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Abstract—The recently introduced augmented complex least
mean square (ACLMS) algorithm is shown to be suitable for the
processing of both second order circular (proper) and noncircular
(improper) signals, by virtue of the underlying widely linear
model. In theory, both the linear CLMS and widely linear
ACLMS achieve the same mean square error for propers signals,
whereas the ACLMS exhibits lower mean square error for
improper signals. However, improperness can arise due to the
system noise, input, or channel model and to shed more light
on the convergence and steady state properties of ACLMS and
CLMS in these cases we here employ the energy conservation
principle. Simulations in adaptive prediction and system identifi-
cation settings for signals with different probability distributions
and degrees of noncircularity support the the analysis.

Index Terms—Widely linear modelling, augmented complex
statistics, augmented CLMS (ACLMS), improperness, energy
conservation principle, steady state analysis, convergence

I. INTRODUCTION

Complex-valued adaptive filtering algorithms have found

numerous applications, such as noise cancellation, system

identification and adaptive prediction [1], and are normally

considered generic extensions of the corresponding real valued

algorithms. For instance, consider a real-valued conditional

mean estimator y = E[y|x], which estimates the signal y

based on the observation x. For zero mean, jointly normal

y and x, the optimal solution is the linear model, ŷ = xTh,

where h = [h1, . . . , hL]
T is a vector of fixed filter coefficients,

and x = [x1, ..., xL]
T is the regressor vector. In the complex

domain, it is normally assumed that we can use the same form

of estimator, leading to the standard complex linear minimum

mean square error (MMSE) estimator

ŷ = xTh (1)

Note, however, that both the real and imaginary parts of

complex variables are real, and hence

ŷr = E[yr|xr, xi], ŷi = E[yi|xr, xi] (2)

and a more general form of (1) can be expressed as

ŷ = E[yr|xr, xi] + jE[yi|xr, xi] (3)

Using xr = (x+ x∗)/2 and xi = (x− x∗)/2j we arrive at

ŷ = E[yr|x, x∗] + jE[yi|x, x∗] = E[y|x, x∗] (4)

leading to the widely linear estimator for complex valued data

y = hTx+ gTx∗ = xTh+ xHg (5)

where h and g are complex-valued coefficient vectors.

In practice, the widely linear estimate in (5) is produced by

concatenating the input vector x with its conjugate x∗, to give

an augmented 2L×1 input vector xa = [xT , xH ]T , together

with the augmented weights wa = [hT , gT ]T . The 2L×2L
augmented covariance matrix [2]

Ca
xx = E

[
x
x∗

] [
xHxT

]
=

[
Cxx Pxx
P∗

xx C∗
xx

]
(6)

now contains the full second order information. From (6), it

is clear that the covariance matrix, Cxx = E[xxH ], alone does

not have sufficient degrees of freedom to describe full second

order statistics [3], and in order to make use of all the available

second order information we also need to consider the pseudo-

covariance matrix, Pxx = E[xxT ]. Processes with the vanishing

pseudo-covariance Pxx = 0 are termed second order circular

(or proper), however, in most real world applications, complex

signals are second order noncircular or improper.

Augmented complex statistics has opened the possibility to

design adaptive filtering algorithms suitable for the processing

of both proper and improper signals [2], [4]. These algorithms

are usually termed “widely linear” or “augmented”, such as

the widely linear LMS (WL-LMS) [5], augmented CLMS

(ACLMS), augmented affine projection (AAPA), and widely

linear Recusive Least Squares (WL-RLS) algorithms in the

adaptive filtering area [6], [7], [8], and also in the context of

blind source separation [9], [10].

Widely linear adaptive filtering algorithms normally have

superior performance over their conventional counterparts

when dealing with noncircular complex signals, however,

theoretical understanding of their performance is still subject

of ongoing research [5], [11], [12]. In this paper, the anal-

ysis of steady state performance of CLMS and ACLMS is

performed based on the conservation principle of the weight

error energy flow throughout filter adaptation [1]. We cater

for improperness of the teaching signal, input and noise,

and evaluate steady state behavior of ACLMS and CLMS

algorithms in such situations. In this paper, the following

notations are adopted: E[·] denotes the statistical expectation

of a vector or matrix, || · || the Euclidean norm of a vector,

(·)∗ the complex conjugate, (·)T the transpose of a vector or a

matrix, (·)H the Hermitian transpose of a vector or a matrix,

Tr(·) the trace of a matrix, λmax(·) the largest eigenvalue of

a matrix,
⊗

the Kronecker product operator, and R
+ the set

of positive real numbers.
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II. STEADY STATE MEAN SQUARE PERFORMANCE OF

CLMS AND ACLMS ON NONCIRCULAR SIGNALS

Consider a second order noncircular (improper) teaching

signal d(k) described by the widely linear model

d(k) = xT (k)ho + xH(k)go + q(k) (7)

where ho and go are respectively the optimal standard and

conjugate weight vectors, q(k) denotes the possibly improper

measurement noise with variance σ2
q , while x(k) is the

complex-valued input vector x(k) = [x(k−1), . . . , x(k−L)]T

with a positive-definite covariance matrix Cxx = E[xxH ].

A. Steady state analysis of CLMS for noncircular signals

The conventional CLMS algorithm is given by [13]

y(k) = xT (k)h(k)
e(k) = d(k)− y(k)

h(k + 1) = h(k) + μe(k)x∗(k) (8)

where h(k) is the L× 1 weight vector at time instant k, y(k)
the output signal, e(k) output error, and μ the step size. The

steady state performance is quantified by the mean square error

(MSE) given by

MSE = lim
k→∞

E
[|e(k)|2] (9)

To find a closed form of MSE of CLMS for noncircular signals

(generated by the widely linear signal model in (7)), we shall

first define the weight error vector h̃(k) = ho − h(k); then

upon subtracting the weight update in (8) from ho, we have

h̃(k + 1) = h̃(k)− μx∗(k)e(k) (10)

Pre-multiplying both sides with xT (k) gives

xT (k)h̃(k + 1) = xT (k)h̃(k)− μ‖x‖2e(k) (11)

allowing us to introduce the a posteriori and a priori errors

ep(k) and ea(k) as [1]

ep(k) = xT (k)h̃(k + 1) and ea(k) = xT (k)h̃(k) (12)

and to rewrite the output error e(k) as

e(k)=d(k)− y(k)=ea(k) + xHgo + q(k) (13)

Since MSE = EMSE + Jmin where the excess mean square

error (EMSE) arising due to the mismatch between the filter

weights and optimal weights is defined as

EMSE = lim
k→∞

E
[|ea(k)|2] (14)

this illustrates that the mimimum achievable MSE for CLMS

operating on improper signals

Jmin > σ2
q (15)

as opposed to Jmin = σ2
q for circular signals. Compared with

the standard analysis of CLMS in [1], the additional term xHgo
arises due to the improper nature of the desired signal in (7).

The a posteriori and a priori errors in (12) are related by

ep(k) = ea(k)− μ‖x(k)‖2e(k) (16)

and for a nonzero input x(k), we have

μe(k) =
ep(k)− ea(k)

‖x‖2 (17)

The evolution of the weight error vector h̃(k) in (11) can now

be expressed as

h̃(k + 1) = h̃(k)− ep(k)− ea(k)

‖x‖2 x∗(k) (18)

or equivalently

h̃(k + 1) +
x∗(k)
‖x(k)‖2 ea(k) = h̃(k) +

x∗(k)
‖x(k)‖2 ep(k) (19)

Square both sides to obtain the following ‘energy conser-

vation’ relation describing the evolution of the weight error

vector

‖h̃(k + 1)‖2 + |ea(k)|2
‖x(k)‖2 = ‖h̃(k)‖2 + |ep(k)|2

‖x(k)‖2 (20)

If we apply the statistical expectation of both sides of (20),

and assume that at the steady state, E
[‖h̃(k + 1)‖2] �

‖E [
h̃(k)‖2], then

E
[ |ea(k)|2
‖x(k)‖2

]
= E

[ |ep(k)|2
‖x(k)‖2

]
(21)

Substituting (20) into the RHS of (21), gives

E
[ |ea(k)|2
‖x(k)‖2

]
= E

[ |ea(k)− μ‖x(k)‖2e(k)|2
‖x(k)‖2

]
(22)

and upon combining with (13), this yields

E
[ |ea(k)|2 − ∣∣ea(k)− μ‖x(k)‖2(ea(k) + q(k) + xHgo

)∣∣2
‖x(k)‖2

]
= 0

We can now use the standard assumptions that at the steady

state (as k → ∞), the noise sequence q(k) is i.i.d. and

statistically independent of the input sequence x(k), and that

ea(k) is independent of x(k), to obtain

2EMSECLMS = μE[‖x(k)‖2|ea(k)|2] (23)

+ μE
[‖x(k)‖2|xHgo|2

]
+ μσ2

qTr(Cxx)

For a sufficiently small step size μ, we can neglect the term

μE[‖x(k)‖2|ea(k)|2] to give

EMSECLMS =
μ

2
σ2
qTr(Cxx) +

μ

2
E
[‖x(k)‖2|xHgo|2

]
(24)

For a large value of the step size μ, the second term on the

RHS of (24) cannot be neglected; with a further assumption

that at the steady state ‖x(k)‖2 is statistically independent of

|ea(k)|2, we have

EMSECLMS =
μσ2

qTr(Cxx) + μE
[‖x(k)‖2|xHgo|2

]
2− Tr(Cxx)

(25)

Compared with the expressions for EMSE for standard CLMS

operating on proper signals generated by a strictly linear

model (see [14], [1]), both (24) and (25) contain an additional

“conjugate” term xH(k)go, arising from the widely linear

nature of the teaching signal model in (7), thus illustrating that

the standard CLMS is suboptimal for the filtering of second

order noncircular signals (from (7), ideally Jmin = σ2
q ).
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Using (13), we finally obtain the steady state mean square

error of standard CLMS for improper signals in the form

MSECLMS = EMSECLMS + E[|xHgo|2] + σ2
q (26)

where due to the inadequacy of the strictly linear CLMS to

estimate improper signals produced by the widely model in

(7), the minimum MSE of CLMS, Jmin = E[|xHgo|2] + σ2
q is

larger than the optimal one Jmin = σ2
q ; this mismatch depends

on the degree of noncircularity reflected by the size of the

conjugate weight vector go.

B. Steady state analysis of ACLMS for noncircular signals

The widely linear version of CLMS, called the augmented

CLMS (ACLMS), was proposed in [6], [14] and can be

summarised as

y(k) = xT (k)h(k) + xH(k)g(k)
e(k) = d(k)− y(k)

h(k + 1) = h(k) + μe(k)x∗(k)
g(k + 1) = g(k) + μe(k)x(k) (27)

where h(k) and g(k) are respectively the standard and conju-

gate weight vectors. Similarly to the analysis in the previous

subsection, by subtracting the h and g weight updates in (27)

from their respective optimal weights ho and go, we obtain

the corresponding weight error vectors h̃(k) = ho − h(k) and

g̃(k) = go − g(k), whose evolution is described by

h̃(k + 1) = h̃(k)− μx∗(k)e(k) (28)

g̃(k + 1) = g̃(k)− μx(k)e(k) (29)

Multiply both sides of (28) with xT (k) and both sides of (29)

with xH(k) to yield

xT (k)h̃(k + 1) = xT (k)h̃(k)− μ‖x‖2e(k) (30)

xH(k)g̃(k + 1) = xH(k)g̃(k)− μ‖x‖2e(k) (31)

The a posteriori and a priori errors ep(k) and ea(k) now

become

ep(k) = xT (k)h̃(k + 1) + xH(k)g̃(k + 1) (32)

ea(k) = xT (k)h̃(k) + xH(k)g̃(k) (33)

with

ep(k) = ea(k)− 2μ‖x‖2e(k)
and

e(k) =
1

2μ‖x‖2
(
ep(k)− ea(k)

)
(34)

Processing in the same manner as for CLMS, with a further

assumption that at the steady state h̃(k+1) � h̃(k) and g̃(k+
1) � g̃(k), we have

‖h̃(k + 1)‖2 + h̃
H
(k)x∗(k)ea(k)

2‖x‖2 =

‖h̃(k)‖2 + h̃
H
(k + 1)x∗(k)ep(k)

2‖x‖2 (35)

and

‖g̃(k + 1)‖2 + g̃H(k)x∗(k)ea(k)
2‖x(k)‖2 =

‖g̃(k)‖2 + g̃H(k + 1)x∗(k)ep(k)
2‖x(k)‖2 (36)

Adding up (35) and (36) gives the weight error energy

conservation equations

‖h̃(k + 1)‖2 + ‖g̃(k + 1)‖2 + |ea(k)|2
2‖x(k)‖2 =

‖h̃(k)‖2 + ‖g̃(k)‖2 + |ep(k)|2
2‖x(k)‖2 (37)

Taking the statistical expectation, and assuming that at the

steady state E
[‖h̃(k + 1)‖2] � ‖E[

h̃(k)‖2], gives

E
[ |ea(k)|2
‖x(k)‖2

]
= E

[ |ep(k)|2
‖x(k)‖2

]
(38)

Similar to the analysis in Section II-A, it follows immediately

that

2EMSEACLMS = μE[‖x(k)‖2|ea(k)|2] + μσ2
qTr(Cxx) (39)

For a sufficiently small step size μ, we obtain

EMSEACLMS =
μ

2
σ2
qTr(Cxx) (40)

whereas for a large value of μ, we have

EMSEACLMS =
μσ2

qTr(Cxx)

2− Tr(Cxx)
(41)

Note that from

e(k) = d(k)− y(k)

= xT (k)
(
ho(k)− h̃(k)

)
+ xH(k)

(
go(k)− h̃(k)

)
+ q(k)

= ea(k) + q(k) (42)

the mean square error of ACLMS, denoted by MSEACLMS, has

the form

MSEACLMS = EMSEACLMS + σ2
q (43)

As desired, the minimum achievable mean square error Jmin =
σ2
q , giving theoretical justification for the performance ad-

vantage of ACLMS over CLMS when dealing with second

order noncircular signals; this conforms with the result in [12]

showing that the minimum MSE of CLMS is larger than that

of ACLMS for noncircular signals.

III. MEAN AND MEAN-SQUARE STABILITY ANALYSIS OF

ACLMS

We shall next investigate the bounds on the step size μ,

giving insight into the convergence of the ACLMS algorithm.

From Section II-B, the vector-matrix form for the weight error

vectors becomes[
h̃(k + 1)
g̃(k + 1)

]
=

[
I − μx∗(k)xT (k) −μx∗(k)xH(k)
−μx(k)xT (k) I − μx(k)xH(k)

] [
h̃(k)
g̃(k)

]

+ μ

[
x∗(k)
x(k)

]
q(k) (44)
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TABLE I
STEP SIZE BOUNDS OF ACLMS FOR THE IMPROPER PROCESS IN (50) DRIVEN BY DOUBLY WHITE CIRCULAR GAUSSIAN AND UNIFORM DRIVING NOISES

Types of input 2
λmax(Ca

xx)
1

λmax(A−1B)
1

max(λ(H)∈R+)
μmax

Gaussian input 1.2795 1.2853 0.9109 0.9109
Uniform input 0.9769 0.9752 0.6614 0.6614
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Fig. 1. Simulated MSE (dashed line) and theoretical bounds (solid line) of
ACLMS as a function of step-size μ for (a) Gaussian input (b) Uniform input.

Upon applying the statistical expectation operator, and using

the ‘augmented’ notation for the weight error vector w̃(k) =

[h̃
T
(k), g̃T (k)]T , we obtain

E[w̃(k + 1)] =
(
I − μCa∗

xx
)
E[w̃(k)] (45)

Performing the analysis of modes of convergence with respect

to the conjugate augmented covariance matrix Ca∗
xx as in [11],

and bearing in mind that the eigenvalues of Ca∗
xx are identical

to those of Ca
xx, it is easy to show that the step size is bounded

by

0 < μ <
2

λmax(Ca
xx)

(46)

where λmax(Ca
xx) is the largest eigenvalue of the augmented

covariance matrix Ca
xx.

Noting that the expression (45) satisfies the form of the

evolution of the mean weight error vector, then, as shown in

[1], the bounds on the step size μ can be made tighter based

on λ(F (μ)) < 1, where

F (μ) = I − μA+ μ2B (47)

and A = E[PT (k)] ⊗ I + I ⊗ E[PT (k)], B = E[PT (k)] ⊗
E[P (k)], and P (k) = xa(k)xaH(k). Following the argument

used in [15], we can finally establish the bound on the stepsize

in the form

0 < μ < min{1/λmax(A
−1B), 1/max(λ(H) ∈ R

+)} (48)

where H is defined by

H =

[
(1/2)A −(1/2)B

I 0

]
(49)
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(a) Gaussian input
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Fig. 2. Comparison of theoretical and simulated steady state MSE of CLMS
and ACLMS for noncircular AR signals generated by (a) Gaussian driving
noise and (b) Uniform driving noise.

IV. SIMULATIONS

The first set of simulations was performed in an one step

prediction setting, for a noncircular complex signal generated

by the widely linear autoregressive (AR) model

r(k + 1) = 0.5r(k) + 0.2r∗(k) + q(k) (50)

All the graphs were produced by averaging 200 independent

trials. Our analysis does not require the input data to be

Gaussian, and two cases of complex valued doubly white

circular driving noise q(k) were investigated: Gaussian and

uniform, both with zero mean and unit variance. Table I

presents the theoretical bounds on the step size μ of the

ACLMS algorithm; this is further illustrated in Fig. 1 which
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(a) Results for ρ = 0.1
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(b) Results for ρ = 0.5

Fig. 3. Comparison of the theoretical and simulated steady state MSE of
CLMS and ACLMS algorithms: (a) noncircular noise (ρ = 0.1), and (b)
nonciruclar noise (ρ = 0.5).

shows both the simulated MSE curves (dashed line) and

theoretical bounds (solid line). Fig. 2 shows the simulated and

theoretical steady state MSE curves of CLMS and ACLMS as

a function of step size μ - they are in good agreement with

the theoretical results, estimated using (26) and (43).

The next set of simulations was performed in a system

identification setting, where the system to be identified was

a strictly linear FIR channel of length L = 4 with coefficients

ho = [1.79,−1.85, 1.27,−0.41]T ; the input signal x(k) was

circular complex valued doubly white Gaussian noise with

zero mean and unit variance. Following the discussion in [4],

the desired signal was real valued d(k) = Re{xT (k)ho},

and the output of the filter was contaminated by noncircular

Gaussian noise

q(k) =
√
1− ρ2qr(k) + jρqi(k) (51)

at an SNR level of 30 dB; the components qr(k) and qi(k) are

uncorrelated real valued white Gaussian processes with zero

mean and unit variance (double whiteness). By changing the

value of ρ ∈ [0, 1], we can control the degree of noncircularity

of q(k). Fig. 3 illustrates the theoretical and simulated MSE

of the CLMS and ACLMS algorithms for two cases of

noncircular noise (ρ = 0.1, 0.5). In both the cases, theoretical

results were in good agreement with the simulations, and as

desired the ACLMS algorithm provided smaller MSE.

V. CONCLUSION

The mean square performance analysis of the standard

complex least mean square (CLMS) and the widely linear

augmened CLMS (ACLMS) algorithm has been performed for

the filtering of second order noncircular complex signals. It

has been shown that CLMS is suboptimal for second order

noncircular processes, and the advantage of ACLMS over

CLMS has been quantified using the energy conservation

approach. Simulations in the widely linear prediction and

system identification scenarios support the analysis.
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