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Abstract—The distribution of complex random signals is typ-
ically improper. It has recently been established that conven-
tional strictly linear models are only second order optimum
for signals with proper distributions, while so called “widely-
linear models” are optimum for the generality of complex signals,
both proper and improper. Widely-linear models, however, are
over-parameterised when the underlying system is strictly-linear,
requiring twice the number of parameters to be estimated
compared to strictly-linear models. This effects widely-linear
adaptive algorithms, such as the augmented complex least mean
square (ACLMS) and augmented complex recursive least squares
(ACRLS), and leads to slow convergence. We here address the
problem of the over-parameterisation of the ACLMS through the
use of regularised cost error functions, and illustrate its effects
through analysis and simulations.
Index Terms—Widely linear, ACLMS, regularisation

I. INTRODUCTION

Complex signals are used in a variety of applications
ranging from power systems to communications systems and
military technology [1] [2] [3], owing to their concise natural
representation for bivariate data [4]. The inherent transforma-
tion they offer between the Cartesian and polar (magnitude and
phase) domains, also naturally leads to the generic extensions
of real valued signal-processing techniques to their complex
valued counterparts.
Complex valued filters have typically been derived as

straightforeword extensions of their real valued equivalents,
making them suited to a special class of signals known
as circular (proper), that is, signals with rotation invariant
probability distributions [5]. However, general complex signals
assume noncircular (improper) distributions due to imbalance
in the powers of the real and imaginary parts or their cor-
relation, finite sample sizes, or nonlinear transformations [4];
which makes conventional complex valued filters inadequate.
Recent advances in augmented complex statistics have

highlighted that for a general (improper) zero-mean complex
vector x, estimation based on the covariance Rx = E{xxH}
is suboptimal and the pseudocovariance Px = E{xxT } is
also required to fully capture the second order statistics. Note
that for real signals the covariance and pseudocovariance are
equal. Augmented complex valued algorithms incorporate this
information, are suited to the generality of complex signals,
both proper and improper, and have been shown to outperform
their conventional complex counterparts [2] [6].
To illuminate this point, consider the minimum mean square

error (MSE) estimator of a zero-mean real valued random

vector y in terms of an observed zero-mean real vector x,
that is, ŷ = E{y|x}. For jointly normal y and x, the optimal
linear estimator is

ŷ = Ax (1)

where A = RyxR
−1
x is a coefficient matrix, and Ryx =

E{yxH}. Standard, ‘strictly linear’ estimation in C assumes
the same model but with complex valued y,x, and A. How-
ever, when y and x are jointly improper Pyx = E{yxT } �= 0,
and x is improperPx �= 0, then the optimal estimator becomes
[5]

ŷ = Bx+Cx∗ = Wxa (2)

where B = RyxD + PyxE
∗ and C = RyxE + PyxD

∗

are coefficient matrices, with D = (Rx−PxR
∗−1
x P∗x)

−1 and
E = −(Rx−PxR

∗−1
x P∗x)

−1PxR
∗−1
x , while xa = [xT ,xH ]T

is the augmented input vector, and W = [B,C] the optimal
coefficient matrix. The estimator in (2) is optimal for the
generality of complex signals, both proper and improper.
Further, the full second order information is contained in the
augmented covariance matrix

Ra
x = E{xaxaH} =

[
Rx Px

P∗x R∗x

]
(3)

and as such, estimation based on Ra
x incorporates both the

covariance and pseudocovariance.
For adaptive algorithms such as the least mean square

(LMS), where the data pairs x and y are explicitly given,
the aim is to estimate the coefficients of the underlying
system [7]. Widely linear algorithms are general and cater
for both strictly or widely linear system models, that is, the
conjugate coefficient C in (2) converges to zero when the
underlying transfer function is strictly linear. However, for the
same steady-state performance, the convergence rate of the
widely linear (augmented) complex LMS (ACLMS) algorithm
is slower than its strictly linear counterpart, the complex LMS
(CLMS) [8].
In this paper, we address some convergence issues of the

augmented complex LMS (ACLMS) algorithm through the use
of widely linear regularised cost functions, analyse the effects
of regularisation on the performance of the filter, and provide
illustrative simulations to illuminate the analysis.
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II. BACKGROUND
A. Complex Least Mean Square (CLMS)
Without loss in generality, consider a measurement equation

which relates a desired (observed) signal dk ∈ C at time
instant n to a regressor vector xk ∈ C

L×1 such that

dk = xH
k wo + qk (4)

where qk ∈ C is a zero-mean white noise process, and wo ∈
C

L×1 is the weight vector to be estimated. The minimum MSE
solution is found by minimising the standard cost function

J = E{eke
∗

k} = E{|ek|
2} (5)

where the error ek = dk − yk is the difference between the
desired signal dk and the filter output

yk = xH
k w (6)

whereby w is the filter coefficient estimate. The cost function
is convex, and the minimum of its derivative with respect to
w∗ yields the Wiener solution

ŵ = E{xkx
H
k }

−1E{dkxk} (7)

In practice, the true statistical moments in the Wiener solution
are often unknown and non-stationary. The CLMS is a gradient
descent based algorithm, and approximates these moments by
their instantaneous estimates. The cost function is redefined to
minimise the instantaneous error, that is

Jk = eke
∗

k = |ek|
2 = |dk − xH

k w|2 (8)

and is now time varying. The weight update vector can be
expressed as

wk+1 = wk − μ∇wJk
∣∣
w=wk

(9)

where μ is the adaption gain, and ∇wJk
∣∣
w=wk

= −ekxk the
derivative of Jk with respect to the weight vector [9]. The
CLMS is a recursive algorithm, and can be summarised as

yk = xH
k wk (10)

ek = dk − yk (11)
wk+1 = wk + μekxk (12)

B. Augmented CLMS (ACLMS)
The ACLMS is the widely linear (augmented) extension

of the CLMS, and is suited to estimating the coefficients
associated with the more general observation equation

dk = xH
k go + xT

k h
o + qk = xaH

k woa + qk (13)

where go ∈ C
L×1 and ho ∈ C

L×1 are weight vectors to be
estimated, and woa = [goT ,hoT ]T and xa

k = [xT
k ,x

H
k ]T are

the augmented coefficient and input vectors respectively. The
ACLMS cost function is of the form

Jwl
k = eke

∗

k = |ek|
2

= |dk − xH
k g − xT

k h|
2 = |dk − xaH

k wa|2 (14)

where the aim is to find the two weights wa = [gT ,hT ]T

which minimise the cost function. Following the same deriva-
tion as the CLMS, the ACLMS can be summarised as

yk = xH
k gk + xT

k hk = xaH
k wa

k

ek = dk − yk

wa
k+1 = wa

k + μekx
a
k (15)

Equivalently, the update for the two coefficients can be sepa-
rated, that is

gk+1 = gk + μekxk (16)
hk+1 = hk + μekx

∗

k (17)

Note that the ACLMS is more general then the CLMS,
however, it has a slower convergence rate than the CLMS due
to the excess number weights to be estimated.

III. REGULARISED ACLMS (R-ACLMS)
Regularisation is used to avoid overfitting to a particular

dataset by introducing additional information. It is usually
implemented as a penalty for complexity, e.g. through bounds
on the vector space norm. Examples of regularisation include
model order selection techniques, such as the Akaike infor-
mation criterion (AIC), minimum description length (MDL),
and the Bayesian information criterion (BIC); in these cases
regularisation is used to find a balance between performance,
model order, and coefficient size.
Regularisation can be used to balance between accuracy and

model complexity by modifying the cost error function. A
regularised version of the cost function (14) is given by

Jr
k = Jwl

k + γ||wa||p (18)

where ||wa||p denotes the lp-norm of wa, and the term γ ≥ 0
controls the degree of regularisation, for example when γ = 0
the cost function Jr

k becomes the widely linear cost function
Jwl
k .
The effect of regularisation in the cost function (18), is to

enforce the coefficient estimates g and h to their minimum
norm, which introduces an estimation bias when the true
coefficients go and ho are non-zero.
To illuminate this point, consider a real valued noiseless

observation equation with a scalar weight, that is,

dk = x∗kw
o (19)

where the optimum weight wo = 2, the input xk = 1 is a
constant. The regularised cost function is then given by

Jr
k = |dk − x∗kw|

2 + γ||w||p (20)

A plot of this cost function for different spans of w is
shown in Figure 1, where for γ �= 0 the minima of the cost
functions do not correspond to the optimum weight wo = 2,
introducing bias into the estimation. However, the minima of
the regularised cost functions approach wo as γ is reduced.
For wo = 0, the cost function minimums are unbiased for any
γ value.
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Fig. 1. Comparison between the l1- and l2-norm regularised cost functions for different values of γ. The standard cost function is achieved by setting γ = 0.

A. Regularised Widely Linear Gradient Descent
The regularised cost function (18), regularises both coef-

ficient vectors g and h, which introduces an estimation bias
when the true coefficients go and ho are nonzero. In the case of
the ACLMS, we are interested in preventing overfitting when
the system to be estimated is strictly linear. Therefore, it is
the conjugate weight (h) that needs to be regularised, and the
regularised cost function takes the following form:

Jr
k = Jwl

k + γ||h||p

= |dk − xH
k g − xT

k h|
2 + γ||h||p (21)

whereby the minima of (21) corresponds to the optimum
weights when the systems to be estimated is strictly linear,
that is ho = 0; otherwise for widely linear systems (ho �= 0),
the cost function minima is not aligned with the optimum
weights. Based on (21), we have the following time updates
for the filter coefficients

gk+1 = gk + μ∇gJ
r
k |g=gk

= gk + μekxk (22)
hk+1 = hk + μ∇hJ

r
k |h=hk

= hk + μekx
∗

k − αΣp(hk) (23)

where Σp(hk) =
(
∇h||h||p

)∣∣
h=hk

∈ C
L×1 denotes the

subgradient of the lp-norm, and the term α = μγ governs the
fraction of the conjugate weight updated due to regularisation.
For the remainder of this paper, we will refer to the adaptive
filters utilising the regularised update equations (22)–(23) as
the regularised-ACLMS (R-ACLMS).
In this work, we restrict our analysis to regularisation

involving l1- and l2-norms. The l1-norm subgradient is the
component-wise sign function given by

Σ1(u) = sgn(u) =

{
u/|u| if u �= 0

0 if u = 0

whereby for a vector input, we have

Σ1(hk) = [sgn(h(1)
k ), · · · , sgn(h(L)

k )]T (24)

with h
(i)
k being the ith component of hk; while, the l2-norm

subgradient is defined as

Σ2(hk) =
1

2
(hH

k hk)
−

1

2hk =
1

2

hk

||hk||
1/2
2

(25)

Remark 1: Note that each component in the l1-norm gradi-
ent,Σ1(hk), consists of the normalisation of hk such that each
component has unit magnitude; while the l2-norm gradient,
Σ2(hk), consists of the normalisation of the conjugate vector
by its l2-norm.
The augmented form for the R-ACLMS is as follows:

yk = xH
k gk + xT

k hk = xaH
k wa

k (26)
ek = dk − yk (27)

wa
k+1 = wa

k + μekx
a
k − αΔp,k (28)

where wa
k = [gT

k ,h
T
k ]

T , Δp,k = [0T
L,Σp(hk)

T ]T , and 0T
L

is a zero column vector of length L. The update for the two
coefficients can be separated, as shown in (22)–(23).

B. Cost Function Bias Analysis
For the analysis of the R-ACLMS, we utilise the standard

independence assumptions, that is, xk is independent and
identically distributed in time with augmented covariance Ra

x,
and uncorrelated with the white observation noise process qk.
The derivative of the cost function Jr

k with respect to wa
k

is given by

∇waJr
k |wa = −ekx

a
k + γΔp (29)

Setting this derivative to zero and rearranging, we have

wa
min = [xa

kx
aH
k ]−1[dkx

a
k − γΔp]

= [xa
kx

aH
k ]−1[xa

kx
aH
k woa + xa

kqk − γΔp]

= woa + [xa
kx

aH
k ]−1[xa

kqk − γΔp] (30)

Utilising the independence assumptions and (30), the weight
error becomes

w̃a = wa
min −woa = [xa

kx
aH
k ]−1[xa

kqk − γΔp] (31)

Finally, applying the expectation operator to both side yields

E{w̃a} = E{[xa
kx

aH
k ]−1xa

kqk} − E{[xa
kx

aH
k ]−1γΔp}

= −γE{[xa
kx

aH
k ]−1}Δp (32)

Remark 2: For the minima of the regularised cost function
to align with the optimal weight, it is required that Δp =
[0T

L,Σp(h)
T ]T = 0. Based on (24) and (25), this is the case

only when wa = 0, otherwise the weight estimate is biased.
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Fig. 2. Coefficient convergence of the ACLMS and R-ACLMS for a strictly linear system with a noncircular input signal.

C. Mean Convergence Analysis
We start by substituting the desired signal (13) and R-

ACLMS output (26) into the error signal, that is

ek = dk − yk = xaH
k woa + qk − xaH

k wa
k (33)

then the weight update (28) can be written as

wa
k+1 = wa

k + μ
[
xa
kx

aH
k woa + xa

kqk − xa
kx

aH
k wa

k

]
− αΔp,k

(34)

Subtracting the optimal weight vector wo from both sides of
(34) yields

w̃a
k+1 = wa

k+1 −wo

= w̃a
k − μxa

kx
aH
k w̃a

k + μxa
kqk − αΔp,k (35)

Applying the statistical expectation operator to both sides and
employing the independence assumption, we have

E{w̃a
k+1} = (I− μRa

x)E{w̃
a
k}+ μE{xa

kqk} − αE{Δp,k}

= (I− μRa
x)E{w̃

a
k} − αE{Δp,k} (36)

Remark 3: Note that by setting α = 0, the R-ACLMS
become the ACLMS, and the convergence results for the
ACLMS apply [8], whereby the ACLMS is stable for

0 < μ <
2

λmax(Ra
x)

(37)

with λmax(Ra
x) is the largest eigenvalue of Ra

x. Otherwise, for
α �= 0, the R-ACLMS has an extra degree of freedom, and α
can be chosen to set performance characteristics.

IV. APPLICATION EXAMPLES
We firstly illustrate the coefficient convergence of the adap-

tive filters for the strictly linear system given by

dk = x∗kw
o + qk

where wo = 0.5 + j0.3, the input xk was a zero-mean
noncircular (E{x2

k} = 0.9), unit variance, complex white
process, and qk was a complex circular observation noise with
variance 0.001. An adaption gain of μ = 0.01 was chosen
for the ACLMS and R-ACLMS algorithms, the regularisation
parameter α for the l1 and l2 R-ACLMS algorithms were set

to 0.0004 and 0.001 respectively, and filter coefficient were
initialsed to zero.
Figure 2 shows the convergence of the real and imaginary

parts of the standard weight gk and conjugate weight hk,
together with the mean square error (MSE) performances.
The results show that the R-ACLMS algorithms offer better
weights and error convergence rates for noncircular inputs.
However, the performance gains of the R-ACLMS algorithms
are not inherited in widely linear systems as will be discussed
in the following example.
We next consider a system identification problem for (a) a

strictly linear system with 15 complex weights (coefficients)
and (b) a widely linear system with 15 standard complex
weights and 15 conjugate weights. The input vector xk was a
complex white random process with identity covariance matrix
Rx = I, while the variance of the complex white observation
noise qk and the regularisation parameters for the l1-norm and
l2-norm R-ACLMS algorithms were as above. In the figures
that follow, the mean square error (MSE) of the algorithms
were computed by averaging 500 trails.
For the set of simulations shown in Figure 3, the input

vector had a circular Gaussian distribution, and an adaptation
gain of μ = 0.01 was chosen for the CLMS, while for the
ACLMS and R-ACLMS algorithms μ was set at half of this
value to ensure that all the algorithms have the same steady-
state performance as the CLMS. The results for the strictly
linear system, show that the CLMS had the best convergence
rate [8], while the R-ACLMS algorithms converged slightly
faster than the ACLMS. All the algorithms reached similar
steady-states, and the R-ACLMS algorithms provided unbiased
weight estimates. For the widely linear system in Figure 3b,
the ACLMS offered the best steady-state performance due
to its unbiased weight estimate, while the R-ACLMS weight
estimates were biased (see Remark 2), but outperform the
CLMS which under-modelled the widely linear system.
Figure 4 illustrates the case when the input vector had a

noncircular Gaussian distribution E{xkx
T
k } = 0.6I. Again,

the comparative differences between the algorithms were the
same: the CLMS had the best convergence rates, ACLMS had
the best steady-state MSE for the widely linear system, while
the performances of the R-ACLMS algorithms were some-
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Fig. 3. Performance comparison between the CLMS, the widely linear
ACLMS, the l1- and l2-norm regularised ACLMS (R-ACLMS) for strictly
and widely linear systems with a circular input vector E{xkx
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Fig. 4. Performance comparison between the CLMS, the widely linear
ACLMS, the l1- and l2-norm regularised ACLMS (R-ACLMS) for strictly
and widely linear systems with a noncircular input vector E{xkx

T

k
} = 0.6I.

where in between the CLMS and ACLMS. The convergence
rates of all the algorithms were effected by the noncircularity
of the input [8], and this was especially pronounced for the
ACLMS algorithm.
The final set of simulation in Figure 5, show the per-

formance for multistep ahead prediction of real-world Wind
data, whereby the filters employed widely linear 4th order
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Fig. 5. Performance comparison between the different algorithms for the
prediction of real-world Wind data at different prediction horizons.
autoregressive processes to make predictions. The results show
that the R-ACLMS algorithms were better suited to tracking
the noncircular and nonstationary Wind data compared with
the ACLMS, due to their faster convergence rates.

V. CONCLUSION
The widely linear (augmented) complex least mean square

(ACLMS) is suited to the generality of complex systems, both
strictly and widely linear systems, but suffers from slow con-
vergence speeds. In this work, the conjugate weight regularised
ACLMS (R-ACLMS) algorithm was presented to address the
convergence issues of the ACLMS. The analysis shows that
regularisation of the standard cost function introduces a weight
estimation bias when the underlying system is widely linear,
where the size of the bias is determined by the regularisation
factor. Simulation results show that the R-ACLMS converges
faster than the ACLMS, and offers similar steady-state per-
formance for strictly linear systems, which makes R-ACLMS
algorithms better suited to noncircular nonstationary systems.
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[3] P.M. Djurić, J.H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M.F. Bugallo,
and J. Miguez, “Particle filtering,” IEEE Signal Processing Magazine,
vol. 20, pp. 19 – 38, Sep. 2003.

[4] D. P. Mandic and V. S. L. Goh, Complex Valued Nonlinear Adaptive
Filters: Noncircularity, Widely Linear and Neural Models. Wiley, 2009.

[5] B. Picinbono and P. Bondon, “Second-order Statistics of Complex Sig-
nals,” IEEE Transactions on Signal Processing, vol. 45, no. 2, pp. 411–
420, 1997.

[6] D. H. Dini and D. P. Mandic, “Class of widely linear complex Kalman
filters,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 23, pp. 775 –786, May 2012.

[7] M. H. Hayes, Statistical Digital Signal Processing and Modeling. John
Wiley & Sons, 1996.

[8] S.C. Douglas and D. P. Mandic, “Performance analysis of the conven-
tional complex LMS and augmented complex LMS algorithms,” in IEEE
International Conference on Acoustics Speech and Signal Processing
(ICASSP), pp. 3794–3797, 2010.

[9] D.H. Brandwood, “A complex gradient operator and its application in
adaptive array theory,” IEE Proceedings on Communications, Radar and
Signal Processing,, vol. 130, pp. 11 –16, Feb 1983.

The Tenth International Symposium on Wireless Communication Systems 2013

812


