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Human brains exhibit a possibility to control directly the intelligent computing applications in
form of brain computer/machine interfacing (BCI/BMI) technologies. Neurophysiological sig-
nals and especially electroencephalogram (EEG) are the forms of brain electrical activity which
can be easily captured and utilized for BCI/BMI applications. Those signals are unfortunately
usually very highly contaminated by external noise caused by the presence of di®erent devices in
the environment creating electromagnetic interference. In this paper, we ¯rst decompose each of
the recorded channels, in multichannel EEG recording environment, into intrinsic mode func-
tions (IMF) which are a result of empirical mode decomposition (EMD) extended to multi-
channel analysis. We present novel and interesting results on human mental and cognitive
states estimation based on analysis of the above-mentioned stimuli-related IMF components.
The IMF components are further clustered for their spectral similarity in order to identify only
those carrying responses to present stimuli to the subjects. The resulting targets only
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reconstruction allows us to identify when and to which stimuli intelligent application user is
tuning at a time.

Keywords: Brain synchrony; brain signal processing; EMD application to EEG.

1. Introduction

Online brain states analysis based on noninvasive monitoring techniques such as
electroencephalogram (EEG) have received much attention recently due to the
growing interest and popularity of research related to brain computer/machine
interfacing (BCI/BMI) techniques, owing to the very exciting possibility of com-
puter-aided communication with the outside world. A new and growing interest in
neuroscience, so-called steady-state potentials1!3 stimuli technique, which produces
longer in-time and more easy to detect within monitored EEG steady responses
contributes also to EEG signal processing's recent popularity.

EEG based brain stages monitoring is achieved in a noninvasive recording setup.
The noninvasive brain monitoring method posesses several important and di±cult
problems. In terms of signal processing these include the detection, estimation,
interpretation and modeling of brain activities, and cross-user transparency.4

It comes as no surprise, therefore, that this technology is envisaged to be at the
core of future \intelligent computing". Other industries which would bene¯t greatly
from the development of online analysis and visualization of brain states include the
prosthetics, entertainment, virtual reality, and computer games industries, where the
control and navigation in a computer-aided application is achieved without resorting
to using muscles, hands, or any gestures (peripheral nervous system in general).
Instead, the onset of \planning an action" recorded from the head (scalp) surface,
and the relevant information is \decoded" from this information carrier.

Apart from purely signal conditioning problems, in most BCI/BMI experiments
other issues such as user training and adaptation, inevitably cause di±culties and
limit a wide spread of this technology due to the lack of \generality" caused by cross-
user di®erences.4 To help mitigate some of the above-mentioned issues, we propose to
make use of a new and growing interest in signal processing community technique of
empirical mode decomposition (EMD)5 which we extend to multichannel approach
of parallel decomposition of single channel signals and further clustering of
so-obtained components among channels to track coherent (synchronized or corre-
lated in spectral domain) activities in complex signals as EEG.

In the proposed approach, we analyze responses from experiments based on a
visual stimuli which were conducted with in the Laboratory for Advanced Brain
Signal Processing, BSI RIKEN, within the so-called steady-state visual evoked
potential (SSVEP) mode.1,6 Within this framework, the subjects are asked to focus
their attention on a simple °ashing stimuli, whose frequency is known to cause a
physiologically stable response traceable within EEG.6,7 This way, the proposed
multichannel and multimodal signal decomposition scheme uses the EEG captured
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by several electrodes, subsequently preprocessed, and transformed into informative
time!frequency traces, which very accurately visualize frequency and amplitude
modulations of the original signal.

EEG is usually characterized as a summation of extracellular currents caused by
post-synaptic potentials (intracellular) from a very large number of neurons which
create oscillatory patterns distributed and possible to record around the scalp. Those
patterns in the known frequency ranges can be monitored and classi¯ed in synchrony
with a stimuli given to the subjects. EMD utilizes empirical knowledge of oscillations
intrinsic to a time series in order to represent them as a superposition of components
with well de¯ned instantaneous frequencies. These components are called intrinsic
mode functions (IMF).

This paper is organized as follows. First the method of single channel EMD
analysis of EEG signals is presented. Next multichannel EEG analysis and
decomposition is discussed leading to a novel time!frequency synchrony evaluation
method based on spectral IMF clustering. A new concept of multiple spatially
localized amplitude and frequency oscillations related to presented stimuli in time!
frequency domain is described which let us obtain ¯nal traces of frequency and
amplitude ridges coherent among the EEG channels. Finally examples of the analysis
of the EEG signals are given and conclusions are drawn.

2. Methods

Weaimat looking at the level of detail (richness of information source) obtainable from
single experimental trial EEG signals, and compare the usefulness of a novel multi-
channel signal decomposition approach in this context. The utilized approach is based
on multichannel extension of the EMD technique which was previously successfully
applied to EEG soni¯cation and mental states estimation in Refs. 1!3. The EMD
approach rests on the identi¯cation of signal's nonstationary and nonlinear features
which represent di®erent modalities of brain activity captured by the EEG data
acquisition system (g.USBampr of Guger Technologies). This novel method allowed
us previously to create slowly modulated tones representing changing brain activities
among di®erent human scalp locations where EEG electrodes were localized.

In the current application, we propose to look at the level of details revealed in single
EEG channels decomposed separately into IMFs as discussed in detail in the next
section and later compared across the multiple channels. After application of Hilbert
transform to all IMFswe can track and visualize revealed oscillations of amplitude and
frequency ridges. Similarity of these oscillations among channels revealed in form of
pairwise correlations identify components which are synchronized or not with the
onsets and o®sets of the presented stimuli. The proposed approach is a completely
\data driven" concept. All the IMFs create semi-orthogonal bases created from the
original EEG signals and not introduced arti¯cially by the method itself.
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2.1. EMD for EEG analysis — A single channel case

The IMF components obtained during EMD analysis should approximately obey the
requirements of

(i) completeness;
(ii) orthogonality;
(iii) locality;
(iv) adaptiveness.5

To obtain an IMF it is necessary to remove local riding waves and asymmetries,
which are estimated from local envelope of minima and maxima of the waveform.
There are several approaches to estimate signals envelopes and we have discussed
them previously.3

The Hilbert spectrum for a particular IMF allows us later to represent the EEG in
amplitude — instantaneous frequency — time plane. An IMF shall satisfy the two
conditions:

(i) in the whole dataset, the number of extrema and the number of zero crossings
should be equal or di®er at most by one;

(ii) at any point of IMF the mean value of the envelope de¯ned by the local maxima
and the envelope de¯ned by the local minima should be zero.

The technique of ¯nding IMFs corresponds thus to ¯nding limited-band signals. It
also corresponds to eliminating riding waves from the signal, which ensures that the
instantaneous frequency will not have °uctuations caused by an asymmetric wave-
form. IMF in each cycle is de¯ned by the zero crossings. Every IMF involves only one
mode of oscillation, no complex riding waves are thus allowed. Notice that the IMF is
not limited to be a narrow band signal, as it would be in traditional Fourier or
wavelets decomposition, in fact, it can be both amplitude and frequency modulated
at once, and also nonstationary or nonlinear.

The process of IMF extraction from a signal x(t) (\sifting process"5) is based on
the following steps:

(1) determine the local maxima and minima of the analyzed signal x(t);
(2) generate the upper and lower signal envelopes by connecting those local maxima

and minima, respectively, by the chosen interpolation method (e.g., linear,
spline, cubic spline, piece-wise spline3,5);

(3) determine the local mean m(t), by averaging the upper and lower signal
envelopes;

(4) subtract the local mean from the data:

h1ðtÞ ¼ xðtÞ !m1ðtÞ : ð1Þ
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Ideally, h1ðtÞ is an IMF candidate. However, in practice, h1ðtÞ may still contain local
asymmetric °uctuations, e.g., undershoots and overshoots; therefore, one needs to
repeat the above four steps several times, resulting eventually in the ¯rst (optimized)
IMF. In order to obtain the second IMF, one applies the sifting process to the residue

"1ðtÞ ¼ xðtÞ ! IMF1ðtÞ ; ð2Þ

obtained by subtracting the ¯rst IMF from x(t); the third IMF is in turn extracted
from the residue "2ðtÞ and so on. One stops extracting IMFs when two consecutive
sifting results are close to identical; the EMD of the signal x(t) may be written as:

xðtÞ ¼
Xn

k¼1

IMFkðtÞ þ "nðtÞ ; ð3Þ

where n is the number of extracted IMFs, and the ¯nal residue "nðtÞ can either be the
mean trend or a constant. The EMD is obviously complete, since Eq. (3) is an
equality: the original signal can be reconstructed by adding all IMFs and the ¯nal
residue. Note that the IMFs are not guaranteed to be mutually orthogonal, but in
practice, they often are close to orthogonal3; it is also noteworthy that the IMFs are
adaptive, i.e., they depend on the signal x(t) as anticipated for the data driven
method.

2.2. Huang!Hilbert spectra with amplitude and frequency ridges

From the obtained in previous section IMFs corresponding time!frequency rep-
resentations can be produced by applying the Hilbert transform to each component.5

As a result of Hilbert transform application to each IMF the data can be expressed as
time!frequency domain in form of analytic complex signals formed as

IMFk;anðtÞ ¼ IMFkðtÞ þ iIMFk;HTðtÞ ¼ IMFkðtÞ þ
1

!

Z þ1

!1

IMFkðt 0Þ
t! t 0

dt 0 ; ð4Þ

where IMFHT is the Hilbert transformed version of IMF. The analytic signal is
further polar-decomposed as

IMFk;anðtÞ ¼ AIMFk
ðtÞ expði"IMFk

ðtÞÞ ; ð5Þ

where

AIMFk
ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IMFkðtÞ2 þ IMFk;HTðtÞ2

q
ð6Þ

is the instantaneous amplitude, and

"IMFk
ðtÞ ¼ arctan

IMFk;HT ðtÞ
IMFkðtÞ

" #
ð7Þ

is instantaneous phase of each IMFk, respectively. The Hilbert transform allows us to
depict the variable amplitude (Fig. 1(d)) and the instantaneous frequency (Fig. 1(c))
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(a) Time domain preprocessed EEG.
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(b) Huang!Hilbert spectra.
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(c) Frequency ridge traces.
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(d) Amplitude ridge traces

Fig. 1. Four plots of four EEG channels in each panel recorded synchronously during SSVEP experiment.
The steady-state response can be visually spotted in the range of 150!650 samples. Panel (a) presents time
domain EEG preprocessed plots; (b) their Huang!Hilbert spectra; (c) and (d) the frequency and ampli-
tude ridges in Hilbert spectra domain (solid line: ¯rst; dashed line: second; dotted line: third; dash-dotted
line: fourth IMF, respectively).
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in the form of very sharp and localized functions of frequency and time (in contrast to
Fourier expansion, for example, where frequencies and amplitudes are ¯xed for its
bases). Such an approach is very suitable for the nonstationary EEG analysis and
common/synchronized activities within certain channels. An example of Huang!
Hilbert spectrograms of four EEG channels recorded simultaneously is presented in
Fig. 1(b).

2.3. EMD application to multichannel EEG signals

Using the above procedure in a single channel mode the EEG signals from chosen
electrodes could be decomposed separately forming subsets of IMF functions, from
which low frequency drifts and high frequency spikes could be further removed. The
most interesting part of EEG is usually in the middle range frequencies. To analyze
multichannel EEG signal sets recorded synchronously in a single experiment we
propose to decompose all channels separately preventing possible oscillatory infor-
mation leaking among the channels. The so-obtained IMFs sets can be further
compared as in case of four EEG signals presented in Fig. 1(a) which are further
EMD decomposed and visualized in form of Huang!Hilbert spectrograms5 as in
Fig. 1(b). The traces of amplitude and frequency modulation ridges8 obtained from
Hilbert transformation of separately processed IMFs and further plotted together are
presented in Figs. 1(d) and 1(c), respectively. Ridges are the continuous traces within
spectrograms of frequency and amplitude oscillations as ¯rst introduced in Ref. 8.
The areas of steady-state stimulation can be easily spotted in amplitude traces of a
single IMF on all channels in Fig. 1(d) and subsequently in form of stable frequency
ridge during stimulation with very strong oscillations before and after the stimuli in
all channels as in Fig. 1(c).

The combined result of analysis of seven EEG channels from locations around the
human head during similar SSVEP stimuli BCI/BMI paradigm is shown also in
Fig. 5. There are seven time domain EEG traces plotted with only two amplitude
(AR) and frequency (FR) ridges of the only components showing synchrony with the
stimuli. Those components were obtained based on spectral clustering technique and
thresholding described in the next section.

2.4. Spectral clustering of EMD components

In order to compare all IMFs extracted from the analyzed channels we propose to
transform them to Hilbert domain in order to capture spectral content carried by all
of them. The spectra are further treated as feature vectors and compared for their
similarity across the channels.

We decided to compare several distance measures in order to test their usability
for IMF components clustering resulting in EEG interference separation from the
signals.
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The distances were evaluated in form of a hierarchical cluster analysis using a set
of dissimilarities for the n objects to be clustered. Such a procedure was performed9

with utilization of \R" package.10 Initially, each vector representing power spectrum
values is assigned to its own cluster and then the algorithm proceeds iteratively, at
each stage joining the two most similar clusters. The procedure continues until there
is just a single cluster. At each stage distances between clusters are recomputed by
the Lance!Williams dissimilarity update formula with a single linkage clustering
method. The single linkage method is closely related to the minimal spanning tree
concept and it adopts a \friends of friends" strategy for clustering.9 Results of such
procedure are presented in Figs. 2(a), 2(b), 3(a), 3(b), 4(a), and 4(b), where two sets
of clusters are visualized. The following distance measures were tested (written here
for two vectors x and y):

2.4.1. Euclidean distance

The Euclidean distance is a usual square distance between the two vectors (two-
norm). A result of clustering with this measure (not very good though with most of
the IMFs clustered together) is presented in Fig. 2(a).

2.4.2. Maximum distance

The maximum distance is calculated as a maximum distance between two com-
ponents of x and y (supremum norm). A result of clustering with this measure (here
also most of the IMFs created a single cluster) is presented in Fig. 2(b).

2.4.3. Manhattan distance

The Manhattan distance is based on an absolute distance between the two vectors
(one-norm). A result of clustering with this measure (here again most of the IMFs
created a single cluster) is presented in Fig. 3(a).

2.4.4. Canberra distance

Canberra distance is calculated as

dC ¼
X

i

jxi ! yij
jxi þ yij

; ð8Þ

with terms with zero numerator and denominator omitted from the sum and treated
as if the values were missing. A result of clustering with this measure (here the result
is more interesting but unfortunately again low frequency components were mixed
with those of higher frequencies) is presented in Fig. 3(b).

2.4.5. Minkowski distance

Minkowski distance is calculated as the p-norm, which is the pth root of the sum of
the pth powers of the di®erences of the components. A result of clustering with this
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Fig. 2. IMF spectral clustering results for Euclidian and maximum distances methods.
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Fig. 3. IMF spectral clustering results for Manhattan and Canberra distances methods.
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methods.
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measure (here as the result again the low frequency components were mixed with
those of higher frequencies which) is presented in Fig. 4(a).

2.4.6. (One-minus-correlation) distance

One-minus-correlation distance is based on correlations between vectors x and y
evaluated \as a distance measure". This result presented in Fig. 4(b) is the most
interesting, since it allowed us to separate two sets of clusters.

For the best result of correlation distance measure the ¯rst set is for distances
below 0.15 and those components from di®erent channels are classi¯ed as broad-
spectrally very similar and originating from nonstimuli related brain sources. The
visualization of the remaining IMFs is presented in Fig. 5 and it vividly con¯rms the
strength of the proposed method. The remaining set of clusters with distances below
0.15 was rejected.
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Fig. 5. The result showing the power of the proposed method to analyze multichannel EEG recordings.
The ¯rst column shows noisy EEG signals, while the second and third columns depict only amplitude (AR)
and frequency (FR) traces of components synchronized with the stimuli and subsequently correlated
among channels (solid line for the ¯rst and dashed line for the second IMF synchronized with the stimuli).
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Fig. 6. Comparison of contemporary blind separation algorithms in panels (b)!(d) with the proposed
approach in panels (e) and (f ) in application for ocular muscle interference (EOG) removal from EEG. The
original contaminated EEG signals are presented in panel (a).
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3. Conclusions

An automatic framework to separate interfering stimuli related responses within
EEG has been presented. This has been achieved by proposing a novel EEG
decomposition technique, which allows a °exible sub-band signal decomposition
while preserving the nonlinear and nonstationary features of the signals which is very
crucial for brain activity analysis. The so-obtained components from each EEG
channel processed separately have been further transformed to the Hilbert domain
and compared within amplitude and phase domains using the clustering technique in
order to identify those similar (spectrally correlated) across channels.

The resulting reconstruction has allowed us to separate common nonstimuli
related EEG subcomponents from the target (stimuli related) brain activity in the
data-driven signal processing approach without information leakage between chan-
nels. The proposed approach was tested in several EEG recording sessions in a
multiple subjects con¯rming the results presented here.

For a comparison we included results with contemporary blind source separation
algorithms such as classical ICA11 in Fig. 6(b), FastICA12 in Fig. 6(c), and SOBI13 in
Fig. 6(d). These contemporary methods were not able to separate strong ocular
muscle interference (EOG) from neurophysiological signals (EEG) (compare original
recordings in Fig. 6(a)). The proposed approach was able to separate ocular artifacts,
without additional scaling problems what was an issue occurring in the other com-
pared approaches. The EMD-based technique presented in this paper was able to
separate EOG interference (see Fig. 6(e)) from target pure EEG (see Fig. 6(f))
preserving scaling and shape distortion (compare with Fig. 6(a)). The strength of the
proposed technique is based on adaptive ¯ltering design in the completely data
driven approach.

This is a step forward in EEG signal processing applications which could be useful
primarily for creating user friendly BMI that would be °exible, adaptive, and
response automatic detection focused resulting in fast estimation of user attention to
the stimuli.
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