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ABSTRACT

Real world complex-valued signals typically exhibit rotation-
dependent distributions (noncircularity), and significant perfor-
mance gains in learning algorithms can be obtained by accounting
for information beyond the standard second-order noncircularity
(impropriety). To this end, we introduce a new closed form def-
inition of complex correntropy which is general enough to cater
for both circular and noncircular distributions in complex data,
and serves as a basis for a novel cost function for widely linear
adaptive filtering, termed the maximum improper complex corren-
tropy criterion (MICCC). A stochastic gradient adaptive filtering
algorithm is developed based on the MICCC, and its standard and
complementary convergence and stability analyses are conducted
with respect to both the circularity of the estimation error and the
kernel size in the underlying Parzen estimator. Performance advan-
tages over the strictly linear correntropy algorithm (MCCC) and the
mean square error based complex least mean square (CLMS) and
augmented CLMS (ACLMS) are demonstrated through analysis and
simulations.

Index Terms— Complex-valued signal processing, comple-
mentary mean square analysis, complex correntropy, improperness,
maximum improper complex correntropy criterion (MICCC).

1. INTRODUCTION

Standard covariance and entropy-based statistical measures either
cannot model higher-order statistics within a time series or/and em-
ploy a rigid assumption that the signal of interest is at least second-
order stationary. However, in practice, most measured quantities
exhibit a degree of non-Gaussianity and nonstationarity, which for
some problems can be known in advance. To this end, an extension
of the fundamental definition of correlation for random processes
was proposed in [1], termed the correntropy, to address the problem
that most of the conventional information theoretic learning (ITL)
measures [2] do not use all the information in the case of tempo-
rally correlated (non-white) input signals. Unlike standard correla-
tion, this measure contains higher-order moments of the probability
distribution function (pdf), but is much simpler to estimate directly
from the samples than conventional moment expansions. The con-
cept was initially introduced for univariate random processes, and
was extended to a more general case of two arbitrary random vari-
ables in [3].

Recent application studies have validated correntropy as an ef-
ficient tool for analyzing higher-order statistical moments in non-
Gaussian signals [3, 4, 5]. Especially successful has been its applica-
tion as a cost function in linear adaptive filters, within the framework
called maximum correntropy criterion (MCC) [6]. Tools developed
based on this concept include the MCC-based variable step-size least
mean square (LMS) algorithm [7] and a closed-form fixed-point re-
cursion filter [8, 9].

More recently, the correntropy framework has been extended to
complex-valued time series, through complex correntropy, and the
corresponding maximum complex correntropy criterion (MCCC),
the utility of which as a cost function for the complex-valued least-
mean squares (CLMS) and complex-valued fixed-point recursion
filters was demonstrated in [10].

Although complex correntropy and the MCCC cost function
have shown significant potential in complex-valued signal process-
ing, there remain several issues that need to be addressed prior to its
more widespread application, these include: (i) complex correntropy
was derived with the assumption of proper (second-order circular)
random variables, however, this is very restrictive as real world
signals are typically second-order noncircular (improper); (ii) the
existing MCCC cost function is only effective for strictly linear (SL)
models which are inadequate for the widely linear systems, typical
in the real world, and the associated improperness (second-order
noncircularity) of data.

To this end, we introduce novel correntropy measures within a
widely linear framework [11], and illustrate their effectiveness for
robust adaptive filtering of noncircular data. This is achieved based
on the augmented complex statistics which employs both the covari-
ance, R = E{xxH}, and the pseudo-covariance, P = E{xxT },
matrices, in order to cater for both circular (rotation-invariant prob-
ability distributed) and second-order noncircular (improper) signals
with rotation dependent pdfs. The introduced maximum improper
correntropy criterion (MICCC) is used as a cost function for a cor-
responding general widely linear adaptive filter. Its convergence is
analysed in terms of the mean and mean-square convergence, and
uniquely by employing the complementary convergence analysis to
assess the degree of circularity of the output error along the itera-
tions. Illustrative simulations demonstrate the MICCC outperforms
the MCCC-CLMS, CLMS and augmented CLMS (ACLMS).

2. MAXIMUM COMPLEX CORRENTROPY CRITERION
The probabilistic interpretation of complex correntropy is based on
estimating the probability of the event x = y, for random complex
variables x,y ∈ CN . This is equivalent to considering the joint
probability of the events <{x} = <{y} and ={x} = ={y} [10].
Using a complex-valued Gaussian pdf, denoted by κσ(·), the calcu-
lation of correntropy between variables x and y is then equivalent to
estimating the probability of the estimation error, e = x−y, that is

Vσ(x,y) = E{κσ(e)} =
1

πσ2
E

{
exp

[
−eHe

σ2

]}
, (1)

whereby σ2 is the variance of κσ(e) and Vσ(x,y) denotes an ap-
propriate Parzen estimator [12], which has the form

Vσ(x,y) =
1

πσ2

1

N

N∑
n=1

exp

[
−|(xn − yn)|

2

σ2

]
, (2)

and represents a measure of maximum similarity between the ran-
dom variables x = [x1, ..., xN ]T and y = [y1, ..., yN ]T .
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The “proper” MCCC, proposed in [10], assumes the form in (2)
and produces the probabilistic difference, e = d − y, between the
desired signal d ∈ C and the filter output y ∈ C. In other words,
for a strictly linear model y = hHx, where x ∈ CN is the complex-
valued input and h ∈ CN a weight vector, the MCCC represents the
maximum complex correntropy between the random variables d and
y, that is

JMCCC = Vσ(d, y) = E{κσ(e)}. (3)

3. MAXIMUM IMPROPER COMPLEX CORRENTROPY
CRITERION

The pdf of a general zero-mean noncircular complex Gaussian dis-
tributed random variable, x ∈ CN , is defined as [13, 11, 14]

κσ,%(x) =
1

πσ2
√

1− |%|2
exp

[
−|x|

2 −<{%x∗2}
σ2(1− |%|2)

]
, (4)

where % = E{x2}/E{|x|2} is the circularity quotient of x [15].
To introduce a measure of improper complex correntropy, as an

extension of the probabilistic interpretation in [10], consider an im-
proper complex random variable, e = x − y ∈ CN , with x =
[x1, ..., xN ]T and y = [y1, ..., yN ]T . Then, the complex corren-
tropy is estimated through an appropriate Parzen estimator, given by

Vσ,%(x,y)=
1

πσ2
√

1− |%|2
1

N

N∑
n=1

exp

[
−|en|

2 −<{%e∗2n }
σ2(1− |%|2)

]
(5)

where en = xn− yn and % = E{eT e}/E{eHe}. Well established
methods exist for determining the optimal value for the kernel size,
σ2 in (5) [16, 15], which without loss of generality is assumed to be
a constant in this work.

A further insight into the improper complex correntropy is con-
veniently provided through its Taylor series expansion

Vσ,%(x,y) =
1

π

∞∑
n=0

(−1)n

n!
E

{[
eHe−<{%eHe∗}

]n
σ2(n+1)(1− |%|2)n+ 1

2

}
. (6)

Remark 1: Observe that with an increase in the kernel size, σ2, the
higher-order terms in (6) decay faster than the second-order terms,
and that, contrary to the case of a proper x, as desired the circularity
quotient % is involved too. The larger the circularity coefficient |%|,
the greater the contribution of the higher-order terms.
Remark 2: The only case where the proposed improper complex
correntropy behaves like the covariance is when the kernel size, σ2,
tends to infinity and the circularity quotient, %, vanishes. In this way,
the involvement of the circularity quotient within the higher-order
terms overcomes the undermodeling problem of the proper corren-
tropy model in [10] when applied to noncircular data.

To support the development of correntropy-based adaptive sig-
nal processing algorithms for noncircular data, we next introduce the
maximum improper complex correntropy criterion (MICCC) which
is based on (5), accounts for the complex impropriety, and can be
used for both circular and noncircular inputs.

4. ROBUST WIDELY LINEAR FILTERING

Consider a widely linear (WL) model in the form
y = hHx + gHx∗ = wHx, (7)

where x =
[
xT ,xH

]T
and w =

[
hT ,gT

]T
are respectively the

augmented input and coefficient vectors, with x,h,g ∈ CN [17].
Define the estimation error, e = d−y, as the difference between the
desired signal d ∈ C and the filter output y ∈ C. The new cost func-
tion is then defined as the maximum improper complex correntropy

between the random variables d and y, and is given by

JMICCC = Vσ,%(d, y) = E{κσ,%(e)}. (8)

4.1. MICCC-based stochastic gradient adaptive filter
Following on the work in [6], we now derive a gradient-based adap-
tive learning algorithm using the MICCC as a cost function. For an
input signal xk = [xk−N+1, ..., xk]

T at time instant k, the improper
correntropy between the desired signal dk = [dk−N+1, ..., dk]

T and
the filter output yk = [yk−N+1, ..., yk]

T is computed using a sliding
window of N samples, to give

Jk =
1

πσ2
√

1− |%|2
1

N

k∑
i=k−N+1

exp

[
−eie

∗
i −<{%e2∗i }
σ2(1− |%|2)

]
(9)

where ei = di − wH
k xi. The cost function Jk is maximised with

respect to wk using gradient ascent [11], that is, based on wk+1 =

wk + µ ∂Jk
∂w∗

k
. The computation of the derivative ∂Jk

∂w∗
k

can be simpli-
fied through the CR (or Wirtinger) derivative chain rule [18, 11]

∂Jk
∂w∗

=
∂Jk
∂e

∂e

∂w∗
+
∂Jk
∂e∗

∂e∗

∂w∗
. (10)

With ∂e
∂w∗ = −x and ∂e∗

∂w∗ = 0, equation (10) reduces to

∂Jk
∂w∗

= −∂Jk
∂e

x = −∂κσ,%(e)
∂e

x. (11)

To simplify the derivation of ∂Jk
∂e

, we assume an unbiased estimation
with E{e} = 0, such that ∂%

∂e
= 2E{e}

σ2 = 0, to give

∂Jk
∂w∗

= E

{
κσ,%(e)

σ2 (1− |%|2) (e
∗ − %∗e)x

}
. (12)

Therefore, the weight update for the filter in (7) becomes

wk+1 = wk + µ

∑k
i=k−N+1 κσ,%(ei)(e

∗
i − %∗ei)xi

σ2(1− |%|2)N . (13)

The instantaneous approximation (N = 1) finally yields the weight
update of the proposed widely linear correntropy adaptive filter in
the form

wk+1 = wk + µ
κσ,%(ek)(e

∗
k − %∗ek)xk

σ2(1− |%|2) . (14)

5. CONVERGENCE ANALYSIS
The mean and mean-square convergence analyses use the following
standard independence assumptions:

A1. The desired response is produced by a WL model given by
dk = hHoptx + gHoptx

∗ + ηk = wH
optxk + ηk, (15)

where ηk is complex circular Gaussian noise, that isE{η2k} =
0, which is uncorrelated with xk, and wopt is the optimal
weight vector.

A2. The input xk is correlated second-order noncircular such that
the off-diagonal elements of Rk = E{xkx

H
k } and Pk =

E{xkx
T
k } do exist.

A3. The error nonlinearity κσ,%(ek) is asymptotically uncorre-
lated with E{xkx

H
k } and E{xkx

T
k } at the steady state.

A4. The filter is long enough such that the a priori error is zero-
mean Gaussian.

The assumption A1 is common, while for a long enough filter the
assumption A3 also becomes realistic. Assumption A4 is reasonable
owing to the central limit theorem, and also remains valid in the
whole adaptation stage [19, 20, 21, 22]. For detailed derivations, we
refer to [23].
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5.1. Convergence in the mean

Consider the weight error vector, given by vk = wk−wopt, so that
the estimation error can be expressed in terms of vk, as

ek = dk −
(
vk + wopt

)H
xk = ηk − vHk xk. (16)

For convenience, we introduce the variable

µ =
µκσ,%(ek)

σ2(1− |%|2) . (17)

Upon inserting (16-17) into (14) we arrive at

vk+1 = vk + µ
(
η∗k − xHk vk − %

∗ηk + %∗xTk v∗k

)
xk. (18)

Under the convergence assumptions A1-A4, and upon taking the sta-
tistical expectations on both sides, we obtain
E{vk+1} = E{vk}+ E{µ} (%∗PkE{v

∗
k} −RkE{vk}) (19)

where Rk = E{xkx
H
k } and Pk = E{xkx

T
k } are the covariance

and pseudo-covariance matrices of the input data.
At the steady state the terms that include high powers of ek can

be neglected [24], unless the measurements of the desired signals dk
are extremely noisy. Further, it is insightful to inspect the first two
terms of the Taylor series expansion of E{µ}, based on (6), that is

E{µ}≈ µ

πσ4(1−|%|2)
3
2

[
1−

σ2
η+tr (RkKk−<{%P

∗
kGk})

σ2(1− |%|2) 1
2

]
(20)

where Kk = E{vkv
H
k } and Gk = E{vkv

T
k } are respectively the

covariance and pseudo-covariance matrices of the weight error vec-
tor. Observe that the mean characteristics of the MICCC stochastic
gradient algorithm depend on the kernel size, σ2, the input data, xk,
the weight error vector, vk, the circularity of the estimation error, %,
and the minimum MSE, σ2

η .
Remark 3: With the assumptions of circular estimation error, that
is % = 0, and sufficiently large kernel size, σ2, the mean behaviour
of the stochastic gradient correntropy filter approaches that of the
ACLMS, given by E{vk+1} = (I− µRk)E{vk}.

5.2. Convergence in the mean-square

Consider the evolution of the weight error covariance matrix, Kk,
which can be used to determine the MSE through the relation
E{|ek|2} = σ2

η + tr(RkKk), where tr(RkKk) is the excess MSE
at time instant k [25]. The computation of E{vk+1v

H
k+1} is based

on (18), and upon taking the expectations of the fourth-order mo-
ments using Isserlis’ theorem [26] for Gaussian vectors, we obtain
Kk+1 = Kk + E{µ} [−RkKk + %∗PkG

∗
k −KkRk + %GkP

∗
k]

+ E{µ2}
[ (

1 + |%|2
) (
σ2
ηRk + RkKkRk + PkK

T
kP∗k

)
− 2%RkGkP

∗
k − 2%∗PkG

∗
kRk (21)

+ Rktr
((
1 + |%|2

)
RkKk − 2<{%∗PkG

∗
k}
)]
.

Next, consider the unitary matrix Q derived from the approxi-
mate uncorrelating transform (AUT) [27] which diagonalizes the
pseudo-covariance matrix, P = E{xxT }, as P = QΛPQT , with
QQH = I and ΛP = diag{pmax, ..., pmin} being a diagonal matrix
of real-valued entries (circularity coefficients). The AUT also simul-
taneously approximately diagonalizes the covariance matrix, R =
E{xxH}, as R ≈ QΛRQH with ΛR = diag{λmax, ..., λmin}
being the diagonal matrix with the eigenvalues of R. Therefore, in
this way Rk and Pk can be jointly diagonalized as Pk = QΛPQT

and Rk ≈ QΛRQH , where Q has the form [25]

Q =
1√
2

[
Q −Q
Q∗ Q∗

]
. (22)

Notice that the diagonal matrices ΛR and ΛP are identical except
for the opposite signs of the last N diagonal elements, that is

ΛR=

[
ΛR+ΛP 0

0 ΛR−ΛP

]
, ΛP=

[
ΛR+ΛP 0

0 ΛP−ΛR

]
. (23)

Now, pre- and post- multiply both sides of (21) with the unitary ma-
trices QH and Q to arrive at

K̃k+1 = K̃k + 2E{µ}
[
ΛP<

{
%∗G̃

∗
k

}
−ΛRK̃k

]
+ E{µ2}

[(
1 + |%|2

) (
σ2
ηΛR + Λ2

RK̃k + Λ2
PK̃

T

k

)
+ ΛRtr

((
1 + |%|2

)
ΛRK̃k − 2ΛP<

{
%∗G̃

∗
k

})
(24)

− 4ΛPΛR<
{
%∗G̃

∗
k

}]
.

where K̃k = QHKkQ and G̃k = QHGkQ are the rotated weight
error covariance and pseudo-covariance matrices.

The diagonal elements of K̃k, G̃k can be combined into the
respective vectors κk and γk and admit the recursion

κk+1 = Aκk + B<{%∗γ∗k}+ E{µ2}
(
1 + |%|2

)
σ2
ηr, (25)

A=
[
I− 2E{µ}ΛR +

(
1 + |%|2

)
E{µ2}

(
2Λ2

R + rrT
)]
, (26)

B = 2
[
E{µ}ΛP − 2E{µ2}

(
ΛRΛP + rpT

)]
, (27)

where r and p contain the diagonal elements of ΛR and ΛP, respec-
tively. We have exploited the equivalence Λ2

R = Λ2
P in (26).

Remark 4: With the relaxing assumptions of circular estimation er-
ror, % = 0, and sufficiently large kernel size, σ2, the mean-square
behaviour of MICCC degenerates into that of the ACLMS algorithm
in [25].
Remark 5: With the inclusion of γk in (25), the standard conver-
gence analysis is not sufficient for a complete convergence analysis.
Therefore it is necessary to perform the complementary convergence
analysis [28] as well.

5.3. Complementary convergence in the mean

We next consider the evolution of the weight error pseudo-covariance
matrix, Gk, which is necessary to determine the complementary
MSE (CMSE) through the relation E{e2k} = tr(PkG

∗
k) [28],

which is the excess CMSE at time instant k [25]. Upon comput-
ing E{vk+1v

T
k+1} based on (18), and taking the expectations of

the fourth-order moments using Isserlis’ theorem [26] for Gaussian
vectors, we obtain

Gk+1 = Gk + E{µ}
[
−GkR

T
k + %∗KkPk −RkGk + %∗PkK

T
k

]
+ E{µ2}

[
− 2%∗σ2

ηPk + 2RkGkR
T
k + 2%∗2PkG

∗
kPk

− 2%∗
(
RkKkPk + PkK

T
kRT

k

)
(28)

+ Pktr
(
P∗kGk − 2%∗RkKk + %∗2PkG

∗
k

) ]
.

Now, pre- and post- multiply both sides of the above equations with
the unitary matrices QH and Q, derived from the AUT, to yield

G̃k+1 = G̃k + E{µ}
[
%∗ΛP

(
K̃k + K̃

T

k

)
− 2ΛRG̃k

]
+ E{µ2}

[
−2%∗σ2

ηΛP + 2Λ2
RG̃k + 2%∗2Λ2

PG̃
∗
k

− 2ΛPΛR%
∗
(
K̃k + K̃

T

k

)
+ ΛPtr

(
ΛPG̃k − 2%∗ΛRK̃k + %∗2ΛPG̃

∗
k

)]
.

(29)
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The diagonal elements of this expression admit the recursion

γk+1 =
[
I− 2E{µ}ΛR + E{µ2}

(
2Λ2

R + rrT
)]

γk (30)

+ E{µ2}%∗2
[
2Λ2

P + rrT
]
γ∗k + %∗BTκk − 2E{µ2}%∗σ2

ηr.

The real-valued nature (decoupled real and imaginary parts) of the
evolution of κk guarantees that the real and imaginary parts of γk
evolve independently, so that we arrive at

<
{
%∗γ∗k+1

}
= A<{%∗γ∗k}+|%|

2BTκk−2E{µ2}|%|2σ2
ηr. (31)

Upon combining (25) and (31), we obtain the recursion for the aug-
mented variable Sk =

[
κTk , <

{
%∗γHk

}]T
, which assumes the form

Sk+1 =

[
A B

|%|2BT A

]
︸ ︷︷ ︸

A

Sk +

[ (
1 + |%|2

)
−2|%|2

]
E{µ2}σ2

ηr. (32)

Remark 6: The recursion in (32) depends on both the standard and
complementary convergence analyses, and reduces to the standard
convergence of the ACLMS [25] for circular estimation error, that
is, for % = 0.

5.4. Mean-square stability

For the recursion (32) to converge, the eigenvalues of A have to be
less than unity. Instead of attempting to determine the eigenvalues
of A directly, we use majorization inequalities of Hermitian block
matrices [29], the Gantmacher theorem [30] and the Weyl inequality,
to state that for a Hermitian positive semidefinite 2× 2 block matrix

H =

[
M K
K∗ N

]
, then λ [M] + λ [N] ≥ λ [M + N] ≥ λ [H],

where the λ [·] operator denotes the maximum eigenvalue [31]. Now,
λ [A] ≤ 2λ [I]− 4E{µ}λ [ΛR]

+ 2
(
1 + |%|2

)
E{µ2}

[
λ
[
Λ2

R

]
+ λ

[
rrT

]]
, (33)

and since λ
[
rrT
]
= tr

(
Λ2

R

)
, the condition λ [A] < 1 reduces to

1−2E{µ}rmin+
(
1 + |%|2

)
E{µ2}

(
2r2max + tr(Λ2

R)
)
< 1. (34)

The inequality still holds if tr(Λ2
R) is replaced by 2Nr2max, and

therefore the MICCC-based stochastic gradient algorithm achieves
mean-square stability for

0 < µ <
πσ2(1− |%|2)rmin

(1 + |%|2)E{κσ,%(ek)} (N + 1) r2max

. (35)

Upon dividing the numerator and denominator with rmin and rec-
ognizing that the maximum eigenvalue of the augmented covariance
matrix, rmax, is the sum of the eigenvalues of the covariance, R, and
pseudo-covariance, P, matrices that is, rmax = λmax + pmax, gives
[25]

0 < µ <
πσ2(1− |%|2)

(1 + |%|2)E{κσ,%(ek)} (N + 1) s [Rk] (λmax + pmax)
,

(36)
where the eigenvalue spread of the augmented covariance matrix is

s [Rk] =
rmax

rmin
=
λmax + pmax

λmin − pmin
. (37)

5.5. Steady-state analysis

The steady-state values of κ and γ are given by

κ∞ = [I−A]−1 [B<{%∗γ∗∞}+ E{µ2}
(
1 + |%|2

)
σ2
ηr
]
, (38)

<{%∗γ∗∞} = [I−A]−1
[
|%|2BTκ∞ − 2E{µ2}|%|2σ2

ηr
]
, (39)

Upon combining (38) and (39), the steady-state misadjustment can

be expressed as

MMICCC =
rTκ∞
σ2
η

=
[
[I−A]− |%|2B [I−A]−1 BT

]−1

×

E{µ2}
[(
1 + |%|2

)
I− 2B [I−A]−1] (40)

Remark 7: The steady-state misadjustment of the MICCC algorithm
increases with the increase in noncircularity of the estimation error.

6. SIMULATIONS
The optimum weights in (7) were chosen arbitrarily as

hopt = [1− 2,−3 + 4]T , gopt = [2 + 0.5,−2 + 2]T (41)
and the complex input signal, x, was proper Gaussian noise. The
real and and imaginary parts of the noise, ηk, were characterized
by the respective pdfs 0.9N (0, 1) and N (0, 10), where the large
variance of 10 provides large impulsive disturbances. The perfor-
mance of the MICCC-based stochastic gradient (MICCC) was com-
pared to its “proper” MCCC-based counterpart (MCCC) [10] and
the established CLMS and augmented CLMS (ACLMS) algorithms
[32, 11, 33]. The weight signal-to-noise ratio (WSNR), defined as

WSNRdB = 10 log10

(
wH
optwopt(

wopt −wk

)H (
wopt −wk

)) , (42)

was used to quantify both convergence and misadjustment [8], where
wk =

[
hTk ,g

T
k

]T
is the weight vector computed at the time instant

k for the widely linear algorithms (MICCC and ACLMS), and wk =[
hTk ,0

]T
for the strictly linear algorithms (MCCC and CLMS).

Fig. 1 shows the average WSNR produced by 1000 Monte Carlo
trials, with the initial value for the weights set to zero. The param-
eters in all algorithms considered were tuned such that their steady-
state WSNR were equal in a Gaussian environment.
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Fig. 1: Weight signal to noise ratio (WSNR) of MICCC, MCCC,
CLMS and ACLMS under Gaussian proper noise (left panel) and
impulsive improper noise (right panel).

Fig. 1 illustrates that the outliers in non-Gaussian environments
negatively impact the performance of the MSE-based algorithms,
while the correntropy-based algorithms were unaffected. Owing to
its inherent account of noncircularity, %, the MICCC exhibited a sig-
nificantly enhanced convergence rate and WSNR over the proper
MCCC and the second-order statistics-based CLMS and ACLMS.

7. CONCLUSIONS
We have extended the definition of complex correntropy to account
for a general class of complex-valued data with noncircular distri-
butions. This has been achieved through a probabilistic interpreta-
tion of the complex correntropy, and has served as a basis for a new
stochastic gradient algorithm with the cost function in the form of
the maximum improper correntropy criterion (MICCC). The analy-
sis and simulations have demonstrated that, with noncircularity ac-
counted for by MICCC, the proposed method offers faster conver-
gence rates and greater WSNR in both Gaussian and non-Gaussian
environments. Future work aims at the development of a whole class
of MICCC-based algorithms, such as Kalman and MVDR filters.
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