
tary covariance matrix of the weight error vector, of the CLMS
algorithm, together with their standard second order counter-
parts. We have also illustrated that there exists a conservative
stability bound on the step-size for the convergence of both the
weight error covariance matrix as its complementary counter-
part. The closed-form expressions for the steady state MSE and
CMSE have been subsequently derived, enabling us to find a
monotonically increasing relationship between these quantities
and the degree of input noncircularity for doubly white Gaus-
sian input data. The proposed full mean square analysis has
also provided us with enough degrees of freedom to analyse the
mean square evolutions of the real and imaginary components
of the error and the weight error vector independently, as well
as the cross-correlation between both components, an impor-
tant property of CLMS which cannot be achieved by using the
standard mean square analysis only. Simulations in the system
identification setting support the analysis.

APPENDIX A
THE STABILITY ANALYSIS OF THE TRANSITION MATRIX F

Consider the eigenvalues of the transition matrix F in (31) as
the solutions of an equation in β, that is

det[F − βI] = 0 (80)

By defining

δi = 1 − 2μλi + μ2λ2
i + μ2p2

i , i = 1, 2, . . . , N (81)

the matrix F can be expressed as

F = diag{δ1 , δ2 , . . . , δN } + μ2λrλ
T
r (82)

and hence, after a few mathematical manipulations, we have

det[F − βI] =

[

N
∏

i=1

(δi − β)

]

·
[

1 +
N

∑

i=1

μ2λ2
i

δi − β

]

= 0 (83)
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which is equivalent to the equation

a(β) = 1 +
N

∑

i=1

μ2λ2
i

δi − β
= 0 (84)

whose poles are δi , all are positive and arranged in an increas-
ing order, i.e., 0 < δ1 < δ2 < · · · < δN . Since ∂a(β)/∂β > 0,
similar to the analysis of f(α) in (37), between each pair of
successive poles of a(β), there exists a single zero, so that

0 < δ1 < β1 < δ2 < β2 < · · · < βN −1 < δN < βN (85)

where βi are the zeros of a(β), and also the eigenvalues of F.
The stability condition that all the eigenvalues of F are located
within the unit circle requires βN < 1. This is the case if and
only if

δi < 1, i = 1, 2, . . . , N (86)

and

a(β) |β=1= 1 +
N

∑

i=1

μ2λ2
i

δi − β
> 0 (87)

Substituting δi in (81) into (86) and (87) yields the following
necessary and sufficient conditions

0 < μ <
2λi

λ2
i + p2

i

, i = 1, 2, . . . , N (88)

and
N

∑

i=1

μλ2
i

2λi − μ(λ2
i + p2

i )
− 1 < 0 (89)

Define the left hand side of (89) by b(μ), then it will be a mono-
tonically increasing function of μ with poles at 2λi/(λ2

i + p2
i ),

ordered as λ1/(λ2
1 + p2

1) < λ2/(λ2
2 + p2

2) < · · · < λN /(λ2
N +

p2
N ). Let μi be the solutions of b(μ) = 0, then

0 < μ1 <
2λN

λ2
N + p2

N

< μ2 <
2λN −1

λ2
N −1 + p2

N −1
< · · · < μN

<
2λ1

λ2
1 + p2

1

The condition 0 < μ < μ1 now is equivalent to conditions in
(88) and (89). Moreover, the polynomial b(μ) = 0 can be rewrit-
ten as
(

1
μ

)N

− m1

(

1
μ

)N −1

+ m2

(

1
μ

)N −2

+ · · · + (−1)N mN

=
N
∏

i=1

(

1
μ
− 1

μi

)

= 0 (90)

where

m1 =
1
2

N
∑

i=1

(

2λi +
p2

i

λi

)

(91)

m2 =
1
4

N
∑

i=1

N
∑

j>i

(

2λi +
λ2

i + p2
i

λi

)

(

λ2
j + p2

j

λj

)

(92)

Since m1 in (91) is equal to l1 in (49), the equation (54) is also
the conservative bound on μ to guarantee the convergence of
κ(k) in (31).
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