
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 22, NO. 1, JANUARY 2014 1

Augmented Complex Common Spatial Patterns
for Classification of Noncircular EEG From

Motor Imagery Tasks
Cheolsoo Park, Clive Cheong Took, Senior Member, IEEE, and Danilo P. Mandic, Fellow, IEEE

Abstract—A novel augmented complex-valued common spatial
pattern (CSP) algorithm is introduced in order to cater for general
complex signals with noncircular probability distributions. This is
a typical case in multichannel electroencephalogram (EEG), due to
the power difference or correlation between the data channels, yet
current methods only cater for a very restrictive class of circular
data. The proposed complex-valued CSP algorithms account for
the generality of complex noncircular data, by virtue of the use of
augmented complex statistics and the strong-uncorrelating trans-
form (SUT). Depending on the degree of power difference of com-
plex signals, the analysis and simulations show that the SUT based
algorithm maximizes the inter-class difference between two motor
imagery tasks. Simulations on both synthetic noncircular sources
andmotor imagery experiments using real-world EEG support the
approach.

Index Terms—Augmented complex common spatial pattern
(ACCSP), brain–computer interface (BCI), common spatial pat-
tern (CSP), complex noncircularity, complex pseudocovariance,
motor imagery paradigm, strong-uncorrelating transform (SUT).

I. INTRODUCTION

B RAIN–COMPUTER interface (BCI) research aims to
provide computer-aided control using exclusively brain

activity, and has been instrumental to advances across bio-
engineering fields, such as in neuroprosthetics. For real-time
BCI systems, the electroencephalogram (EEG) is the most
convenient means to measure neurophysiological activity due
to its noninvasive nature and affordable recording equipment
[1], [2]. In particular, the EEG in response to the motor imagery
task, defined as the “mental rehearsal of simple or complex
motor acts that is not accompanied by overt body movements”
[3], [4] has been a popular BCI paradigm [5].
The basis for such “motor imagery” BCI tasks are the

(8–12 Hz) and rhythms (14–20 Hz), together with higher
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beta/gamma (above 20 Hz) in EEG, that have been observed
when subjects plan and execute their hand or finger movement
[6]–[9]. Nikouline et al. [10] demonstrated that somatosensory
stimuli suppressed rhythms at somatosensory cortex (SI),
and Yuan et al. [9] suggested that the and rhythms are
changed by the reflection of phase coherence in thalamocortical
circuits. In addition, positron emission tomography (PET) or
functional magnetic resonance imaging (fMRI) imaging studies
have established that several active brain regions are observed
during motor imagery tasks, including supplementary motor
area, superior and inferior parietal lobule, dorsal and ventral lat-
eral pre-motor cortices, pre-frontal areas, inferior frontal gyrus,
superior temporal gyrus, primary motor cortex (M1), primary
sensory cortex, secondary sensory area, insular cortex, anterior
cingulate cortex, superior temporal gyrus, basal ganglia, and
cerebellum [11]. In the analysis of such brain activities coming
from spatially distributed regions, the common spatial patterns
(CSP) is a common algorithm that extracts features relevant to
motor imagery tasks [12]–[14].
The CSP decomposes multichannel EEG coming from two

classes into spatial patterns, defined through a simultaneous di-
agonalization of the corresponding data covariance matrices. In
doing so, it maximizes the variance of signals belonging to one
class while simultaneously minimizing the variance of signals
of the other class, thus enhancing separability between the two
classes. The CSP algorithm was first applied to EEG for abnor-
mality detection [15] and has been recently employed to dis-
criminate between groups of movement-related tasks [12].
When modeling EEG channel interaction pair-wise, it is

convenient and physically meaningful to pair spatially adjacent
real-valued EEG signals and to form complex-valued data,

. This allows for the coupling (e.g., phase infor-
mation) between the two channels to be naturally exploited;
for instance, power difference and correlation between two
channels affect the level of noncircularity (rotation invariant)
of the distribution of the complex signal. To account for noncir-
cularity that always exists in real-world complex-valued data,
recent advances in complex statistics [16]–[19] consider both
the pseudocovariance and the traditional covariance

matrix, in order to utilize full statistical information
available [20], [21]. On the other hand, traditional studies on
modeling pair-wise EEG channel interaction such as connec-
tivity and synchrony mostly rely on correlation analysis [11],
[22]. The complex extension of CSP was introduced by Falzon
et al. using the analytic signal in order to enhance the modeling
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by considering the phase information from a single channel
EEG signal [23], [24]. However, as shown later the analytic
signal based CSP method is not optimal for multichannel data
which exhibit different powers or degrees of correlation, as in
this way the pseudocovariance information is omitted in the
modeling.
To this end, we propose to use augmented complex statistics

in order to also access the information contained in the pseudo-
covariance. Modelling based on augmented statistics has been
successfully exploited in supervised learning, including the aug-
mented complex least mean square (ACLMS) [25] and aug-
mented complex matrix factorization [26]—demonstrating en-
hanced and rigorous modeling of real-world data.
In this paper, augmented complex statistics are applied

to design optimal complex extensions of the common spa-
tial pattern method. To extract signatures of motor imagery
tasks, we employ the strong-uncorrelating transform (SUT)
to diagonalise the covariance and pseudocovariance matrix
simultaneously [27]–[29]. In particular, we show that SUT
produces the information of power difference between the
real and imaginary parts of complex data as well as the power
information for each data channel. In this way, SUT naturally
helps to maximize the difference in the variance between two
groups of data, provided a significant power difference between
two parts exists. Since the network change of the brain activity
corresponding to different motor imagery tasks is considered
to cause a variation in the power difference between the EEG
channels [11], [22], considered our aim is to show that it
is convenient and physically meaningful to pair, augmented
complex statistics using SUT provides more information and
hence better features to classify the brain responses to different
tasks, compared to the real-valued and the existing complex
valued CSP algorithm.
We here introduce the augmented complex CSP using SUT

(SUTCCSP) and show that SUTCCSP is the optimal CSP
method for the analysis of pair-wise motor imagery data,
which is almost invariably noncircular. Unlike the real-valued
CSP and the existing analytic signal-based complex CSP, the
analysis and simulations show that SUTCCSP exploits the full
available statistics between two-channel EEG data yielding
improved classification performance. The proposed method
is verified on a bench mark motor imagery dataset of 109
subjects, whereby subjects were imaging their left and right
hand movement. The usefulness of SUTCCSP is supported by
simulations.

II. COMPLEX COMMON SPATIAL PATTERN METHODS

A complex extension of common spatial filters was recently
introduced by O. Falzon et al. for the discrimination of mental
tasks [23], [24], [30]. By combining the Hilbert transform with
complex CSP, they exploited phase information from EEG
data, leading to the algorithm termed the analytic signal-based
CSP (ACSP). However, statistics in are not an analytical
continuation of the corresponding statistics in [17] since gen-
eral complex random variables are noncircular.1 In the domain
of second order statistics, a circular signal is called proper and

1A Hilbert transformed analytic signal is always circular.

is manifested by equal powers in the real and imaginary part,
while second order noncircular signal is called improper [31].
Circular signals have rotation invariant distributions, whereas
improper signals exhibit different power levels in their real and
imaginary parts. We aim to introduce rigorous complex exten-
sions of the CSP algorithm catering for complex noncircularity,
including augmented complex CSP (ACCSP) and complex
CSP equipped with the strong-uncorrelating transform, termed
SUTCCSP.

A. Covariance Matrix of Complex Common Spatial Pattern

Consider complex-valued zero-mean data matrices, and
, corresponding to the classes and , where is

the number of data channels and the number of samples per
channel. The covariance matrix of can be calculated as

(1)

where denotes the statistical expectation operator, and
the conjugate transpose. The spatial covariance for the
class or is obtained by averaging the covariance matrices of
all the complex-valued data channels, thus, and repre-
sent a pair of Hermitian positive-semidefinite matrices,2

whose elements are real-valued along the main diagonal and the
off-diagonal elements are complex-valued. The composite spa-
tial covariance matrix is given as

(2)

and can be factored as

(3)

The columns of are the eigenvectors corresponding to the
real-valued eigenvalues in the diagonal eigenvalue matrix .
This allows for to be whitened by multiplying with

such that

(4)

where the symbol denotes the identity matrix. Next, let
and , so that and share a

common eigenvector matrix, that is

(5)

By design, the eigenvalues of are sorted in a descending
order, this at the same time implies that the eigenvalues of are
sorted in an ascending order. Then, the spatial filter that maxi-
mizes the variance for one class of data and minimises the vari-
ance for the other is obtained as

(6)

2For any non-zero vector , a Hermitian matrix is called
positive-semidefinite if [32].
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In this way, for a given data matrix , a new set of data is
calculated as

(7)

where each row vector of is called a
spatial filter or simply a filter.
In order to discriminate between two classes, the variances of

the real and imaginary parts of the spatial filtered complex data
in (7) are used as features. The row vectors corresponding

to the real and imaginary parts of , that is, and
( and ) are associated with the
largest eigenvalues in and . These signals are the first
and last rows of due to the filtering process of , so that the
features from real and imaginary parts are obtained as

(8)

(9)

where the symbol denotes the variance of .

B. Analytic Signal-Based Common Spatial Pattern

In 2010, Falzon et al. proposed the ACSP by transforming
input signals into their analytic representations and performing
joint diagonalization of the obtained complex-valued covari-
ance matrices [23]. After the signals are represented in their an-
alytic forms, the phase information in the data is used to distin-
guish between two classes of mental processes.
For a signal , its analytic representation is obtained

through its Hilbert transform as

(10)

where is the Cauchy principal value, to give the complex
signal

(11)

Such a complex signal is described by its amplitude and
phase functions, and , which are calculated as

(12)

Based upon the so derived complex-valued analytic signal ,
the same procedure as in Section II-A is used to obtain the ACSP
features.
However, it is important to notice that the Hilbert transform

is only used for a narrowband signal and it cannot provide a full
description of the frequency content for general data [33], [34],
also leading to negative instantaneous frequencies in the time-

frequency domain, when the amplitude variations are faster than
the phase variations. To this end, to bypass the bandwidth lim-
itation of the Hilbert transform, the Fourier transform or em-
pirical mode decomposition [34], [35] should be considered in
conjunction with ACSP [36].

C. Augmented Complex Common Spatial Pattern (ACCSP)

For a zero-mean complex random vector variable the co-
variance matrix is given by and is used in stan-
dard second-order statistical signal processing. However, com-
plex statistics are not a straightforward extension of real-valued
statistics [17], [37], [38], since does not completely describe
the second order statistics of , and a statistical descriptor called
the pseudocovariance, , also needs to be consid-
ered.
The covariance of a random variable is given

by ( 0, unless ), where
denotes the complex conjugate operator, while the pseudoco-
variance vanishes only if
and are uncorrelated and with the same variance. Signals

are called second-order circular or proper if their pseudo-co-
variance is zero. However, due to short window observations,
anisotropic noises, unequal powers of data channels and reflec-
tions, the pseudocovariance of real world data is often non-zero
even if the data are circular [26]. Therefore, second order sta-
tistical modeling in should examine joint statistical properties
of and , that is, it should be based on the augmented form of
the complex variable [17], [26], [39], and corre-
sponding the augmented covariance matrix

(13)

which contains complete second order statistics of both covari-
ance and pseudocovariance.
As mentioned earlier, the existing ACSP does not account for

the noncircularity in the data. To that end, we propose the aug-
mented complex common spatial pattern (ACCSP) algorithm,
which produces second order practical spatial filters using the
augmented covariance matrix. Given complex-valued data ma-
trices with zero-mean, and (for classes and
), their augmented covariance matrices are calculated as

(14)

(15)

where and . The augmented
spatial filter, , can then be obtained from the common eigen-
vector matrix between the whitened augmented covariance ma-
trices of the classes, similar to (4) and (5). For a given aug-
mented form of data , new set of signals can be obtained
as

(16)



4 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 22, NO. 1, JANUARY 2014

The row vectors and ( and
) from can be now used to extract features to

distinguish between two classes, using (8) and (9).

D. Augmented Complex Common Spatial Pattern With the
Strong-Uncorrelating Transform

We next employ the strong-uncorrelating transform (SUT),
an extension of the conventional whitening transform for im-
proper complex random variables [28], [29] in the general con-
text of CSP. This way, both the covariance and the pseudo-
covariance matrices are diagonalized, to guarantee that the re-
sulting complex data are uncorrelated. The SUT transform
has the following properties [29]

(17)

where is the covariance matrix, the pseudocovariance ma-
trix and diagonal matrix of eigenvalues , .
In other words, by SUT both the covariance and the pseudoco-
variance are diagonalized simultaneously.
Given zero-mean complex-valued data matrices and ,

the associated covariance and pseudocovariance matrices can
be calculated from and

. After applying the whitening transfor-
mation matrix to the covariance ( and

from ), the symmetric pseudocovariance
matrix can be decomposed as

(18)

Note that it is Takagi’s factorization that enables such decom-
position, which for symmetric matrices yields and [40],
based on which the SUT matrix can be defined as

(19)

and can diagonalise both the covariance and pseudocovariance
matrices such that

(20)

(21)

Let and , then the estimates
of common eigenvectors from the covariance matrices are ob-
tained as

(22)

Similarly, if we wish to estimate common eigenvectors from the
pseudocovariance matrices, then

(23)

(24)

(25)

(26)

In order to maximize the difference in variance between the two
groups, we need to ensure that the SUT of the pseudocovariance
matrix is an identity matrix, like that of the covariance matrix.3

Then, two spatial filters for the covariance and pseudocovari-
ance matrices can be obtained from

(27)

so that the transformed sets of data become

(28)

allowing us to calculate the two sets of features using (8) and
(9).
Since the eigenvalues from the Takagi factorization of the

pseudocovariance are guaranteed to be real-valued (from
, when ), this

demonstrates that the eigenvalue provides
an additional information of the power difference between real
and imaginary parts of complex sources. In this way, the power
difference between real and imaginary parts of complex sources
(two channel data) is accounted for by SUTCCSP, unlike the
conventional CSP.

III. ANALYSIS OF AUGMENTED COMPLEX COMMON
SPATIAL PATTERN METHODS

We shall next demonstrate the duality between the augmented
complex CSP and the real-valued CSP, while the ACCSP is
more compact and physically intuitive. Given a zero-mean com-
plex random signal, , where and
are real-valued random signals, an augmented form of the com-
plex signal is given by . The augmented com-
plex matrix can be presented using and such that

(29)

Denote the transfer matrix and the real-valued matrix by

(30)

(31)

then the covariance matrix of is

(32)

3When the diagonalized composite covariance and pseudocovariance are
identity matrices, their eigenvalue matrices also become identity matrices,
shown in (22) and (26). These properties make the variances of the first rows
of and in (28) maximum for the trials of group “a” and at the same time
minimum for the trials of group “b”. On the other hand, the variances of the
last rows of and are minimal for the trials of group “a,” and at the same
time maximal for the trials of group “b”.
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After the whitening transformation of the covariance matrix,
such that , we have

(33)

(34)

(35)

Therefore, the real-valued covariance matrix is also
diagonalized when the augmented complex covariance matrix

is diagonalized. This means the performance of ACCSP
is similar to that of CSP, subject to the scaling factor 1/2.

IV. EXPERIMENTS

We now illustrate the performance of the proposed algorithms
via simulations using both synthetic data and real-world EEG
data. A support vector machine (SVM) [41] with a Gaussian
kernel4 was used to obtain the classification results for the fea-
tures from the algorithms. All the data sets were divided into
80% training and 20% testing sets. The classification procedure
was repeated five times while changing the sample order (five-
fold cross-validation), and the average of these outcomes was
the final classification rate. The constant in (8) and (9) was
set to unity and three for the synthetic and EEG data, defining
the number of features for all CSP algorithms.

A. Synthetic Data

Two synthetic datasets were designed to model different
EEG-like scenarios. The first dataset used sinusoids, to follow
the example of Koles and Soong [43] who employed sum of
sinusoids as a synthetic EEG to validate their source localiza-
tion algorithm, and ACSP was also verified using sinusoids
[23]. The second dataset used bandpass filtered EEG signal
containing the frequency components in the range of alpha and
beta bands (8–30 Hz), which was employed by Park et al. [35].
The synthetic datasets were composed by summing two sinu-
soids, whose frequencies were in the range of alpha (8–13 Hz)
and beta (13–30 Hz) bands, and corrupted by complex-valued
random noise, to generate

where are different realizations of correlated
random noises with signal-to-noise ratios (SNR) varying from
9.5 dB to 16.3 dB.

4The MATLAB code can be downloaded from [42].

The second synthetic dataset using bandpass filtered EEG
were designed in the same way as the sinusoid synthetic dataset
except and . Two EEG signals were obtained from
electrode Cz according to the 10-10 system, sampled at 160 Hz,
and filtered using a Butterworth filter, occupying the alpha and
beta bands (8–30 Hz), to produce and . The com-
plex-valued dataset of Class A had larger amplitudes in the
second channel than in the first one, while Class B had the
larger amplitudes in the first channel. The power differences of
the complex-valued data were 0.05 and 0.04 for class A and
0.01 and 0.02 for class B, which will be used as additional fea-
tures for SUTCCSP. The information about these amplitude and
power difference were identified by the SUTCCSP spatial pat-
terns5 owing to the use of both the covariance and pseudocovari-
ance, as shown in Fig. 1 for the first and the last spatial patterns
of the sinusoid synthetic dataset. The correlation between real
and imaginary parts of the complex-valued random noise varied
from 0.1 to 0.9. Fig. 2 illustrates the distribution of the com-
plex-valued data with correlation degrees of 0 and 0.9 in 9.5
dB SNR. Their degrees of circularity6 are governed by the cor-
relation between the real and imaginary parts; lower correlation
produces more circular data and higher correlation highly non-
circular data. In addition, Fig. 3 shows the power difference7

between real and imaginary parts decreases as the correlation
increases in SNR 9.5 and 14.8 dB. Owing to this additional
feature of power difference provided by augmented complex
statistics, the classification rates of SUTCCSP were higher than
those of CSP, ACSP, and ACCSP algorithms for most correlated
data of sinusoid and bandpass filtered EEG synthetic datasets.
The classification rates become close to the results of CSP and
ACCSP for the data with higher degrees of correlation, due to
their small power differences. As seen in Fig. 4, the improve-
ment offered by SUTCCSP is reconfirmed over various SNRs
from 9.5 to 16.3 dB for the correlation degree of 0.5. In par-
ticular, the better performance of SUTCCSP is visible in the crit-
ical case of low SNRs. Additionally, the CSP and ACCSP had
similar performances as discussed in Section III.

B. Motor Imagery EEG Datasets

The Physiobank Motor/Mental Imagery (MMI) database
recorded using the BCI2000 system [44], which is available
through Physionet8 [45], was used to test our CSP algorithms.
The datasets consists of 109 subjects performing different
motor imagery tasks while 64-channel EEG were recorded
according to 10-10 system, sampled at 160 Hz. We chose the
blocks where the subjects imagined movement of left hand and
right hand. Subjects performed a total of 45 trials and imagined
one of the two tasks for a duration of 4 s. Out of the 64 EEG

5Spatial patterns using covariance matrix, , and pseudocovariance ma-
trix, , are obtained by the inverse matrices of spatial filters, and
in (28)
6Circularity refers to shape of a scatter plot of complex-valued data, cir-

cular meaning rotation-invariant. A complex signal is circular if its real and
imaginary parts are uncorrelated and have the same power. The circularity de-
gree of a zero-mean complex signal , , is defined as

.
7The normalized power difference of a complex signal ,
, is defined as
8http://www.physionet.org/pn4/eegmmidb/#experimental-protocol.
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Fig. 1. Spatial patterns of the synthetic sinusoid dataset (
and ) using both the covariance and pseudocovariance ma-
trices. The numbers in the diagrams denote the coefficient of spatial patterns.
Note that the spatial patterns using pseudocovariance contains the information
about the power difference between the real and imaginary parts, while spatial
patterns using covariance contain the information about the magnitude of the
complex data. (a) Spatial patterns using covariance. (b) Spatial patterns using
pseudocovariance.

Fig. 2. Geometric view of circularity via “real-imaginary” scatter plots: (a)
circular data ; (b) noncircular data .

channels, 58 shown in Fig. 5 were selected for the analysis, and
the motor imagery EEG data was band-pass filtered to occupy
the frequency band 8–30 Hz [12], [13]. Pairing spatially adja-
cent electrodes, as shown in Fig. 5, to form complex-valued
data facilitated the use of cross-information and a simultaneous
estimation of the spatial amplitude relationships. Solodkin
et al. [11] investigated brain connectivity within functional
networks during motor imagery, and demonstrated networks
underlying the mental behavior on M1 (primary motor cortex),
S1 (primary and secondary somatosensory cortices), LPMC
(lateral premotor cortex, dorsal), SMA (supplementary and pre-
supplementary motor areas), CRB (cerebellum), PAR (superior
parietal lobule and intra-parietal sulcal area), IF (inferior frontal
cortex, LPMC ventral; inferior frontal gyrus and anterior insular
cortex), and OCC (occipital lobe) using correlation analysis.
The chosen 58 electrodes in Fig. 5 cover most scalp regions
in these areas, in particular, they observed strong connection
between the adjacent brain regions. Owing to their high corre-
lation, smaller power differences can be expected between the
adjacent areas, as shown in Fig. 3, that is, the higher correlation
between two data sources the lower the power difference. In
addition, the changes in brain connectivity depending on the
different motor imagery tasks have been observed by Chung
et al. [22]. Therefore, the power difference between the paired
electrodes is dynamically changing depending on the mental
tasks, which can be useful information to distinguish between
the different tasks.

Fig. 3. Classification results for synthetic complex data using sinusoids and
bandpass filtered EEG corresponding to the channel correlation and power
difference in SNR 9.5 dB and 14.8 dB. Note the better performances
of SUTCCSP compared to CSP, ACSP, and ACCSP for both data, and the
performance of SUTCCSP becomes close to those of CSP and ACCSP
when the power difference is small. The more correlated the data, the less
power difference observed. (a) Sinusoid . (b) Sinusoid

. (c) Bandpass filtered EEG . (d)
Bandpass filtered EEG .

Fig. 4. Classification results for synthetic complex data using sinusoid and
bandpass filtered EEG (for the 0.5 correlation coefficient between real and
imaginary part) corresponding to various SNRs. Note the better performance
of SUTCCSP compared to CSP, ACSP, and ACCSP in all conditions for both
sinusoid and bandpass filtered EEG synthetic data. (a) Sinusoid. (b) Bandpass
filtered EEG.

C. Classification Results

The classification accuracies estimated using real and com-
plex CSP methods were compared and illustrated in Fig. 6. The
upper limit of confidence intervals between two classes was
64.0% for 45 trials (cf. [46]). Among the 109 subjects in Phys-
iobank MMI database, the subjects for whom the classification
results were below 64% using all four CSP, ACSP, ACCSP, and
SUTCCSP methods, were discarded so that Fig. 6 displays the
results of 56 significant subjects using whisker diagram. The
red lines and cross in the boxplot denote median and outlier. On
the average, the SUTCCSP gave the best classification perfor-
mance of 72.37%, a 4.29% improvement over CSP, a 5.09% im-
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Fig. 5. EEG montage of paired channels for complex-valued EEG data.

Fig. 6. Whisker diagrams of the classification rates of motor imagery EEG for
56 subjects out of 109, who had significant separation results. The red lines and
cross in the boxplot denote median and outlier. The enhanced performance of
SUTCCSP compared to CSP, ACSP, and ACCSP are confirmed by a one-way
analysis of variance yielding a p-value less than 0.05.

provement over ACSP, and a 4.38% improvement over ACCSP.
The enhanced performance of SUTCCSP were confirmed by
a one-way analysis of variance (ANOVA) yielding a p-value
0.049 ( 0.05). As expected, CSP and ACCSP had similar per-
formances as exemplified in the simulations in Section IV-A.
Fig. 7(a)–(c) displays a series of scatter-plots of classification

results between SUTCCSP and the other methods considered
using the results in Fig. 6. The values should lie on the diag-
onal if the two algorithms have the same performance, however,
it is notable that many of values lie above the diagonal, indi-
cating an improved performance of SUTCCSP compared to the
other methods. For rigor, the difference in classification rates be-
tween SUTCCSP and the other algorithms was analyzed using
a one-tailed t-test. The corresponding -values in Fig. 7(a)–(c)
prove that the proposed SUTCCSP performs significantly better
than the other algorithms ( -values less than 0.01). In order to
demonstrate the effective feature extraction of SUTCCSP com-
pared to CSP, the classification performance of the CSP feature

Fig. 7. Scatter-plot of classification results obtained using CSP, ACSP, ACCSP,
SUTCCSP, and CSP which accounts for magnitude difference. Dots above the
diagonal denote the cases when SUTCCSP outperforms the others. Significance
of these improvements are confirmed by the one-tailed p-values of the t-test
(less than 0.01). (a) SUTCCSP versus CSP. (b) SUTCCSP versus ACSP. (c)
SUTCCSP versus ACCSP. (d) SUTCCPS versus CSP+MAG DIFF.

Fig. 8. Number of subjects whose best classification rates were obtained using
one of CSP, ACSP, ACCSP, and SUTCCSP. Note the high performance when
using SUTCCSP than the others.

with magnitude differences of the paired channels was calcu-
lated and compared with those of SUTCCSP in Fig. 7(d). The
scatter-plot displays more dots above the diagonal, which in-
dicates CSP cannot outperform SUTCCSP even though it also
uses the information about magnitude difference.
We next calculated a histogram of subjects, whose best clas-

sification rates were obtained using one of CSP, ACSP, ACCSP,
and SUTCCSP in Fig. 8. Observe the highest number of subjects
for SUTCCSP, 25, which is twice the second highest one, ob-
tained for CSP. In order to investigate the contribution of power
difference feature to the performance of SUTCCSP, the average
power differences between the paired EEG data for all signifi-
cant 56 subjects were calculated, and their distributions based on
the histogram in Fig. 8 were investigated, that is, one distribu-
tion for the subjects who made the best performance using CSP,
ACSP or ACCSP versus the other distribution for the subjects
who made the best using SUTCCSP. Fig. 9 illustrates the two
distributions using the whisker diagram and histogram, where
the red line in the boxplot denotes the median. Note that the
power differences of SUTCCSP are distributed above those of
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Fig. 9. Whisker diagrams (a) and histograms (b) of power differences between
the paired EEG data of the subjects, who made the best classification rates using
“CSP, ACSP, or ACCSP” and “SUTCCSP” based on Fig. 8. Red lines in the box-
plot denote median. Note the higher power difference distribution of SUTCCSP
compared to the other methods. (a) Whisker diagram. (b) Histogram.

Fig. 10. Spatial patterns [obtained by the inverse matrices of and in
(28)] of the subjects who had classification rates over 90% using SUTCCSP.
Symbols and denote two most significant spatial patterns ob-
tained using covariance matrices, and and those using pseudo-
covariance matrices. “LEFT” and “RIGHT” denote left- and right-hand motor
imagery, respectively. Note the different spatial patterns between the results of
covariance and pseudocovariance matrices. (a) Subject 29. (b) Subject 48. (c)
Subject 94.

CSP/ACSP/ACCSP, which is consistent with the results of sim-
ulation in Section IV-A. This suggests that the power difference
feature is accounted for using SUTCCSP by its very design, and
that this improves the classification performance for motor im-
agery data. Also, since the paired real-world EEG data cannot
be identical, their complex-valued versions always contain cer-
tain amount of power difference between the real and imaginary
parts (noncircularity of complex-valued EEG data).
Fig. 10 illustrates the spatial patterns of three subjects using

SUTCCSP, whose classification rates were over 90%. This in-
cludes the spatial patterns using covariance, , and pseudo-
covariance, , which illustrate some amount of brain lat-
eralization for the two different mental tasks (“LEFT” left-hand
motor imagery and “RIGHT” right-hand motor imagery). The
brain lateralization of event-related desynchronization during
the motor imagery of left and right hands is a well known phe-
nomenon [9], and Chung et al. [22] observed the contralateral

connectivity during the motor imagery of left and right hands. In
particular, subject 29 and 94 show the salient decrease of
coefficients on the contralateral motor cortex area, while the
contralateral differences of corresponding to the motor
tasks are less clear. This is a good example to show that the
spatial filters using the pseudocovariance can produce the com-
plementary information, and how such information can be used
to estimate true spatial patterns of multichannel EEG.
Finally, the performance of ACSP was most of the time worse

than those of CSP, ACCSP, and SUTCCSP for both synthetic
data and motor imagery EEG data. As mentioned earlier, the
inadequacy of the Hilbert transform for nonbandlimited data is
the most likely cause of the poor performance of ACSP.

V. CONCLUSION

A complex extension of CSP has been introduced to deal
with general data exhibiting complex noncircularity, a unique
feature of real world complex-valued signals. It has been
shown that the complex CSP equipped with the strong uncor-
relating transform (SUTCCSP) can improve the classification
performance between two groups, when there exists a degree
of power difference between the real and imaginary parts of
complex data, a typical case in practice. The robustness of the
proposed approaches has also been demonstrated by the low
SNR (from 9.5 to 16.3 dB) in synthetic EEG datasets. In
the context of real-world EEG, we have considered a motor
imagery dataset of 109 subjects, where the optimal performance
in distinguishing between two mental tasks has been achieved
based on augmented complex statistics, using the SUTCCSP
method applied to the complex-valued EEG composed by
combining two closely located real-valued EEG signals.
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